error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = rodent-borne viruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1121 KB  
Brief Report
Co-Circulation of Tick-Borne Bandaviruses and Orthonairoviruses Across Humans, Livestock, and Rats in Pakistan: Serologic Evidence and Public Health Implications
by Muhammad Ammar, Shengyao Chen, Muhammad Saqib, Jingyuan Zhang, Awais-Ur-Rahman Sial, Asad Zia, Yaohui Fang, Muhammad Khalid Mansoor, Abulimiti Moming, Asim Shahzad, Rehman Hafeez, Aneela Javed, Ali Hassan, Ben Hu, Ali Zohaib, Shu Shen and Fei Deng
Viruses 2025, 17(12), 1620; https://doi.org/10.3390/v17121620 - 15 Dec 2025
Viewed by 395
Abstract
Tick-borne viruses (TBVs) pose significant public health and economic threats. Pakistan has endemic Crimean-Congo hemorrhagic fever virus (CCHFV), but evidence suggests broader TBV circulation. This study assessed the seroprevalence of thirteen TBVs (seven are members of the genus Orthonairovirus and six are members [...] Read more.
Tick-borne viruses (TBVs) pose significant public health and economic threats. Pakistan has endemic Crimean-Congo hemorrhagic fever virus (CCHFV), but evidence suggests broader TBV circulation. This study assessed the seroprevalence of thirteen TBVs (seven are members of the genus Orthonairovirus and six are members of the genus Bandavirus) in humans, livestock, and rats in Punjab, Pakistan. Serum samples (n = 794: 321 livestock, 253 human, and 220 rat) were collected from the Narowal, Lahore, and Faisalabad districts. Antibodies to viral NPs were detected using the luciferase immunoprecipitation system (LIPS). The overall seroprevalence was 19.14% (152/794); it was highest in livestock (27.10%), then humans (20.55%), and then rats (5.91%). The highest seroprevalence rates were 3.12% for CCHFV in livestock, 3.56% for Yezo virus (YEZV) in humans, and 0.91% for Tamdy virus (TAMV) and Tacheng tick virus 1 (TcTV-1) in rats. Neutralizing antibodies were detected against CCHFV (1 cattle, 4 humans), Bhanja virus (BHAV) (3 livestock, 1 rat), TAMV (1 cattle), Guertu virus (GTV) (1 cattle), and Dabie bandavirus (2 cattle). Sixteen samples showed antibodies to both orthonairoviruses and bandaviruses, indicating co-exposure. Further analysis showed that seropositivity was not randomly distributed. Livestock kept in commercial farming systems and people working mainly outdoors had distinctly higher exposure to TBVs than subsistence livestock and indoor workers. The results supported the circulation of TBVs among hosts within the close socio-economic/ecological integration area of Pakistan. These findings confirm the circulation of CCHFV, SFTSV, GTV, and TAMV; provide the first serologic evidence of BHAV in Pakistan; and underscore the need for further investigation into the potential circulation of additional TBVs. All results demonstrated that multiple TBVs have been circulating among humans, livestock, and rodents in Pakistan. Full article
(This article belongs to the Special Issue Tick-Borne Viruses 2026)
Show Figures

Figure 1

2 pages, 150 KB  
Correction
Correction: Shehata et al. The Hidden Threat: Rodent-Borne Viruses and Their Impact on Public Health. Viruses 2025, 17, 809
by Awad A. Shehata, Rokshana Parvin, Shadia Tasnim, Phelipe Magalhães Duarte, Alfonso J. Rodriguez-Morales and Shereen Basiouni
Viruses 2025, 17(10), 1396; https://doi.org/10.3390/v17101396 - 21 Oct 2025
Viewed by 366
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Rodent-Borne Viruses 2026)
35 pages, 3316 KB  
Review
Silent Carriers: The Role of Rodents in the Emergence of Zoonotic Bacterial Threats
by Shereen Basiouni, Alfonso J. Rodriguez-Morales, Awad A. Shehata and Phelipe Magalhães Duarte
Pathogens 2025, 14(9), 928; https://doi.org/10.3390/pathogens14090928 - 15 Sep 2025
Cited by 1 | Viewed by 2297
Abstract
Rodents are recognized as significant reservoirs for a broad range of zoonotic pathogens, including bacteria, viruses, and parasites, many of which have substantial implications for human and animal health. The intensifying interaction between humans and rodent populations, fuelled by urbanization, climate change, and [...] Read more.
Rodents are recognized as significant reservoirs for a broad range of zoonotic pathogens, including bacteria, viruses, and parasites, many of which have substantial implications for human and animal health. The intensifying interaction between humans and rodent populations, fuelled by urbanization, climate change, and global trade, has amplified the risk of zoonotic disease transmission. This review compiles and examines current knowledge on key rodent-borne bacterial diseases, including leptospirosis, rat-bite fever, plague, salmonellosis, tularemia, Lyme disease, rickettsioses, Babesiosis, and associated parasitic infections such as toxoplasmosis and Chagas disease. Each disease is analyzed in terms of its etiology, transmission, clinical manifestations, diagnostic tools, and treatment options, with a particular focus on the impact of environmental changes. Emphasizing a One Health perspective, this work highlights the importance of interdisciplinary approaches to the surveillance, prevention, and control of rodent-borne zoonoses, particularly in the context of increasing climate variability and anthropogenic pressures. Full article
(This article belongs to the Special Issue New Insights Into Zoonotic Intracellular Pathogens)
Show Figures

Figure 1

15 pages, 2118 KB  
Article
Beyond ECMO Survival: Long-Term Symptom Burden and Quality-of-Life Impairment in Hantavirus Cardiopulmonary Syndrome Survivors
by Gonzalo Valenzuela, Katherine Barahona, Camila Rojas, Aldo Barrera, Carolina Henríquez, Constanza Martínez-Valdebenito, Marcela Potin, Paula Bedregal and Marcela Ferrés
Viruses 2025, 17(9), 1241; https://doi.org/10.3390/v17091241 - 15 Sep 2025
Cited by 1 | Viewed by 1018
Abstract
Andes virus (ANDV) is the leading cause of hantavirus cardiopulmonary syndrome (HCPS) in South America, a severe zoonosis with high mortality. Advances in critical care and extracorporeal membrane oxygenation (ECMO) have significantly improved survival rates; however, data on recovery beyond survival remain limited. [...] Read more.
Andes virus (ANDV) is the leading cause of hantavirus cardiopulmonary syndrome (HCPS) in South America, a severe zoonosis with high mortality. Advances in critical care and extracorporeal membrane oxygenation (ECMO) have significantly improved survival rates; however, data on recovery beyond survival remain limited. This multicenter cohort study enrolled laboratory-confirmed HCPS survivors in Chile between 2021 and 2024, with follow-up at 3–6 months post-symptom onset to assess physical and neuropsychological sequelae. Participants were stratified by ECMO requirement and the clinical severity of HCPS, and evaluated using self-reported recovery, standardized symptom questionnaires, and EQ-5D quality-of-life instruments. Among 21 survivors (11 ECMO, 10 non-ECMO), 61.9% reported incomplete recovery. While 60–70% of patients received general medical follow-up, only 30% of non-ECMO patients—compared to all ECMO patients—had contact with a rehabilitation provider. Motor dysfunction and palpitations were more frequent in ECMO survivors; however, Jaccard index analysis revealed clustering of physical and neuropsychological symptoms across both groups. EQ-5D assessments showed comparable quality-of-life impairment, though non-ECMO survivors more often reported pain/discomfort (90.0% vs. 63.6%) and higher rates of analgesic self-medication. These findings highlight the burden of persistent symptoms after HCPS and the need for multidisciplinary post-discharge care in endemic regions. Full article
(This article belongs to the Special Issue Hantavirus 2024)
Show Figures

Figure 1

15 pages, 1407 KB  
Article
Phloroglucinol Oligomers from Callistemon rigidus as Novel Anti-Hantavirus Replication Agents
by Jin-Xuan Yang, E-E Luo, Yue-Chun Wu, Kai Zhao, Wei Hou, Mu-Yuan Yu, Xu-Jie Qin and Xing-Lou Yang
Viruses 2025, 17(7), 916; https://doi.org/10.3390/v17070916 - 27 Jun 2025
Viewed by 743
Abstract
Zoonotic viral diseases have continued to threaten global public health in recent decades, with rodent-borne viruses being significant contributors. Infection by rodent-carried hantaviruses (HV) can result in hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) in humans, with varying degrees [...] Read more.
Zoonotic viral diseases have continued to threaten global public health in recent decades, with rodent-borne viruses being significant contributors. Infection by rodent-carried hantaviruses (HV) can result in hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) in humans, with varying degrees of morbidity and mortality. However, no Food and Drug Administration (FDA) vaccines or therapeutics have been approved for the treatment of these diseases. In an effort to identify antiviral bioactive molecules, we isolated four oligomeric phloroglucinols from Callistemon rigidus leaves, including two new phloroglucinol trimers, callistemontrimer A and B, along with two previously characterized phloroglucinol dimers, rhodomyrtosone B and rhodomyrtone. We evaluated the anti-Hantaan virus (HTNV) activity of these compounds. Notably, callistemontrimer A demonstrated higher anti-HTNV activity compared to ribavirin. Mechanistic studies revealed that callistemontrimer A exerted its antiviral effects by inhibiting viral replication, likely through interaction with RNA-dependent RNA polymerase (RdRp) of HTNV, as supported by molecular docking analysis. These results highlight oligomeric phloroglucinols as promising lead candidates for the development of anti-HV therapeutics. Full article
(This article belongs to the Special Issue Hantavirus 2024)
Show Figures

Figure 1

27 pages, 4182 KB  
Review
The Hidden Threat: Rodent-Borne Viruses and Their Impact on Public Health
by Awad A. Shehata, Rokshana Parvin, Shadia Tasnim, Phelipe Magalhães Duarte, Alfonso J. Rodriguez-Morales and Shereen Basiouni
Viruses 2025, 17(6), 809; https://doi.org/10.3390/v17060809 - 2 Jun 2025
Cited by 4 | Viewed by 6735 | Correction
Abstract
Rodents represent the most diverse order of mammals, comprising over 2200 species and nearly 42% of global mammalian biodiversity. They are major reservoirs of zoonotic pathogens, including viruses, bacteria, protozoa, and fungi, and are particularly effective at transmitting diseases, especially synanthropic species that [...] Read more.
Rodents represent the most diverse order of mammals, comprising over 2200 species and nearly 42% of global mammalian biodiversity. They are major reservoirs of zoonotic pathogens, including viruses, bacteria, protozoa, and fungi, and are particularly effective at transmitting diseases, especially synanthropic species that live in close proximity to humans. As of April 2025, approximately 15,205 rodent-associated viruses have been identified across 32 viral families. Among these, key zoonotic agents belong to the Arenaviridae, Hantaviridae, Picornaviridae, Coronaviridae, and Poxviridae families. Due to their adaptability to both urban and rural environments, rodents serve as efficient vectors across diverse ecological landscapes. Environmental and anthropogenic factors, such as climate change, urbanization, deforestation, and emerging pathogens, are increasingly linked to rising outbreaks of rodent-borne diseases. This review synthesizes current knowledge on rodent-borne viral zoonoses, focusing on their taxonomy, biology, host associations, transmission dynamics, clinical impact, and public health significance. It underscores the critical need for early detection, effective surveillance, and integrated control strategies. A multidisciplinary approach, including enhanced vector control, improved environmental sanitation, and targeted public education, is essential for mitigating the growing threat of rodent-borne zoonoses to global health. Full article
(This article belongs to the Special Issue Rodent-Borne Viruses 2026)
Show Figures

Figure 1

13 pages, 8239 KB  
Article
PDIA4 Is a Host Factor Important for Lymphocytic Choriomeningitis Virus Infection
by Mengwei Xu, Huan Xu, Weiwei Wan, Xiaoqin Jian, Runming Jin, Lin Wang, Jingshi Wang, Gengfu Xiao, Leike Zhang, Hongbo Chen and Yuxi Wen
Viruses 2023, 15(12), 2343; https://doi.org/10.3390/v15122343 - 29 Nov 2023
Cited by 4 | Viewed by 2096
Abstract
Mammalian arenaviruses are rodent-borne zoonotic viruses, some of which can cause fatal hemorrhagic diseases in humans. The first discovered arenavirus, lymphocytic choriomeningitis virus (LCMV), has a worldwide distribution and can be fatal for transplant recipients. However, no FDA-approved drugs or vaccines are currently [...] Read more.
Mammalian arenaviruses are rodent-borne zoonotic viruses, some of which can cause fatal hemorrhagic diseases in humans. The first discovered arenavirus, lymphocytic choriomeningitis virus (LCMV), has a worldwide distribution and can be fatal for transplant recipients. However, no FDA-approved drugs or vaccines are currently available. In this study, using a quantitative proteomic analysis, we identified a variety of host factors that could be needed for LCMV infection, among which we found that protein disulfide isomerase A4 (PDIA4), a downstream factor of endoplasmic reticulum stress (ERS), is important for LCMV infection. Biochemical analysis revealed that LCMV glycoprotein was the main viral component accounting for PDIA4 upregulation. The inhibition of ATF6-mediated ERS could prevent the upregulation of PDIA4 that was stimulated by LCMV infection. We further found that PDIA4 can affect the LCMV viral RNA synthesis processes and release. In summary, we conclude that PDIA4 could be a new target for antiviral drugs against LCMV. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

18 pages, 2689 KB  
Article
Modeling the Immune Response for Pathogenic and Nonpathogenic Orthohantavirus Infections in Human Lung Microvasculature Endothelial Cells
by Evan P. Williams, Aadrita Nandi, Victoria Nam, Linda J. S. Allen, A. Alexandre Trindade, Michele M. Kosiewicz and Colleen B. Jonsson
Viruses 2023, 15(9), 1806; https://doi.org/10.3390/v15091806 - 24 Aug 2023
Cited by 2 | Viewed by 2095
Abstract
Hantaviruses, genus Orthohantavirus, family Hantaviridae, order Bunyavirales, are negative-sense, single-stranded, tri-segmented RNA viruses that persistently infect rodents, shrews, and moles. Of these, only certain virus species harbored by rodents are pathogenic to humans. Infection begins with inhalation of virus particles [...] Read more.
Hantaviruses, genus Orthohantavirus, family Hantaviridae, order Bunyavirales, are negative-sense, single-stranded, tri-segmented RNA viruses that persistently infect rodents, shrews, and moles. Of these, only certain virus species harbored by rodents are pathogenic to humans. Infection begins with inhalation of virus particles into the lung and trafficking to the lung microvascular endothelial cells (LMVEC). The reason why certain rodent-borne hantavirus species are pathogenic has long been hypothesized to be related to their ability to downregulate and dysregulate the immune response as well as increase vascular permeability of infected endothelial cells. We set out to study the temporal dynamics of host immune response modulation in primary human LMVECs following infection by Prospect Hill (nonpathogenic), Andes (pathogenic), and Hantaan (pathogenic) viruses. We measured the level of RNA transcripts for genes representing antiviral, proinflammatory, anti-inflammatory, and metabolic pathways from 12 to 72 h with time points every 12 h. Gene expression analysis in conjunction with mathematical modeling revealed a similar profile for all three viruses in terms of upregulated genes that partake in interferon signaling (TLR3, IRF7, IFNB1), host immune cell recruitment (CXCL10, CXCL11, and CCL5), and host immune response modulation (IDO1). We examined secreted protein levels of IFN-β, CXCL10, CXCL11, CCL5, and IDO in two male and two female primary HLMVEC donors at 48 and 60 h post infection. All three viruses induced similar levels of CCL5, CXCL10, and CXCL11 within a particular donor, and the levels were similar in three of the four donors. All three viruses induced different protein secretion levels for both IFN-β and IDO and secretion levels differed between donors. In conclusion, we show that there was no difference in the transcriptional profiles of key genes in primary HLMVECs following infection by pathogenic and nonpathogenic hantaviruses, with protein secretion levels being more donor-specific than virus-specific. Full article
Show Figures

Figure 1

11 pages, 2059 KB  
Communication
Novel Rodent Arterivirus Detected in the Brazilian Amazon
by Thito Y. Bezerra da Paz, Leonardo H. Almeida Hernández, Sandro Patroca da Silva, Fábio Silva da Silva, Bruno C. Veloso de Barros, Livia M. Neves Casseb, Ricardo J. de Paula Souza e Guimarães, Pedro F. da Costa Vasconcelos and Ana C. Ribeiro Cruz
Viruses 2023, 15(5), 1150; https://doi.org/10.3390/v15051150 - 11 May 2023
Cited by 3 | Viewed by 2816
Abstract
As part of a continuous effort to investigate the viral communities associated with wild mammals at the human–animal interface in an Amazonian metropolitan region, this study describes the detection of a novel rodent-borne arterivirus. A sample containing pooled organs of Oecomys paricola was [...] Read more.
As part of a continuous effort to investigate the viral communities associated with wild mammals at the human–animal interface in an Amazonian metropolitan region, this study describes the detection of a novel rodent-borne arterivirus. A sample containing pooled organs of Oecomys paricola was submitted to RNA sequencing, and four sequences taxonomically assigned as related to the Arteriviridae family were recovered, corresponding to an almost complete genome of nearly 13 kb summed. In the phylogenetic analysis with the standard domains used for taxa demarcation in the family, the tentatively named Oecomys arterivirus 1 (OAV-1) was placed within the clade of rodent- and porcine-associated viruses, corresponding to the Variarterivirinae subfamily. The divergence analysis, based on the same amino acid alignment, corroborated the hypothesis that the virus may represent a new genus within the subfamily. These findings contribute to the expansion of the current knowledge about the diversity, host and geographical range of the viral family. Arterivirids are non-human pathogens and are usually species-specific, but the susceptibility of cell lines derived from different organisms should be conducted to confirm these statements for this proposed new genus in an initial attempt to assess its spillover potential. Full article
Show Figures

Figure 1

18 pages, 388 KB  
Review
Orthohantavirus Replication in the Context of Innate Immunity
by Autumn LaPointe, Michael Gale and Alison M. Kell
Viruses 2023, 15(5), 1130; https://doi.org/10.3390/v15051130 - 9 May 2023
Cited by 3 | Viewed by 3847
Abstract
Orthohantaviruses are rodent-borne, negative-sense RNA viruses that are capable of causing severe vascular disease in humans. Over the course of viral evolution, these viruses have tailored their replication cycles in such a way as to avoid and/or antagonize host innate immune responses. In [...] Read more.
Orthohantaviruses are rodent-borne, negative-sense RNA viruses that are capable of causing severe vascular disease in humans. Over the course of viral evolution, these viruses have tailored their replication cycles in such a way as to avoid and/or antagonize host innate immune responses. In the rodent reservoir, this results in life long asymptomatic infections. However, in hosts other than its co-evolved reservoir, the mechanisms for subduing the innate immune response may be less efficient or absent, potentially leading to disease and/or viral clearance. In the case of human orthohantavirus infection, the interaction of the innate immune response with viral replication is thought to give rise to severe vascular disease. The orthohantavirus field has made significant advancements in understanding how these viruses replicate and interact with host innate immune responses since their identification by Dr. Ho Wang Lee and colleagues in 1976. Therefore, the purpose of this review, as part of this special issue dedicated to Dr. Lee, was to summarize the current knowledge of orthohantavirus replication, how viral replication activates innate immunity, and how the host antiviral response, in turn, impacts viral replication. Full article
13 pages, 2000 KB  
Article
Divergent Hantavirus in Somali Shrews (Crocidura somalica) in the Semi-Arid North Rift, Kenya
by Dorcus C. A. Omoga, David P. Tchouassi, Marietjie Venter, Edwin O. Ogola, Gilbert Rotich, Joseph N. Muthoni, Dickens O. Ondifu, Baldwyn Torto, Sandra Junglen and Rosemary Sang
Pathogens 2023, 12(5), 685; https://doi.org/10.3390/pathogens12050685 - 7 May 2023
Cited by 4 | Viewed by 2924
Abstract
Hantaviruses are zoonotic rodent-borne viruses that are known to infect humans and cause various symptoms of disease, including hemorrhagic fever with renal and cardiopulmonary syndromes. They have a segmented single-stranded, enveloped, negative-sense RNA genome and are widely distributed. This study aimed to investigate [...] Read more.
Hantaviruses are zoonotic rodent-borne viruses that are known to infect humans and cause various symptoms of disease, including hemorrhagic fever with renal and cardiopulmonary syndromes. They have a segmented single-stranded, enveloped, negative-sense RNA genome and are widely distributed. This study aimed to investigate the circulation of rodent-borne hantaviruses in peridomestic rodents and shrews in two semi-arid ecologies within the Kenyan Rift Valley. The small mammals were trapped using baited folding Sherman traps set within and around houses, then they were sedated and euthanatized through cervical dislocation before collecting blood and tissue samples (liver, kidney, spleen, and lungs). Tissue samples were screened with pan-hantavirus PCR primers, targeting the large genome segment (L) encoding the RNA-dependent RNA polymerase (RdRp). Eleven of the small mammals captured were shrews (11/489, 2.5%) and 478 (97.5%) were rodents. A cytochrome b gene-based genetic assay for shrew identification confirmed the eleven shrews sampled to be Crocidura somalica. Hantavirus RNA was detected in three (3/11, 27%) shrews from Baringo County. The sequences showed 93–97% nucleotide and 96–99% amino acid identities among each other, as well as 74–76% nucleotide and 79–83% amino acid identities to other shrew-borne hantaviruses, such as Tanganya virus (TNGV). The detected viruses formed a monophyletic clade with shrew-borne hantaviruses from other parts of Africa. To our knowledge, this constitutes the first report published on the circulation of hantaviruses in shrews in Kenya. Full article
(This article belongs to the Special Issue Molecular Detection and Characterisation of Viral Pathogens)
Show Figures

Figure 1

12 pages, 3572 KB  
Review
A Brief History of Bunyaviral Family Hantaviridae
by Jens H. Kuhn and Connie S. Schmaljohn
Diseases 2023, 11(1), 38; https://doi.org/10.3390/diseases11010038 - 28 Feb 2023
Cited by 37 | Viewed by 5056
Abstract
The discovery of Hantaan virus as an etiologic agent of hemorrhagic fever with renal syndrome in South Korea in 1978 led to identification of related pathogenic and nonpathogenic rodent-borne viruses in Asia and Europe. Their global distribution was recognized in 1993 after connecting [...] Read more.
The discovery of Hantaan virus as an etiologic agent of hemorrhagic fever with renal syndrome in South Korea in 1978 led to identification of related pathogenic and nonpathogenic rodent-borne viruses in Asia and Europe. Their global distribution was recognized in 1993 after connecting newly discovered relatives of these viruses to hantavirus pulmonary syndrome in the Americas. The 1971 description of the shrew-infecting Hantaan-virus-like Thottapalayam virus was long considered an anomaly. Today, this virus and many others that infect eulipotyphlans, bats, fish, rodents, and reptiles are classified among several genera in the continuously expanding family Hantaviridae. Full article
12 pages, 877 KB  
Article
A South American Mouse Morbillivirus Provides Insight into a Clade of Rodent-Borne Morbilliviruses
by Humberto J. Debat
Viruses 2022, 14(11), 2403; https://doi.org/10.3390/v14112403 - 29 Oct 2022
Cited by 5 | Viewed by 2729
Abstract
Morbilliviruses are negative-sense single-stranded monosegmented RNA viruses in the family Paramyxoviridae (order Mononegavirales). Morbilliviruses infect diverse mammals including humans, dogs, cats, small ruminants, seals, and cetaceans, which serve as natural hosts. Here, I report the identification and characterization of novel viruses detected [...] Read more.
Morbilliviruses are negative-sense single-stranded monosegmented RNA viruses in the family Paramyxoviridae (order Mononegavirales). Morbilliviruses infect diverse mammals including humans, dogs, cats, small ruminants, seals, and cetaceans, which serve as natural hosts. Here, I report the identification and characterization of novel viruses detected in public RNAseq datasets of South American long-haired and olive field mice. The divergent viruses dubbed Ratón oliváceo morbillivirus (RoMV) detected in renal samples from mice collected from Chile and Argentina are characterized by an unusually large genome including long intergenic regions and the presence of an accessory protein between the F and H genes redounding in a genome architecture consisting in 3′-N-P/V/C-M-F-hp-H-L-5′. Structural and functional annotation, genetic distance, and evolutionary insights suggest that RoMV is a member of a novel species within genus Morbillivirus tentatively named as South American mouse morbillivirus. Phylogenetic analysis suggests that this mouse morbillivirus is closely related to and clusters into a monophyletic group of novel rodent-borne morbilliviruses. This subclade of divergent viruses expands the host range, redefines the genomic organization and provides insights on the evolutionary history of genus Morbillivirus. Full article
(This article belongs to the Special Issue Drivers of Evolution of Animal RNA Viruses, Volume II)
Show Figures

Figure 1

11 pages, 3410 KB  
Communication
First Genomic Evidence of a Henipa-like Virus in Brazil
by Leonardo H. Almeida Hernández, Thito Y. Bezerra da Paz, Sandro Patroca da Silva, Fábio S. da Silva, Bruno C. Veloso de Barros, Bruno T. Diniz Nunes, Lívia M. Neves Casseb, Daniele B. Almeida Medeiros, Pedro F. da Costa Vasconcelos and Ana C. Ribeiro Cruz
Viruses 2022, 14(10), 2167; https://doi.org/10.3390/v14102167 - 30 Sep 2022
Cited by 25 | Viewed by 5787
Abstract
The viral genus Henipavirus includes two highly virulent zoonotic viruses of serious public health concern. Hendra henipavirus and Nipah henipavirus outbreaks are restricted to Australia and Southeast Asia, respectively. The Henipavirus genus comprises mostly bat-borne viruses, but exceptions have already been described as [...] Read more.
The viral genus Henipavirus includes two highly virulent zoonotic viruses of serious public health concern. Hendra henipavirus and Nipah henipavirus outbreaks are restricted to Australia and Southeast Asia, respectively. The Henipavirus genus comprises mostly bat-borne viruses, but exceptions have already been described as novel viruses with rodents and shrews as reservoir animals. In the Americas, scarce evidence supports the circulation of these viruses. In this communication, we report a novel henipa-like virus from opossums (Marmosa demerarae) from a forest fragment area in the Peixe-Boi municipality, Brazil, after which the virus was named the Peixe-Boi virus (PBV). The application of next-generation sequencing and metagenomic approach led us to discover the original evidence of a henipa-like virus genome in Brazil and South America and the original description of a henipa-like virus in marsupial species. These findings emphasize the importance of further studies to characterize PBV and clarify its ecology, impact on public health, and its relationship with didelphid marsupials and henipaviruses. Full article
Show Figures

Figure 1

31 pages, 1391 KB  
Review
A Systematic Review of the Distribution of Tick-Borne Pathogens in Wild Animals and Their Ticks in the Mediterranean Rim between 2000 and 2021
by Baptiste Defaye, Sara Moutailler, Vanina Pasqualini and Yann Quilichini
Microorganisms 2022, 10(9), 1858; https://doi.org/10.3390/microorganisms10091858 - 16 Sep 2022
Cited by 8 | Viewed by 4060
Abstract
Tick-borne pathogens (TBPs) can be divided into three groups: bacteria, parasites, and viruses. They are transmitted by a wide range of tick species and cause a variety of human, animal, and zoonotic diseases. A total of 148 publications were found on tick-borne pathogens [...] Read more.
Tick-borne pathogens (TBPs) can be divided into three groups: bacteria, parasites, and viruses. They are transmitted by a wide range of tick species and cause a variety of human, animal, and zoonotic diseases. A total of 148 publications were found on tick-borne pathogens in wild animals, reporting on 85 species of pathogens from 35 tick species and 17 wild animal hosts between 2000 and February 2021. The main TBPs reported were of bacterial origin, including Anaplasma spp. and Rickettsia spp. A total of 72.2% of the TBPs came from infected ticks collected from wild animals. The main tick genus positive for TBPs was Ixodes. This genus was mainly reported in Western Europe, which was the focus of most of the publications (66.9%). It was followed by the Hyalomma genus, which was mainly reported in other areas of the Mediterranean Rim. These TBPs and TBP-positive tick genera were reported to have come from a total of 17 wild animal hosts. The main hosts reported were game mammals such as red deer and wild boars, but small vertebrates such as birds and rodents were also found to be infected. Of the 148 publications, 12.8% investigated publications on Mediterranean islands, and 36.8% of all the TBPs were reported in seven tick genera and 11 wild animal hosts there. The main TBP-positive wild animals and tick genera reported on these islands were birds and Hyalomma spp. Despite the small percentage of publications focusing on ticks, they reveal the importance of islands when monitoring TBPs in wild animals. This is especially true for wild birds, which may disseminate their ticks and TBPs along their migration path. Full article
(This article belongs to the Special Issue Vector-Borne Infections in Wildlife)
Show Figures

Figure 1

Back to TopTop