Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,216)

Search Parameters:
Keywords = roofing system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4671 KiB  
Article
Creep Characteristics and Fractional-Order Constitutive Modeling of Gangue–Rock Composites: Experimental Validation and Parameter Identification
by Peng Huang, Yimei Wei, Guohui Ren, Erkan Topal, Shuxuan Ma, Bo Wu and Qihe Lan
Appl. Sci. 2025, 15(15), 8742; https://doi.org/10.3390/app15158742 - 7 Aug 2025
Abstract
With the increasing depth of coal resource extraction, the creep characteristics of gangue backfill in deep backfill mining are crucial for the long-term deformation of rock strata. Existing research predominantly focuses on the instantaneous deformation response of either the backfill alone or the [...] Read more.
With the increasing depth of coal resource extraction, the creep characteristics of gangue backfill in deep backfill mining are crucial for the long-term deformation of rock strata. Existing research predominantly focuses on the instantaneous deformation response of either the backfill alone or the strata movement, lacking systematic studies that reflect the long-term time-dependent deformation characteristics of the strata-backfill system. This study addresses gangue–roof composite specimens with varying gangue particle sizes. Utilizing physical similarity ratio theory, graded loading confined compression creep experiments were designed and conducted to investigate the effects of gangue particle size and moisture content on the creep behavior of the gangue–roof composites. A fractional-order creep constitutive model for the gangue–roof composite was established, and its parameters were identified. The results indicate the following: (1) The creep of the gangue–roof composite exhibits two-stage characteristics (initial and steady-state). Instantaneous strain decreases with increasing particle size but increases with higher moisture content. Specimens reached their maximum instantaneous strain under the fourth-level loading, with values of 0.358 at a gangue particle size of 10 mm and 0.492 at a moisture content of 4.51%. (2) The fractional-order creep model demonstrated a goodness-of-fit exceeding 0.98. The elastic modulus and fractional-order coefficient showed nonlinear growth with increasing particle size, revealing the mechanism of viscoplastic attenuation in the gangue–roof composite. The findings provide theoretical support for predicting the time-dependent deformation of roofs in deep backfill mining. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

23 pages, 5986 KiB  
Article
Research on the Response Regularity of Smoke Fire Detectors Under Typical Interference Conditions in Ancient Buildings
by Yunfei Xia, Lei Lei, Siyuan Zeng, Da Li, Wei Cai, Yupeng Hou, Chen Li and Yujie Yin
Fire 2025, 8(8), 315; https://doi.org/10.3390/fire8080315 - 7 Aug 2025
Abstract
Point-type smoke fire detectors have become one of the most commonly used technical means in the fire detection systems of ancient buildings. However, in practical applications, their performance is easily affected by special environmental interference factors. Therefore, in this study, a full-scale experimental [...] Read more.
Point-type smoke fire detectors have become one of the most commonly used technical means in the fire detection systems of ancient buildings. However, in practical applications, their performance is easily affected by special environmental interference factors. Therefore, in this study, a full-scale experimental scene of an ancient building with a typical flush gable roof structure was taken as the research object, and the differential influence laws of three typical interference sources, namely wind speed, water vapor, and incense burning, on the response times of point-type smoke detectors were quantified. Moreover, the prediction models of the alarm time of the detectors under the three interference conditions were established. The results indicate the following: (1) Within the range of experimental conditions, there is a quantitative relationship between the detector response delay and the type of interference source: the delay time shows a nonlinear positive correlation with the wind speed/water vapor interference gradient, while it exhibits a threshold unimodal change characteristic with the burning incense interference gradient; (2) under interference conditions, the detector response delay varies depending on the type of fire source: the detector has the best detection stability for smoldering smoke from a smoke cake, while it has the lowest detection sensitivity for smoldering smoke from a cotton rope. Moreover, the influence of wind speed interference is weaker than that of water vapor or smoke from burning incense, and the difference is the greatest in the wood block smoldering condition. (3) Construct a detector alarm time prediction model under three types of interference conditions, where the wind speed, water vapor, and burning incense interference conditions conform to third-order polynomial functions, Sigmoid functions, and fourth-order polynomial functions, respectively. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

39 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 - 30 Jul 2025
Viewed by 179
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

21 pages, 6310 KiB  
Article
Geological Evaluation of In-Situ Pyrolysis Development of Oil-Rich Coal in Tiaohu Mining Area, Santanghu Basin, Xinjiang, China
by Guangxiu Jing, Xiangquan Gao, Shuo Feng, Xin Li, Wenfeng Wang, Tianyin Zhang and Chenchen Li
Energies 2025, 18(15), 4034; https://doi.org/10.3390/en18154034 - 29 Jul 2025
Viewed by 200
Abstract
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index [...] Read more.
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index classification and quantification was employed in combination with the geological features of the Tiaohu mining area to establish a feasibility evaluation index system suitable for in-situ development in the study region. Among these factors, coal quality parameters (e.g., coal type, moisture content, volatile matter, ash yield), coal seam occurrence characteristics (e.g., seam thickness, burial depth, interburden frequency), and hydrogeological conditions (e.g., relative water inflow) primarily govern pyrolysis process stability. Surrounding rock properties (e.g., roof/floor lithology) and structural features (e.g., fault proximity) directly impact pyrolysis furnace sealing integrity, while environmental geological factors (e.g., hazardous element content in coal) determine environmental risk control effectiveness. Based on actual geological data from the Tiaohu mining area, the comprehensive weight of each index was determined. After calculation, the southwestern, central, and southeastern subregions of the mining area were identified as favorable zones for pyrolysis development. A constraint condition analysis was then conducted, accompanied by a one-vote veto index system, in which the thresholds were defined for coal seam thickness (≥1.5 m), burial depth (≥500 m), thickness variation coefficient (≤15%), fault proximity (≥200 m), tar yield (≥7%), high-pressure permeability (≥10 mD), and high-pressure porosity (≥15%). Following the exclusion of unqualified boreholes, three target zones for pyrolysis furnace deployment were ultimately selected. Full article
Show Figures

Figure 1

15 pages, 11864 KiB  
Article
Rope-Riding Mobile Anchor for Robots Operating on Convex Facades
by Chaewon Kim, KangYup Lee, Jeongmo Yang and TaeWon Seo
Sensors 2025, 25(15), 4674; https://doi.org/10.3390/s25154674 - 29 Jul 2025
Viewed by 186
Abstract
The increasing presence of high-rise buildings with curved and convex facades poses significant challenges for facade-cleaning robots, particularly in terms of mobility and anchoring. To address this, we propose a rope-riding mobile anchor (RMA) system capable of repositioning the anchor point of a [...] Read more.
The increasing presence of high-rise buildings with curved and convex facades poses significant challenges for facade-cleaning robots, particularly in terms of mobility and anchoring. To address this, we propose a rope-riding mobile anchor (RMA) system capable of repositioning the anchor point of a cleaning robot on convex building surfaces. The RMA travels horizontally along a roof-mounted nylon rope using caterpillar tracks with U-shaped grooves, and employs a four-bar linkage mechanism to fix its position securely by increasing rope contact friction. This structural principle was selected for its simplicity, stability under heavy loads, and efficient actuation. Experimental results show that the RMA can support a payload of 50.5 kg without slippage under tensions up to 495.24 N, and contributes to reducing the power consumption of the cleaning robot during operation. These findings demonstrate the RMA’s effectiveness in extending the robot’s working range and enhancing safety and stability in facade-cleaning tasks on complex curved surfaces. Full article
Show Figures

Figure 1

19 pages, 3492 KiB  
Article
Deep Learning-Based Rooftop PV Detection and Techno Economic Feasibility for Sustainable Urban Energy Planning
by Ahmet Hamzaoğlu, Ali Erduman and Ali Kırçay
Sustainability 2025, 17(15), 6853; https://doi.org/10.3390/su17156853 - 28 Jul 2025
Viewed by 253
Abstract
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is [...] Read more.
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is estimated using deep learning models. In order to identify roof areas, high-resolution open-source images were manually labeled, and the training dataset was trained with DeepLabv3+ architecture. The developed model performed roof area detection with high accuracy. Model outputs are integrated with a user-friendly interface for economic analysis such as cost, profitability, and amortization period. This interface automatically detects roof regions in the bird’s-eye -view images uploaded by users, calculates the total roof area, and classifies according to the potential of the area. The system, which is applied in 81 provinces of Turkey, provides sustainable energy projections such as PV installed capacity, installation cost, annual energy production, energy sales revenue, and amortization period depending on the panel type and region selection. This integrated system consists of a deep learning model that can extract the rooftop area with high accuracy and a user interface that automatically calculates all parameters related to PV installation for energy users. The results show that the DeepLabv3+ architecture and the Adam optimization algorithm provide superior performance in roof area estimation with accuracy between 67.21% and 99.27% and loss rates between 0.6% and 0.025%. Tests on 100 different regions yielded a maximum roof estimation accuracy IoU of 84.84% and an average of 77.11%. In the economic analysis, the amortization period reaches the lowest value of 4.5 years in high-density roof regions where polycrystalline panels are used, while this period increases up to 7.8 years for thin-film panels. In conclusion, this study presents an interactive user interface integrated with a deep learning model capable of high-accuracy rooftop area detection, enabling the assessment of sustainable PV energy potential at the city scale and easy economic analysis. This approach is a valuable tool for planning and decision support systems in the integration of renewable energy sources. Full article
Show Figures

Figure 1

20 pages, 28928 KiB  
Article
Evaluating the Effectiveness of Plantar Pressure Sensors for Fall Detection in Sloped Surfaces
by Tarek Mahmud, Rujan Kayastha, Krishna Kisi, Anne Hee Ngu and Sana Alamgeer
Electronics 2025, 14(15), 3003; https://doi.org/10.3390/electronics14153003 - 28 Jul 2025
Viewed by 245
Abstract
Falls are a major safety concern in physically demanding occupations such as roofing, where workers operate on inclined surfaces under unstable postures. While inertial measurement units (IMUs) are widely used in wearable fall detection systems, they often fail to capture early indicators of [...] Read more.
Falls are a major safety concern in physically demanding occupations such as roofing, where workers operate on inclined surfaces under unstable postures. While inertial measurement units (IMUs) are widely used in wearable fall detection systems, they often fail to capture early indicators of instability related to foot–ground interactions. This study evaluates the effectiveness of plantar pressure sensors, alone and combined with IMUs, for fall detection on sloped surfaces. We collected data in a controlled laboratory environment using a custom-built roof mockup with incline angles of 0°, 15°, and 30°. Participants performed roofing-relevant activities, including standing, walking, stooping, kneeling, and simulated fall events. Statistical features were extracted from synchronized IMU and plantar pressure data, and multiple machine learning models were trained and evaluated, including traditional classifiers and deep learning architectures, such as MLP and CNN. Our results show that integrating plantar pressure sensors significantly improves fall detection. A CNN using just three IMUs and two plantar pressure sensors achieved the highest F1 score of 0.88, outperforming the full 17-sensor IMU setup. These findings support the use of multimodal sensor fusion for developing efficient and accurate wearable systems for fall detection and physical health monitoring. Full article
Show Figures

Figure 1

27 pages, 47905 KiB  
Article
FDS-Based Study on Fire Spread and Control in Modern Brick-Timber Architectural Heritage: A Case Study of Faculty House at a University in Changsha
by Simian Liu, Gaocheng Liang, Lei Shi, Ming Luo and Meizhen Long
Sustainability 2025, 17(15), 6773; https://doi.org/10.3390/su17156773 - 25 Jul 2025
Viewed by 396
Abstract
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at [...] Read more.
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at a university in China. The assessment is carried out by analyzing building materials, structural configuration, and fire load. By using FDS (Fire Dynamics Simulator (PyroSim version 2022)) and SketchUp software (version 2023) for architectural reconstruction and fire spread simulation, explores preventive measures to reduce fire risks. The result show that the total fire load of the building amounts to 1,976,246 MJ. After ignition, flashover occurs at 700 s, accompanied by a sharp increase in the heat release rate (HRR). The peak ceiling temperature reaches 750 °C. The roof trusses have critical structural weaknesses when approaching flashover conditions, indicating a high potential for collapse. Three targeted fire protection strategies are proposed in line with the heritage conservation principle of minimal visual and functional intervention: fire sprinkler systems, fire retardant coating, and fire barrier. Simulations of different strategies demonstrate their effectiveness in mitigating fire spread in elongated architectural heritages with enclosed ceiling-level ignition points. The efficacy hierarchy follows: fire sprinkler system > fire retardant coating > fire barrier. Additionally, because of chimney effect, for fire sources located above the ceiling and other hidden locations need to be warned in a timely manner to prevent the thermal plume from invading other sides of the ceiling through the access hole. This research can serve as a reference framework for other Modern Chinese Architectural Heritage to develop appropriate fire mitigation strategies and to provide a methodology for sustainable development of the Chinese architectural heritage. Full article
Show Figures

Figure 1

29 pages, 7048 KiB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 208
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

25 pages, 2512 KiB  
Review
Drenched Pages: A Primer on Wet Books
by Islam El Jaddaoui, Kayo Denda, Hassan Ghazal and Joan W. Bennett
Biology 2025, 14(8), 911; https://doi.org/10.3390/biology14080911 - 22 Jul 2025
Viewed by 228
Abstract
Molds readily grow on wet books, documents, and other library materials where they ruin them chemically, mechanically, and aesthetically. Poor maintenance of libraries, failures of Heating, Ventilation, and Air Conditioning (HVAC) systems, roof leaks, and storm damage leading to flooding can all result [...] Read more.
Molds readily grow on wet books, documents, and other library materials where they ruin them chemically, mechanically, and aesthetically. Poor maintenance of libraries, failures of Heating, Ventilation, and Air Conditioning (HVAC) systems, roof leaks, and storm damage leading to flooding can all result in accelerated fungal growth. Moreover, when fungal spores are present at high concentrations in the air, they can be linked to severe respiratory conditions and possibly to other adverse health effects in humans. Climate change and the accompanying storms and floods are making the dual potential of fungi to biodegrade library holdings and harm human health more common. This essay is intended for microbiologists without much background in mycology who are called in to help librarians who are dealing with mold outbreaks in libraries. Our goal is to demystify aspects of fungal taxonomy, morphology, and nomenclature while also recommending guidelines for minimizing mold contamination in library collections. Full article
44 pages, 15871 KiB  
Article
Space Gene Quantification and Mapping of Traditional Settlements in Jiangnan Water Town: Evidence from Yubei Village in the Nanxi River Basin
by Yuhao Huang, Zibin Ye, Qian Zhang, Yile Chen and Wenkun Wu
Buildings 2025, 15(14), 2571; https://doi.org/10.3390/buildings15142571 - 21 Jul 2025
Viewed by 341
Abstract
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. [...] Read more.
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. Taking Yubei Village in the Nanxi River Basin as an example, this study combined remote sensing images, real-time drone mapping, GIS (geographic information system), and space syntax, extracted 12 key indicators from five dimensions (landform and water features (environment), boundary morphology, spatial structure, street scale, and building scale), and quantitatively “decoded” the spatial genes of the settlement. The results showed that (1) the settlement is a “three mountains and one water” pattern, with cultivated land accounting for 37.4% and forest land accounting for 34.3% of the area within the 500 m buffer zone, while the landscape spatial diversity index (LSDI) is 0.708. (2) The boundary morphology is compact and agglomerated, and locally complex but overall orderly, with an aspect ratio of 1.04, a comprehensive morphological index of 1.53, and a comprehensive fractal dimension of 1.31. (3) The settlement is a “clan core–radial lane” network: the global integration degree of the axis to the holy hall is the highest (0.707), and the local integration degree R3 peak of the six-room ancestral hall reaches 2.255. Most lane widths are concentrated between 1.2 and 2.8 m, and the eaves are mostly higher than 4 m, forming a typical “narrow lanes and high houses” water town streetscape. (4) The architectural style is a combination of black bricks and gray tiles, gable roofs and horsehead walls, and “I”-shaped planes (63.95%). This study ultimately constructed a settlement space gene map and digital library, providing a replicable quantitative process for the diagnosis of Jiangnan water town settlements and heritage protection planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 6310 KiB  
Article
Physico-Mechanical Properties and Decay Susceptibility of Clay Bricks After the Addition of Volcanic Ash from La Palma (Canary Islands, Spain)
by María López Gómez and Giuseppe Cultrone
Sustainability 2025, 17(14), 6545; https://doi.org/10.3390/su17146545 - 17 Jul 2025
Viewed by 262
Abstract
During a volcanic eruption, a large volume of pyroclastic material can be deposited on the roads and roofs of the urban areas near volcanoes. The use of volcanic ash as an additive for the manufacture of bricks provides a solution to the disposal [...] Read more.
During a volcanic eruption, a large volume of pyroclastic material can be deposited on the roads and roofs of the urban areas near volcanoes. The use of volcanic ash as an additive for the manufacture of bricks provides a solution to the disposal of part of this natural residue and reduces the depletion of a non-renewable natural resource, clayey soil, which brings some environmental and economic advantages. The pore system, compactness, uniaxial compression strength, thermal conductivity, color and durability of bricks without and with the addition of volcanic ash were evaluated through hydric tests, mercury intrusion porosimetry, ultrasound, uniaxial compression tests, IR thermography, spectrophotometry and salt crystallization tests. The purpose of this research is to determine the feasibility of adding 10, 20 and 30% by weight of volcanic ash from La Palma (Canary Islands, Spain) in two grain sizes to produce bricks fired at 800, 950 and 1100 °C. The novelty of this study is to use two sizes of volcanic ash and fire the samples at 1100 °C, which is close to the liquidus temperature of basaltic magmas and allows a high degree of interaction between the volcanic ash and the brick matrix. The addition of fine volcanic ash was found to decrease the porosity of the bricks, although the use of high percentages of coarse volcanic ash resulted in bricks with almost the same porosity as the control samples. The volcanic ash acted as a filler, reducing the number of small pores in the bricks. The presence of vesicles in the volcanic ash reduced the compressive strength and the compactness of the bricks with additives. This reduction was more evident in bricks manufactured with 30% of coarse volcanic ash and fired at 800 and 950 °C, although they still reached the minimum resistance required for their use in construction. No significant differences in thermal conductivity were noticed between the bricks with and without volcanic ash additives, which is crucial in terms of energy savings and the construction of sustainable buildings. At 1100 °C the volcanic ash changed in color from black to red. As a result, the additive blended in better with the matrix of bricks fired at 1100 °C than in those fired at 800 and 950 °C. The bricks with and without volcanic ash and fired at 1100 °C remained intact after the salt crystallization tests. Less salt crystallized in the bricks with volcanic ash and fired at 800 and 950 °C than in the samples without additives, although their low compressive strength made them susceptible to decay. Full article
(This article belongs to the Special Issue Innovating the Circular Future: Pathways to Sustainable Growth)
Show Figures

Figure 1

19 pages, 7472 KiB  
Article
Research on the Performance and Energy Saving of Solar-Coupled Air Source Heat Pump Heating System: A Case Study of College Dormitory in Hot Summer and Cold Winter Zone
by Xu Wang, Shidong Wang and Tao Li
Energies 2025, 18(14), 3794; https://doi.org/10.3390/en18143794 - 17 Jul 2025
Viewed by 176
Abstract
As a densely populated area, college student dormitories consume a large amount of electricity every year to heat the domestic hot water used by students. Applying solar energy to hot water systems can effectively alleviate this situation. This paper first conducts a simulation [...] Read more.
As a densely populated area, college student dormitories consume a large amount of electricity every year to heat the domestic hot water used by students. Applying solar energy to hot water systems can effectively alleviate this situation. This paper first conducts a simulation of the hot water load and the calculation of the available area of the solar roof in a dormitory building of a certain university. Then, different solar-coupled air source heat pump systems were designed, and simulation models of the two systems were established. The thermal performance parameters and solar energy utilization of the two systems were discussed, and the energy efficiency, economy, and environmental protection of the two systems were analyzed. The results show that after coupling with the solar collector, the system operation time is shortened by 26.2%, the annual performance coefficient is 3.4, which is 0.8 higher than that of the original system, and the annual heating energy consumption is reduced by 24.4%. In contrast, the annual energy self-sufficiency rate of the photovoltaic coupled with air source heat pump system is 94.6%, achieving nearly zero energy consumption for heating. Full article
Show Figures

Figure 1

19 pages, 4717 KiB  
Article
Seismic Response Characteristics of High-Speed Railway Hub Station Considering Pile-Soil Interactions
by Ning Zhang and Ziwei Chen
Buildings 2025, 15(14), 2466; https://doi.org/10.3390/buildings15142466 - 14 Jul 2025
Viewed by 196
Abstract
As a key transportation infrastructure, it is of great significance to ensure the seismic safety of the high-speed railway hub station. Taking Changde high-speed railway hub station as background, a comprehensive 3D numerical model of the high-speed railway station structure is proposed to [...] Read more.
As a key transportation infrastructure, it is of great significance to ensure the seismic safety of the high-speed railway hub station. Taking Changde high-speed railway hub station as background, a comprehensive 3D numerical model of the high-speed railway station structure is proposed to consider the engineering geological characteristics of the site, soil nonlinearity, and pile-soil interactions. The results show that the hub station structural system, considering pile-soil interaction, presents the ‘soft-upper-rigid-down’ characteristics as a whole, and the natural vibration is lower than that of the station structure with a rigid foundation assumption. Under the action of three strong seismic motions, the nonlinear site seismic effect is significant, the surface acceleration is significantly enlarged, and decreases with the buried depth. The interaction between pile and soil is related to the nonlinear seismic effect of the site, which deforms together to resist the foundation deformation caused by the strong earthquake motions, and the depth range affected by the interaction between the two increases with the increase of the intensity of earthquake motion. Among the three kinds of input earthquake motions, the predominant frequency of the Kobe earthquake is the closest to the natural vibration of the station structure system, followed by the El Centro earthquake. Moreover, the structures above the foundation of the high-speed railway hub station structural system are more sensitive to the spectral characteristics of Taft waves and El Centro waves compared to the site soil. This is also the main innovation point of this study. The existence of the roof leads to the gradual amplification of the seismic response of the station frame structure with height, and the seismic response amplification at the connection between the roof and the frame structure is the largest. The maximum story drift angle at the top floor of the station structure is also greater than that at the bottom floor. Full article
Show Figures

Figure 1

21 pages, 4414 KiB  
Article
Rural Renewable Energy Resources Assessment and Electricity Development Scenario Simulation Based on the LEAP Model
by Hai Jiang, Haoshuai Jia, Yong Qiao, Wenzhi Liu, Yijun Miao, Wuhao Wen, Ruonan Li and Chang Wen
Energies 2025, 18(14), 3724; https://doi.org/10.3390/en18143724 - 14 Jul 2025
Viewed by 271
Abstract
This study combines convolutional neural network (CNN) recognition technology, Greenwich engineering software, and statistical yearbook methods to evaluate rural solar, wind, and biomass energy resources in pilot cities in China, respectively. The CNN method enables the rapid identification of the available roof area, [...] Read more.
This study combines convolutional neural network (CNN) recognition technology, Greenwich engineering software, and statistical yearbook methods to evaluate rural solar, wind, and biomass energy resources in pilot cities in China, respectively. The CNN method enables the rapid identification of the available roof area, and Greenwich software provides wind resource simulation with local terrain adaptability. The results show that the capacity of photovoltaic power generation reaches approximately 15.63 GW, the potential of wind power is 458.3 MW, and the equivalent of agricultural waste is 433,900 tons of standard coal. The city is rich in wind, solar, and biomass resources. By optimizing the hybrid power generation system through genetic algorithms, wind energy, solar energy, biomass energy, and coal power are combined to balance the annual electricity demand in rural areas. The energy trends under different demand growth rates were predicted through the LEAP model, revealing that in the clean coal scenario of carbon capture (WSBC-CCS), clean coal power and renewable energy will dominate by 2030. Carbon dioxide emissions will peak in 2024 and return to the 2020 level between 2028 and 2029. Under the scenario of pure renewable energy (H_WSB), SO2/NOx will be reduced by 23–25%, and carbon dioxide emissions will approach zero. This study evaluates the renewable energy potential, power system capacity optimization, and carbon emission characteristics of pilot cities at a macro scale. Future work should further analyze the impact mechanisms of data sensitivity on these assessment results. Full article
(This article belongs to the Special Issue Recent Advances in Renewable Energy and Hydrogen Technologies)
Show Figures

Figure 1

Back to TopTop