Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = roof-cutting resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4557 KiB  
Article
Study on the Ground Pressure Manifestation Patterns of Roof Cutting and Pressure Relief
by Runhu Zheng, Bingyuan Hao, Chaoyao Shi and Tongxi Li
Appl. Sci. 2025, 15(11), 6049; https://doi.org/10.3390/app15116049 - 28 May 2025
Cited by 1 | Viewed by 311
Abstract
Pillarless mining technology is of great significance for improving coal recovery rates, but the intense mining-induced stress disturbances on gob-side entries often lead to surrounding rock instability. In this study, we focused on the ground control challenges in the headgate of Panel 81308 [...] Read more.
Pillarless mining technology is of great significance for improving coal recovery rates, but the intense mining-induced stress disturbances on gob-side entries often lead to surrounding rock instability. In this study, we focused on the ground control challenges in the headgate of Panel 81308 at Huayang Mine No. 2. Comprehensive monitoring of roof–floor convergence, rib deformation, and support resistance revealed the gob-side entry retaining deformation mechanisms with roof-cutting pressure relief; the results show that this retaining deformation exhibits the following three phases of characteristics: the rapid, decelerated, and stable stages. The average roof–floor convergence (607 mm) was significantly greater than the average rib deformation (170 mm), with floor heave accounting for 72.6% of total convergence. The coal pillar side showed dominant deformation in rib movements. The mining influence zones can be divided, based on their distances behind the working face, into strong disturbance zones (0–88 m), weak disturbance zones (88–142 m), and stabilized zones (>178 m). The cable bolt support system demonstrated advanced response characteristics. Compared with conventional gob-side entry retaining, the roof-cutting pressure relief technique altered stress transmission paths, significantly reduced roof load transfer efficiency, and effectively controlled roadway convergence, providing technical guidance for safe production in both this panel and mines with similar geological conditions. Full article
Show Figures

Figure 1

16 pages, 5732 KiB  
Article
Research on the Deformation and Failure Mechanism of Flexible Formwork Walls in Gob-Side-Entry Retaining of Ultra-Long Isolated Mining Faces and Pressure Relief-Control Technology via Roof Cutting
by Heng Wang and Junqing Guo
Appl. Sci. 2025, 15(11), 5833; https://doi.org/10.3390/app15115833 - 22 May 2025
Viewed by 428
Abstract
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology [...] Read more.
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology incorporating pressure relief through roof cutting. Taking the 3203 ultra-long isolated mining face at Nanyang Coal Industry as the engineering case, an integrated methodology combining laboratory experiments, theoretical analysis, numerical simulations, and industrial-scale field trials was implemented. The deformation and failure mechanism of flexible formwork walls in gob-side-entry retaining and the fundamental principles of pressure relief via roof cutting were systematically examined. The vertical stress variations in the advanced reuse zone of the retained roadway before and after roof cutting were investigated, with specific focus on the strata pressure behavior of roadways and face-end hydraulic supports on both the wide coal-pillar side and the pillarless side following roof cutting. The key findings are as follows: ① Blast-induced roof cutting reduces the cantilever beam length adjacent to the flexible formwork wall, thereby decreasing the load per unit area on the flexible concrete wall. This reduction consequently alleviates lateral abutment stress and loading in the floor heave-affected zone, achieving effective control of roadway surrounding rock stability. ② Compared with non-roof cutting, the plastic zone damage area of surrounding rock in the gob-side entry retained by flexible formwork concrete wall is significantly reduced after roof cutting, and the vertical stress on the flexible formwork wall is also significantly decreased. ③ Distinct differences exist in the distribution patterns and magnitudes of working resistance for face-end hydraulic supports between the wide coal-pillar side and the pillarless gob-side-entry retaining side after roof cutting. As the interval resistance increases, the average working resistance of hydraulic supports on the wide pillar side demonstrates uniform distribution, whereas the pillarless side exhibits a declining frequency trend in average working resistance, with an average reduction of 30% compared to non-cutting conditions. ④ After roof cutting, the surrounding rock deformation control effectiveness of the track gateway on the gob-side-entry retaining side is comparable to that of the haulage gateway on the 50 m wide coal-pillar side, ensuring safe mining of the working face. Full article
(This article belongs to the Special Issue Advances in Green Coal Mining Technologies)
Show Figures

Figure 1

25 pages, 9133 KiB  
Article
Analysis of Main Roof Mechanical State in Inclined Coal Seams with Roof Cutting and Gob-Side Entry Retaining
by Ji Li, Bo Yan, Jihui Dong, Xubo Qiang, Chaosen Chen, Guangyong Zhou and Yingjian Zheng
Symmetry 2025, 17(5), 723; https://doi.org/10.3390/sym17050723 - 9 May 2025
Viewed by 353
Abstract
The non-uniform deformation and failure phenomena encountered in steeply inclined coal seams during roof-cutting and gob-side entry retaining operations demand urgent resolution. Taking the haulage roadway of the 3131 working face in Longmenxia South Coal Mine as the research background, the theoretical analysis [...] Read more.
The non-uniform deformation and failure phenomena encountered in steeply inclined coal seams during roof-cutting and gob-side entry retaining operations demand urgent resolution. Taking the haulage roadway of the 3131 working face in Longmenxia South Coal Mine as the research background, the theoretical analysis method is adopted to explore the mechanical state of the main roof in inclined coal seams and the design of roadside support resistance. According to the structural evolution characteristics of the main roof, it is divided into four periods. Based on the elastic theory, corresponding mechanical models are established, and the mechanical expressions of the main roof stress and deflection are derived. The distribution characteristics of the main roof’s mechanical state in each zone and the influence law of the coal seam dip angle on the main roof’s mechanical state are studied. This study reveals a critical transition from symmetric to asymmetric mechanical behavior in the main roof structure due to the coal seam dip angle and roof structure evolution. The results show that, in the absence of roadside support, during the roadway retaining period, the upper surface of the main roof is in tension, and the lower surface is under compression. The stress value increases slowly from the high-sidewall side to the middle, while it increases sharply from the middle to the short-sidewall side. Under the inclined coal seam, as the dip angle of the coal and rock strata increases, the component load perpendicular to the roof direction decreases, and the roof deflection also decreases accordingly. On this basis, the design formula for the roadside support resistance of gob-side entry retaining with roof cutting in inclined coal seams is presented, and the roadside support resistance of the No. 3131 haulage roadway is designed. Building upon this foundation, a design formula for roadside support resistance in steeply inclined coal seams with roof-cutting and gob-side entry retaining has been developed. This formula was applied to the No. 3131 haulage roadway support design. Field engineering tests demonstrated that the maximum roof-to-floor deformation at the high sidewall decreased from 600 mm (unsupported condition) to 165 mm during the entry retaining period. During the advanced influence phase of secondary mining operations, the maximum deformation at the high sidewall was maintained at approximately 193 mm. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

18 pages, 8164 KiB  
Article
Study on the Structural Instability Characteristics of Interlayer Rock Strata During Mining Under Interval Goaf in Shallow Coal Seams
by Bin Wang, Jie Zhang, Haifei Lin, Dong Liu and Tao Yang
Appl. Sci. 2024, 14(24), 11870; https://doi.org/10.3390/app142411870 - 19 Dec 2024
Cited by 1 | Viewed by 679
Abstract
In order to study the instability characteristics of interlayer rock strata (IRS) in shallow buried close-distance coal seams under insufficient mining areas, based on the background of interval mining under goaf in Nanliang Coal Mine, this paper studies the instability characteristics of interlayer [...] Read more.
In order to study the instability characteristics of interlayer rock strata (IRS) in shallow buried close-distance coal seams under insufficient mining areas, based on the background of interval mining under goaf in Nanliang Coal Mine, this paper studies the instability characteristics of interlayer strata in interval mining under goaf by means of similar simulation, numerical simulation, and field measurement. The results indicated that the first weighting interval of the main roof during mining in the lower coal seam was 49 m, while small and large periodic weightings with intervals of 10–14 m and 15–19 m were identified. During periodic weighting, the support resistance ranged from 6813 to 10,935 kN, with a dynamic load factor of 1.07–1.74, and the peak abutment pressure in front of the working face was 5.85–9.85 MPa. The mining under the interval coal pillar (ICP) was the ‘stress increase zone’, and the mining under the temporary coal pillars (TCPs) and the interval goaf was the ‘stress release zone’. During the working face mining out of the ICP, the support resistance reached 10,934 kN, the dynamic load factor reached 1.74, and the abutment pressure (AP) reached 9.85 MPa, which was 60% higher than the AP mining under the “stress release zone”. Analysis suggests that the cutting instability of the IRS was the root cause of the increased AP in the working face of the lower coal seam. A numerical simulation was performed to verify the instability characteristics of the IRS in the interval goaf. The relationship between support strength and roof subsidence during the period of the working face leaving the coal pillar was established. A dynamic pressure prevention method involving pre-splitting and pressure relief of the ICP was proposed and yields superior field application performance. The findings of the study provide a reference for rock strata control during mining under the subcritical mining area in shallow and closely spaced coal seams. Full article
(This article belongs to the Special Issue Advances in Green Coal Mining Technologies)
Show Figures

Figure 1

19 pages, 16368 KiB  
Article
Study on Roof-Cutting and Support of a Retreating Roadway under the Double Influence of Large Mining Heights
by Linjun Peng, Weidong Liu and Chengyuan Peng
Appl. Sci. 2024, 14(17), 7946; https://doi.org/10.3390/app14177946 - 6 Sep 2024
Cited by 4 | Viewed by 1060
Abstract
When the coal mining face enters the final stage of mining, the roadway faces the superimposed influence of surrounding rock stress redistribution and roof rotary moment. As affected by the strong disturbance in the coal mining process, the roof plate of the roadway [...] Read more.
When the coal mining face enters the final stage of mining, the roadway faces the superimposed influence of surrounding rock stress redistribution and roof rotary moment. As affected by the strong disturbance in the coal mining process, the roof plate of the roadway has undergone serious deformation, which seriously affects the stability of the roadway. Taking the 108 working face of the Jinjitan coal mine as the engineering background, a comprehensive study was conducted on the control of the perimeter rock in the retracement of a tunnel in a heavy coal seam with a large mining height. By analyzing the physical properties of the enclosing rock of the retreated roadway, and using theoretical analysis, numerical simulation, on-site monitoring, and other methods, the characteristics of the peripheral rock’s movement relationship and mineral pressure manifestation in the final mining stage of the large-height working face have been studied. The structural mechanics model was established, and in the case where the support cannot be solved just by strengthening the support, the design scheme of “blasting roof break + constant resistance anchor cable support” was innovatively tried. FLAC3D simulation results show that the stress release of the surrounding rock is more adequate when the height of roof cutting is 20 m. The stress of the surrounding rock near the roadway is reduced by 30~40%, and the stress state is reasonable. The constant resistance and large deformation anchors can absorb the deformation energy of the rock body, maintain constant working resistance and stable deformation, and have good rock stability control, which is conducive to the stability of the roadway. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 27904 KiB  
Article
Study on Fracture Behavior of Directly Covered Thick Hard Roof Based on Bearing Capacity of Supports
by Jiawen Li, Baojie Fu, Hualei Zhang, Qingchong Zhao and Qingwei Bu
Appl. Sci. 2023, 13(4), 2546; https://doi.org/10.3390/app13042546 - 16 Feb 2023
Cited by 7 | Viewed by 1591
Abstract
Mine pressure at the working face is severe due to it being directly covered by a thick hard roof. To further investigate the technology of controlling the mine pressure of a thick hard roof, the upper working face of 13,121 in Gubei mine [...] Read more.
Mine pressure at the working face is severe due to it being directly covered by a thick hard roof. To further investigate the technology of controlling the mine pressure of a thick hard roof, the upper working face of 13,121 in Gubei mine of Huainan mining area was used as the engineering background, and similar simulation experiments, mechanical analysis, numerical simulation, and engineering applications were used to obtain the structure of a pre-cracked cut roof cut falling body, as well as establishing the mechanical model of hydraulic brace support resistance and direct covering. The results of the numerical simulation combined with the 20 m step pre-cracked top cutting showed that the cantilever length of the roof plate in the mining area was shortened by 25.61%, the stress concentration was reduced by 31.74%, and the stress level of the hydraulic brace was reduced by 26.59–28.38%, destroying the integrity of the thick hard rock body. According to the field monitoring data analysis, the working face’s initial pressure step and periodic pressure step were reduced, and the average dynamic load coefficients of the initial pressure and periodic pressure were 1.43 and 1.33, respectively, with a small dispersion of the dynamic load coefficient of the bracket. The pressure at the working face is regulated, and the chosen support equipment, in conjunction with the roof cutting scheme, can meet the thick hard roof’s support needs. Full article
(This article belongs to the Special Issue Mechanics, Damage Properties and Impacts of Coal Mining)
Show Figures

Figure 1

17 pages, 6042 KiB  
Article
Ground Response of Non-Coal Pillar Mining Panel
by Hengzhong Zhu and Huajun Wang
Sustainability 2023, 15(4), 3164; https://doi.org/10.3390/su15043164 - 9 Feb 2023
Cited by 2 | Viewed by 1434
Abstract
The mining-induced ground response (MIGR) has a critical impact on safety management, the mining plan, and entry support. A clear understanding of the characteristics is the foundation of the MIGRs scientific control. This study is the result of the MIGRs development of the [...] Read more.
The mining-induced ground response (MIGR) has a critical impact on safety management, the mining plan, and entry support. A clear understanding of the characteristics is the foundation of the MIGRs scientific control. This study is the result of the MIGRs development of the non-pillar mining panel with gob-side entry by roof cutting (GSERC). Comprehensive research of the in situ measurements, numerical simulation, and theoretical analysis to determine the ground response characteristics, including mining panel and GSERC, were implemented. The results indicate that the MIGR presents the characteristic of asymmetric development and that the ground response near the non-roof cutting side is more significant than that near the roof cutting side. The development stage of the entry convergence of GESRC can be divided into seven stages; the primary rapid development stage should be paid more attention to in the support process. The entry convergence rapidly increases to 275 mm, 380 mm, 410 mm, and 525 mm, respectively, for the roof cutting rib to the virgin coal rib, the roof near the virgin coal side, the roof of the middle section, and the roof near the cutting side. The hydraulic support end cycle resistance at the roof cutting side and the middle section of the mining panel with the value of more than 30.8 MPa is greater than that at the non-roof cutting side with the value of less than 26 MPa, which presents the asymmetric feature. The numerical simulation results regarding vertical stress development, vertical displacement, and horizontal displacement also presents the asymmetric feature. The MIGR division is divided into five divisions. Division II (the middle section of the panel) and division IV (the entry range near the roof cutting side) should be paid more attention to in the panel mining process. The results of this study can provide technical guidance and theoretical reference for similar engineering practices. Full article
Show Figures

Figure 1

19 pages, 8558 KiB  
Article
Research on Roof Load Transfer by Passing Coal Pillar of Working Face in Shallow Buried Closely Multiple-Seam
by Yanpeng He, Qingxiang Huang, Yehao Wei and Junwu Du
Minerals 2023, 13(1), 118; https://doi.org/10.3390/min13010118 - 12 Jan 2023
Cited by 8 | Viewed by 1879
Abstract
The dynamic load effect of supports is mainly caused by the movement of the roof structure and the load transfer of overburden. In view of the practice issue that the phenomenon of strong ground pressure is easy to happen, when the working face [...] Read more.
The dynamic load effect of supports is mainly caused by the movement of the roof structure and the load transfer of overburden. In view of the practice issue that the phenomenon of strong ground pressure is easy to happen, when the working face of the lower coal seam passes the inclined coal pillar in shallow buried closely multiple-seam, it will lead to supprot damaged. This paper takes the mining of over-inclined coal pillars in the 22410 working face of the Bulianta Coal Mine as the background, based on the research method combining the field measurement, physical simulation experiment, and numerical calculation, the evolution law of the front abutment pressure (FAP) and roof weighting in mining under the inclined coal pillar is analyzed, and the mechanism of the stress transfer of the inclined coal pillar and the dynamic load of the support is revealed. The research shows that the concentrated stress of the coal pillar is jointly borne by the front coal wall of the working face and the interburden structure above the support. The vertical stress transmitted from the coal pillar to the floor acts on the key blocks of the interburden of the lower coal seam, which causes strong pressure and dynamic load effect, such as roof structure cut-off. The periodic breaking of the key stratum of the interburden leads to the development height and range of the cracks increasing stepwise. The partition characteristics of the mutual transformation of the interburden stress, the FAP, and the working resistance (WR) by passing the coal pillar stage are revealed, which is divided into three stages and four regions. With the working face passing through the inclined coal pillar, the influence area of the concentrated stress of the coal pillar is reduced, and the peak stress of the coal pillar is gradually transferred to the outside of the coal pillar. When the working face is 5 m away from the coal pillar, the peak of FAP and WR reaches the maximum values, the roof is cutting along the peak stress line, and the working face has a strong weighting phenomenon. The research results are consistent with the field measurement results, providing a reference for the mining of working faces under similar conditions. Full article
(This article belongs to the Special Issue Green Mining of Coal Mine in China)
Show Figures

Figure 1

14 pages, 25773 KiB  
Article
Research on the Key Technology of Gob-Side Entry Retaining by Roof Cutting for Thick and Hard Sandstone Roofs
by Chaowen Hu, Eryu Wang, Qian Li, Yilong Wang, Yongyuan Li and Xingfeng Sha
Sustainability 2022, 14(16), 9941; https://doi.org/10.3390/su14169941 - 11 Aug 2022
Cited by 7 | Viewed by 1861
Abstract
In order to ensure the application of gob-side entry retaining by roof cutting for thick and hard sandstone roofs, the key technology of pre-split blasting was studied. The LS-DYNA was used to analyze the blasting effect of the energy-gathering pipe. Using the methods [...] Read more.
In order to ensure the application of gob-side entry retaining by roof cutting for thick and hard sandstone roofs, the key technology of pre-split blasting was studied. The LS-DYNA was used to analyze the blasting effect of the energy-gathering pipe. Using the methods of theoretical analysis and numerical simulation, it was determined that the optimal cutting height was 16 m and the optimal cutting angle was 15°. The effect of pressure relief by roof cutting was verified by FLAC3D. It is proposed to use deep-hole loosening blasting to solve the problem of the sandstone with a thick hard roof being difficult to collapse. A group of loose blasting holes was designed to be arranged every 20 m in the gob-side roadway. The depth of the #1 blasthole was 47 m, and the angle to the horizontal direction was 20°; the depth of the #2 blasthole was 65 m, and the angle to the horizontal direction was 15°. A field test was carried out in the 7135 ventilation roadway of Qidong Coal Mine China. The on-site peeping results showed that the blasting with the energy-gathering pipe had a good effect of directional slitting. After deep-hole loosening blasting, the thick hard sandstone roof collapsed and filled the gob in time. The monitoring curves of the hydraulic support showed that the hydraulic support resistance of the working face in the side with roof cutting was much smaller than that of the side without roof cutting, and the effect of pressure relief by roof cutting was good. Full article
(This article belongs to the Special Issue Sustainable Development and Utilization of Coal Measures Resources)
Show Figures

Figure 1

21 pages, 6266 KiB  
Article
Study on Filling Support Design and Ground Pressure Monitoring Scheme for Gob-Side Entry Retention by Roof Cutting and Pressure Relief in High-Gas Thin Coal Seam
by Hui Li, Haodong Zu, Kanglin Zhang and Jifa Qian
Int. J. Environ. Res. Public Health 2022, 19(7), 3913; https://doi.org/10.3390/ijerph19073913 - 25 Mar 2022
Cited by 9 | Viewed by 2705
Abstract
To ensure the successful application of roof cutting and pressure relief in the gob, to retain the roadway in a high-gas thin coal seam, by taking the 2109 working face of the Mingxin coal mine as the engineering background, this paper comprehensively analyzes [...] Read more.
To ensure the successful application of roof cutting and pressure relief in the gob, to retain the roadway in a high-gas thin coal seam, by taking the 2109 working face of the Mingxin coal mine as the engineering background, this paper comprehensively analyzes and studies the key parameters of high-water material filling and support and the law of ground pressure behavior. The results show that the high-water material filling body has the characteristics of high strength, rapid resistance increase, strong flexibility and high strength in the later stage, which can meet the requirements for retaining roadway support along the goaf. On this basis, we determined that the water-cement ratio for a high-water material filling body is 1.5:1 and the filling length, height and width each time are 3.6 m, 2.2 m and 1.0 m, respectively. In addition, a ground-pressure monitoring scheme for retaining the roadway along the goaf is put forward and the results show that the displacement of the roof and floor and the deformation of the filling body are both within a reasonable range, which proves high-water material filling support can effectively ensure the stability and integrity of the roof of the gob, thus retaining the roadway in a high-gas thin coal seam. Full article
(This article belongs to the Special Issue Full Life-Cycle Safety Management of Coal and Rock Dynamic Disasters)
Show Figures

Figure 1

23 pages, 17523 KiB  
Article
Numerical Investigation of Roof Stability in Longwall Face Developed in Shallow Depth under Weak Geological Conditions
by Pisith Mao, Hiroto Hashikawa, Takashi Sasaoka, Hideki Shimada, Zhijun Wan, Akihiro Hamanaka and Jiro Oya
Sustainability 2022, 14(3), 1036; https://doi.org/10.3390/su14031036 - 18 Jan 2022
Cited by 2 | Viewed by 2446
Abstract
Developing longwall mining under weak geological conditions imposes a substantial challenge with regard to the higher risk of falling roofs. Maintaining the stability of the longwall face in this aforementioned condition is crucial for smooth operation. Investigating roof conditions in longwall requires detailed [...] Read more.
Developing longwall mining under weak geological conditions imposes a substantial challenge with regard to the higher risk of falling roofs. Maintaining the stability of the longwall face in this aforementioned condition is crucial for smooth operation. Investigating roof conditions in longwall requires detailed study of rock behavior in response to a few key influences. This paper presents the outcome of a numerical analysis of roof stability in shallow depth longwall face under weak geological conditions. A series of validated FLAC3D models was developed to examine the roof condition of the longwall face under the influence of shield canopy ratio, shield resistance force, and stress ratio. The results show that these three key factors have a significant impact on longwall roof conditions, which can be used to optimize its stability. Two distinct mechanisms of the roof caving behavior can be observed under the influence of stress ratio. The countermeasures of reducing face-to-tip distance and cutting width are proposed to improve the roof condition of longwall face under weak rock. The outcomes show a substantial improvement in roof conditions after adopting the proposed method. Full article
Show Figures

Figure 1

24 pages, 8705 KiB  
Article
Research on the Transmission of Stresses by Roof Cutting near Gob Rocks
by Zhibiao Guo, Haohao Wang, Zimin Ma, Pengfei Wang, Xiaohui Kuai and Xianzhe Zhang
Energies 2021, 14(5), 1237; https://doi.org/10.3390/en14051237 - 24 Feb 2021
Cited by 11 | Viewed by 1789
Abstract
Pressure relief for roadways retained by roof cutting is essentially caused by stress transfer. In this paper, the stress transfer mechanism of 16011 tail entry with roof cutting in Zhaogu No.1 coal mine is studied from the following two aspects: the change of [...] Read more.
Pressure relief for roadways retained by roof cutting is essentially caused by stress transfer. In this paper, the stress transfer mechanism of 16011 tail entry with roof cutting in Zhaogu No.1 coal mine is studied from the following two aspects: the change of the tail entry surrounding the rock structure and the interaction between the roadway surrounding rock and supporting structures. It is found by numerical simulation that roof cutting can significantly reduce the magnitude of roadway roof stress, transferring the concentrated stress induced by excavation and mining away from the roadway, and forming an obvious triangle pressure relief area in front of the working face. In the early stage after mining, most of the overburden load is transferred downward through the immediate roof of the roadway. With the movement of overlying strata, the stress, initially transferred to the immediate roof strata, is gradually transferred to the gob, and the calculation formula and influence factors of the transferred stress are derived. In addition, through the establishment of the mechanical model and theoretical calculation of the key rock block of the main roof, the roadside support resistance required to ensure the stability of the main roof block is determined. The field monitoring shows that the lateral pressure coefficient of the roadside caved rocks is 0.36 and the constant resistance and large deformation anchor cable (CRLDAC) and the roadway temporary support play roles of conduction and control in the process of stress transfer, and effectively ensure the stability of surrounding rock during the service life of the retained gob-side entry by roof cutting (RGERC). Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Graphical abstract

23 pages, 6170 KiB  
Article
Analysis on Catastrophe Theory during First Weighting Sliding Instability and Support Crushing of Main Roof with Large Mining Height in Shallow Coal Seam
by Dengfeng Yang, Yongjun Zhang and Zhonghui Chen
Appl. Sci. 2020, 10(16), 5408; https://doi.org/10.3390/app10165408 - 5 Aug 2020
Cited by 8 | Viewed by 2462
Abstract
Roof sliding and instability along the coal wall usually occur in the working face at large mining heights during the process of the first weighting, which causes roof cutting and support crushing. A mechanical model consists of the main roof, immediate roof, and [...] Read more.
Roof sliding and instability along the coal wall usually occur in the working face at large mining heights during the process of the first weighting, which causes roof cutting and support crushing. A mechanical model consists of the main roof, immediate roof, and support based on the nonlinear characteristics of the failure and instability of the immediate roof under the abutment pressure, which we constructed to study the step sinking of the main roof, as well as to assign the reasonable value of the support resistance during the first weighting. The instability mechanism of the system was studied by the catastrophe theory and the principle of energy conservation. A conclusion was drawn that the combined cantilever beam structure for the immediate roof will form with the increase of the mining height, and the instability of the immediate roof causes the catastrophic instability of the system. The system instability was found to be related to the stiffness ratio K, material parameters, the load Q, and the first weighting interval of the main roof by analyzing the necessary and sufficient conditions for system instability. The influence degree of each parameter on the stiffness ratio K was as follows: elastic modulus E > support stiffness k1 > cross-section area a > immediate roof thickness H. The calculation equations of support resistance and subsidence of roof step were obtained. The method of judging the roof instability using catastrophe theory was proved as reasonable on the basis of the monitoring example of no. 12401 working face in Shendong mining area, China. On this basis, a reasonable value of support resistance was further calculated, and the working face was maintained safely when the support resistance exceeded 19,232 kN. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

18 pages, 9220 KiB  
Article
Energy Evolution Pattern and Roof Control Strategy in Non-Pillar Mining Method of Goaf-Side Entry Retaining by Roof Cutting—A Case Study
by Lifeng Li, Gan Li, Weili Gong, Jiong Wang and Huilin Deng
Sustainability 2019, 11(24), 7029; https://doi.org/10.3390/su11247029 - 9 Dec 2019
Cited by 9 | Viewed by 2377
Abstract
This article focuses on the energy density alteration during non-pillar mining method of goaf-side entry retaining by roof cutting (GERRC) and adjacent working face mining. We also studied the support control strategy of goaf-side roadway. Numerical calculation model is established, and the parameters [...] Read more.
This article focuses on the energy density alteration during non-pillar mining method of goaf-side entry retaining by roof cutting (GERRC) and adjacent working face mining. We also studied the support control strategy of goaf-side roadway. Numerical calculation model is established, and the parameters of the model are verified by the measured advance abutment pressure and numerical solution. Based on the numerical model, the energy density during mining is studied. It is found that the whole energy evolution pattern of the goaf side entry during the two adjacent working face mining includes: the original rock energy, the advance energy of the current working face, the dynamic lateral abutment energy caused by strata movement, the lateral abutment energy of the adjacent working face. The support body failure and surrounding rock large deformation phenomenon often occur in goaf side roadway, which is influenced by multiple energy disturbances. Research shows that strong stress disturbance of surrounding rock generates in front of the working face 23 m and behind of working face 60 m in GERRC method. In the second goaf-side entry retaining, the range is in front of the working face 47 m. The evolution law of energy field puts forward the strategy of using the high constant resistance and large deformation (CRLD) anchor cable and procured preferable effect. Full article
Show Figures

Figure 1

14 pages, 31348 KiB  
Article
Key Parameters of Gob-Side Entry Retaining in A Gassy and Thin Coal Seam with Hard Roof
by Shuai Yan, Tianxiao Liu, Jianbiao Bai and Wenda Wu
Processes 2018, 6(5), 51; https://doi.org/10.3390/pr6050051 - 7 May 2018
Cited by 33 | Viewed by 4564
Abstract
Gob-side entry retaining (GER) employed in a thin coal seam (TCS) can increase economic benefits and coal recovery, as well as mitigate gas concentration in the gob. In accordance with the caving style of a limestone roof, the gas concentration and air pressure [...] Read more.
Gob-side entry retaining (GER) employed in a thin coal seam (TCS) can increase economic benefits and coal recovery, as well as mitigate gas concentration in the gob. In accordance with the caving style of a limestone roof, the gas concentration and air pressure in the gob were analyzed, and a roof-cutting mechanical model of GER with a roadside backfill body (RBB) was proposed, to determine the key parameters of the GER-TCS, including the roof-cutting resistance and the width of the RBB. The results show that if the immediate roof height is greater than the seam height, the roof-cutting resistance and width of the RBB should meet the requirement of the immediate roof being totally cut along the gob, for which the optimal roof-cutting resistance and width of RBB were determined by analytical and numerical methods. The greater the RBB width, the greater its roof-cutting resistance. The relationship between the supporting strength of the RBB and the width of the RBB can be derived as a composite curve. The floor heave of GER increases with increasing RBB width. When the width of the RBB increased from 0.8 m to 1.2 m, the floor heave increased two-fold to 146.2 mm. GER was applied in a TCS with a limestone roof of 5 m thickness; the field-measured data verified the conclusions of the numerical model. Full article
(This article belongs to the Special Issue Fluid Flow in Fractured Porous Media)
Show Figures

Figure 1

Back to TopTop