Silent Carriers: The Role of Rodents in the Emergence of Zoonotic Bacterial Threats
Abstract
1. Introduction
2. Leptospirosis
2.1. Etiology
2.2. Epidemiology
2.3. Clinical Signs
2.4. Diagnosis
2.5. Treatment, Prevention, and Control
2.6. Recommendations
3. Rat-Bite Fever
3.1. Etiology
3.2. Epidemiology
3.3. Clinical Aspects
3.4. Diagnosis
3.5. Treatment, Prevention, and Control
3.6. Recommendations
4. Yersinia pestis
4.1. Etiology
4.2. Epidemiology
4.3. Clinical Signs
- i.
- Septicemic Plague: Clinically, the septicemic form of plague, caused by Y. pestis, resembles septicemia caused by other Gram-negative bacteria. Affected individuals may present with hyperemia, chills, headache, apathy, and gastrointestinal disturbances. There is some evidence that patients with septicemic plague have a higher incidence of abdominal pain than patients with bubonic plague [83].
- ii.
- Pneumonic Plague: The pneumonic form has an incubation period of 1 to 3 days. Primary pneumonic plague is a rare but highly lethal form of the disease, mainly transmitted through droplets and aerosols via close contact (within 2 to 5 feet) with infected individuals. This form of the disease progresses rapidly from a febrile illness to severe pneumonia, producing cough and bloody sputum [84].
- iii.
- Bubonic Plague: Bubonic plague is the most frequent clinical form, occurring 2 to 10 days after inoculation with Y. pestis [85]. Clinical signs include hyperemia, myalgias, arthralgias, and apathy [74]. Another clinical sign is lymphadenomegaly, also known as “buboes,” with the femoral (~31%) and inguinal (~24%) lymph nodes being the most frequently affected, followed by the axillary (~22%) and cervical (~9%) lymph nodes [74,86].
4.4. Diagnosis
4.5. Treatment, Prevention, and Control
4.6. Recommendations
5. Salmonella
5.1. Etiology
5.2. Epidemiology
5.3. Clinical Signs
5.4. Diagnosis
5.5. Treatment, Prevention, and Control
5.6. Recommendations
6. Francisella
6.1. Etiology
6.2. Epidemiology
6.3. Clinical Signs
6.4. Diagnosis
6.5. Treatment, Prevention, and Control
6.6. Recommendations
7. Borrelia
7.1. Etiology
7.2. Epidemiology
7.3. Clinical Signs
7.4. Diagnosis
7.5. Treatment, Prevention, and Control
7.6. Recommendations
8. Rickettsia
8.1. Etiology
8.2. Epidemiology
8.3. Clinical Signs
8.4. Diagnosis
8.5. Treatment, Prevention, and Control
8.6. Recommendations
9. Future Research
10. General Recommendations
- 1.
- Public Health and Prevention
- −
- Awareness Campaigns: Educate communities endemic for rodents and rodent-borne diseases on rodent-borne illnesses, transmission, and preventive measures.
- −
- Personal Protection: Promote the utilization of protective equipment, insect repellents (e.g., DEET, picaridin), and proper hygiene measures.
- −
- Rodent Control: Employ integrated pest management (IPM) practices, such as sanitation, rodent-proofing buildings, and secure waste disposal.
- −
- Vector Control: Regulate tick and flea populations through environmental management, acaricides, and treatment of pets.
- 2.
- Health care and Diagnostics
- −
- Early Diagnosis: Enhance laboratory infrastructure to achieve early diagnosis of zoonotic pathogens using molecular (PCR) and serological diagnostic methods.
- −
- Antibiotic Stewardship: Support proper use of antimicrobials to prevent resistance, particularly in leptospirosis and rat-bite fever.
- −
- Vaccination Research: Develop vaccine research for high-mortality diseases like plague and tularemia.
- 3.
- Environmental and One Health Strategies
- −
- Climate Adaptation: Monitor climate-driven fluctuations in rodent and vector populations for predicting disease outbreaks.
- −
- Ecosystem Management: Re-establish ecosystems to minimize human-rodent interaction and maintain biodiversity.
- −
- Wildlife Surveillance: Regularly monitor rodent and arthropod populations in high-risk zones.
- 4.
- Policy and Global Coordination
- −
- International Reporting: Improve international surveillance networks for prompt reporting of zoonotic outbreaks.
- −
- Regulatory Measures: Enact stricter rodent trade, pet keeping, and food hygiene regulations to minimize risks of transmission.
- −
- One Health Frameworks: Promote interspecies collaboration among veterinarians, ecologists, and public health professionals to respond to zoonotic threats integratively.
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keesing, F.; Ostfeld, R.S. Emerging Patterns in Rodent-Borne Zoonotic Diseases. Science 2024, 385, 1305–1310. [Google Scholar] [CrossRef]
- Meerburg, B.G.; Singleton, G.R.; Kijlstra, A. Rodent-Borne Diseases and Their Risks for Public Health. Crit. Rev. Microbiol. 2009, 35, 221–270. [Google Scholar] [CrossRef]
- Rodriguez-Morales, A.J.; Shehata, A.A.; Parvin, R.; Tasnim, S.; Duarte, P.M.; Basiouni, S. Rodent-Borne Parasites and Human Disease: A Growing Public Health Concern. Animals 2025, 15, 2681. [Google Scholar] [CrossRef]
- Shehata, A.A.; Parvin, R.; Tasnim, S.; Duarte, P.M.; Rodriguez-Morales, A.J.; Basiouni, S. The Hidden Threat: Rodent-Borne Viruses and Their Impact on Public Health. Viruses 2025, 17, 809. [Google Scholar] [CrossRef]
- Cavia, R.; Cueto, G.R.; Suárez, O.V. Techniques to Estimate Abundance and Monitoring Rodent Pests in Urban Environments. In Integrated Pest Management and Pest Control—Current and Future Tactics; Soloneski, S., Larramendy, M.L., Eds.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0050-8. [Google Scholar][Green Version]
- Garden, J.; Mcalpine, C.; Peterson, A.; Jones, D.; Possingham, H. Review of the Ecology of Australian Urban Fauna: A Focus on Spatially Explicit Processes. Austral Ecol. 2006, 31, 126–148. [Google Scholar] [CrossRef]
- Firth, C.; Bhat, M.; Firth, M.A.; Williams, S.H.; Frye, M.J.; Simmonds, P.; Conte, J.M.; Ng, J.; Garcia, J.; Bhuva, N.P.; et al. Detection of Zoonotic Pathogens and Characterization of Novel Viruses Carried by Commensal Rattus Norvegicus in New York City. mBio 2014, 5, e01933-01914. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Hagan, J.E.; Calcagno, J.; Kane, M.; Torgerson, P.; Martinez-Silveira, M.S.; Stein, C.; Abela-Ridder, B.; Ko, A.I. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Negl. Trop. Dis. 2015, 9, e0003898. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.M. Environmental and Biological Determinants for the Prevalence of Leptospirosis among Wild Small Mammal Hosts, Island of Hawaii. Int. J. Zoonoses 1984, 11, 173–188. [Google Scholar] [PubMed]
- Levett, P.N.; Morey, R.E.; Galloway, R.L.; Steigerwalt, A.G. Leptospira broomii sp. nov., Isolated from Humans with Leptospirosis. Int. J. Syst. Evol. Microbiol. 2006, 56, 671–673. [Google Scholar] [CrossRef]
- Vincent, A.T.; Schiettekatte, O.; Goarant, C.; Neela, V.K.; Bernet, E.; Thibeaux, R.; Ismail, N.; Mohd Khalid, M.K.N.; Amran, F.; Masuzawa, T.; et al. Revisiting the Taxonomy and Evolution of Pathogenicity of the Genus Leptospira through the Prism of Genomics. PLoS Negl. Trop. Dis. 2019, 13, e0007270. [Google Scholar] [CrossRef]
- Abd Rahman, A.N.; Hasnul Hadi, N.H.; Sun, Z.; Thilakavathy, K.; Joseph, N. Regional Prevalence of Intermediate Leptospira spp. in Humans: A Meta-Analysis. Pathogens 2021, 10, 943. [Google Scholar] [CrossRef] [PubMed]
- Amaddeo, D.; Ieradi, L.A.; Autorino, G.L.; Perrella, D. Leptospirosis in Wild Rodents Living in Urban Areas (Rome—Italy). In Proceedings of the 1st European Congress of Mammalogy, Lisboa, Portugal, 18–23 March 1996; pp. 105–114. [Google Scholar]
- Strand, T.M.; Löhmus, M.; Persson Vinnersten, T.; Råsbäck, T.; Sundström, K.; Bergström, T.; Lundkvist, Å. Highly Pathogenic Leptospira Found in Urban Brown Rats (Rattus norvegicus) in the Largest Cities of Sweden. Vector Borne Zoonotic Dis. 2015, 15, 779–781. [Google Scholar] [CrossRef] [PubMed]
- Desvars-Larrive, A.; Pascal, M.; Gasqui, P.; Cosson, J.-F.; Benoît, E.; Lattard, V.; Crespin, L.; Lorvelec, O.; Pisanu, B.; Teynié, A.; et al. Population Genetics, Community of Parasites, and Resistance to Rodenticides in an Urban Brown Rat (Rattus norvegicus) Population. PLoS ONE 2017, 12, e0184015. [Google Scholar] [CrossRef]
- Fischer, S.; Mayer-Scholl, A.; Imholt, C.; Spierling, N.G.; Heuser, E.; Schmidt, S.; Reil, D.; Rosenfeld, U.M.; Jacob, J.; Nöckler, K.; et al. Leptospira Genomospecies and Sequence Type Prevalence in Small Mammal Populations in Germany. Vector Borne Zoonotic Dis. 2018, 18, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Boey, K.; Shiokawa, K.; Rajeev, S. Leptospira Infection in Rats: A Literature Review of Global Prevalence and Distribution. PLoS Negl. Trop. Dis. 2019, 13, e0007499. [Google Scholar] [CrossRef]
- Haake, D.A.; Levett, P.N. Leptospirosis in Humans. Curr. Top. Microbiol. Immunol. 2015, 387, 65–97. [Google Scholar] [CrossRef]
- Mori, M.; Bourhy, P.; Le Guyader, M.; Van Esbroeck, M.; Djelouadji, Z.; Septfons, A.; Kodjo, A.; Picardeau, M. Pet Rodents as Possible Risk for Leptospirosis, Belgium and France, 2009 to 2016. Euro Surveill. 2017, 22, 16-00792. [Google Scholar] [CrossRef]
- Kraijenhoff, G.H.P.S.; van Zoest, J.K.G.C.M.; van den Brand, J.; De Schryver, E.L.L.M. [Severe paediatric leptospirosis caused by a pet rat]. Ned. Tijdschr. Geneeskd. 2022, 166, D6017. [Google Scholar]
- Gonçalves, A.J.; de Carvalho, J.E.; Guedes e Silva, J.B.; Rozembaum, R.; Vieira, A.R. Hemoptysis and the adult respiratory distress syndrome as the causes of death in leptospirosis. Changes in the clinical and anatomicopathological patterns. Rev. Soc. Bras. Med. Trop. 1992, 25, 261–270. [Google Scholar] [CrossRef]
- Kuriakose, M.; Eapen, C.K.; Punnoose, E.; Koshi, G. Leptospirosis—Clinical Spectrum and Correlation with Seven Simple Laboratory Tests for Early Diagnosis in the Third World. Trans. R. Soc. Trop. Med. Hyg. 1990, 84, 419–421. [Google Scholar] [CrossRef]
- Sullivan, N.D. Leptospirosis in animals and man. Aust. Vet. J. 1974, 50, 216–223. [Google Scholar] [CrossRef]
- Sykes, J.E.; Hartmann, K.; Lunn, K.F.; Moore, G.E.; Stoddard, R.A.; Goldstein, R.E. 2010 ACVIM Small Animal Consensus Statement on Leptospirosis: Diagnosis, Epidemiology, Treatment, and Prevention. J. Vet. Intern. Med. 2011, 25, 1–13. [Google Scholar] [CrossRef]
- Divers, T.J.; Chang, Y.-F.; Irby, N.L.; Smith, J.L.; Carter, C.N. Leptospirosis: An Important Infectious Disease in North American Horses. Equine Vet. J. 2019, 51, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Fouché, N.; Graubner, C.; Lanz, S.; Schweighauser, A.; Francey, T.; Gerber, V. Acute kidney injury due to Leptospira interrogans in 4 foals and use of renal replacement therapy with intermittent hemodiafiltration in 1 foal. Vet. Intern. Med. 2020, 34, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Pinto, G.V.; Senthilkumar, K.; Rai, P.; Kabekkodu, S.P.; Karunasagar, I.; Kumar, B.K. Current Methods for the Diagnosis of Leptospirosis: Issues and Challenges. J. Microbiol. Methods 2022, 195, 106438. [Google Scholar] [CrossRef]
- Petakh, P.; Behzadi, P.; Oksenych, V.; Kamyshnyi, O. Current Treatment Options for Leptospirosis: A Mini-Review. Front. Microbiol. 2024, 15, 1403765. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Xu, Y.; Ye, Q. Human Leptospirosis Vaccines in China. Hum. Vaccin. Immunother. 2018, 14, 984–993. [Google Scholar] [CrossRef]
- Silveira, M.M.; Oliveira, T.L.; Schuch, R.A.; McBride, A.J.A.; Dellagostin, O.A.; Hartwig, D.D. DNA Vaccines against Leptospirosis: A Literature Review. Vaccine 2017, 35, 5559–5567. [Google Scholar] [CrossRef]
- Kämmerer, T.; Lesmeister, T.; Wollenberg, A.; French, L.E.; Strobel, E.; Reinholz, M. Rat Bite Fever, a Diagnostic Challenge: Case Report and Review of 29 Cases. J. Dtsch. Dermatol. Ges. 2021, 19, 1283–1287. [Google Scholar] [CrossRef] [PubMed]
- Julius, R.S.; Brettschneider, H.; Chimimba, C.T.; Bastos, A.D.S. Prevalence and Diversity of the Streptobacillus Rat-Bite Fever Agent, in Three Invasive, Commensal Rattus Species from South Africa. Yale J. Biol. Med. 2021, 94, 217–226. [Google Scholar]
- Fawzy, A.; Giel, A.-S.; Fenske, L.; Bach, A.; Herden, C.; Engel, K.; Heuser, E.; Boelhauve, M.; Ulrich, R.G.; Vogel, K.; et al. Development and Validation of a Triplex Real-Time qPCR for Sensitive Detection and Quantification of Major Rat Bite Fever Pathogen Streptobacillus moniliformis. J. Microbiol. Methods 2022, 199, 106525. [Google Scholar] [CrossRef]
- Ogawa, Y.; Kasahara, K.; Lee, S.-T.; Ito, T.; Hasegawa, H.; Hirose, S.; Santo, S.; Yoshida, A.; Nakano, R.; Yano, H.; et al. Rat-Bite Fever in Human with Streptobacillus notomytis Infection, Japan. Emerg. Infect. Dis. 2018, 24, 1377–1379. [Google Scholar] [CrossRef]
- Matt, U.; Schmiedel, J.; Fawzy, A.; Trauth, J.; Schmidt, K.; Vogel, K.; Herold, S.; Karrasch, T.; Imirzalioglu, C.; Eisenberg, T. Infection in a Young Immunocompetent Male Caused by Streptobacillus felis, a Putative Zoonotic Microorganism Transmitted by Cats. Clin. Infect. Dis. 2021, 72, 1826–1829. [Google Scholar] [CrossRef]
- Michel, V.; Ulber, C.; Pöhle, D.; Köpke, B.; Engel, K.; Kaim, U.; Fawzy, A.; Funk, S.; Fornefett, J.; Baums, C.G.; et al. Clinical Infection in House Rats (Rattus rattus) Caused by Streptobacillus notomytis. Antonie Van Leeuwenhoek 2018, 111, 1955–1966. [Google Scholar] [CrossRef] [PubMed]
- Fornefett, J.; Krause, J.; Klose, K.; Fingas, F.; Hassert, R.; Eisenberg, T.; Schrödl, W.; Grunwald, T.; Müller, U.; Baums, C.G. Comparative Analysis of Clinics, Pathologies and Immune Responses in BALB/c and C57BL/6 Mice Infected with Streptobacillus moniliformis. Microbes Infect. 2018, 20, 101–110. [Google Scholar] [CrossRef] [PubMed]
- De Cock, M.P.; De Vries, A.; Fonville, M.; Esser, H.J.; Mehl, C.; Ulrich, R.G.; Joeres, M.; Hoffmann, D.; Eisenberg, T.; Schmidt, K.; et al. Increased Rat-Borne Zoonotic Disease Hazard in Greener Urban Areas. Sci. Total Environ. 2023, 896, 165069. [Google Scholar] [CrossRef]
- Rothe, K.; Tsokos, M.; Handrick, W. Animal and Human Bite Wounds. Dtsch. Ärzteblatt Int. 2015, 112, 433–443. [Google Scholar] [CrossRef]
- Kache, P.A.; Person, M.K.; Seeman, S.M.; McQuiston, J.R.; McCollum, J.; Traxler, R.M. Rat-Bite Fever in the United States: An Analysis Using Multiple National Data Sources, 2001–2015. Open Forum Infect. Dis. 2020, 7, ofaa197. [Google Scholar] [CrossRef]
- Hadvani, T.; Vallejo, J.G.; Dutta, A. Rat Bite Fever: Variability in Clinical Presentation and Management in Children. Pediatr. Infect. Dis. J. 2021, 40, e439–e442. [Google Scholar] [CrossRef]
- Costa-Pinto, J.; Morley, C.; Hauser, S. A Case of Rat Bite Fever in a 12-year-old Boy. J. Paediatr. Child. Health 2017, 53, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Pena, E.; Jordão, S.; Simões, M.J.; Oleastro, M.; Neves, I. A Rare Cause of Vertebral Osteomyelitis: The First Case Report of Rat-Bite Fever in Portugal. Rev. Soc. Bras. Med. Trop. 2019, 53, e20190328. [Google Scholar] [CrossRef]
- Crofton, K.R.; Ye, J.; Lesho, E.P. Severe Recurrent Streptobacillus moniliformis Endocarditis in a Pregnant Woman, and Review of the Literature. Antimicrob. Resist. Infect. Control 2020, 9. [Google Scholar] [CrossRef]
- Eisenberg, T.; Poignant, S.; Jouan, Y.; Fawzy, A.; Nicklas, W.; Ewers, C.; Mereghetti, L.; Guillon, A. Acute Tetraplegia Caused by Rat Bite Fever in Snake Keeper and Transmission of Streptobacillus moniliformis. Emerg. Infect. Dis. 2017, 23, 719–721. [Google Scholar] [CrossRef]
- Holden, F.A.; Mackay, J.C. Rat-Bite Fever—An Occupational Hazard. Can. Med. Assoc. J. 1964, 91, 78–81. [Google Scholar]
- Valverde, C.R.; Lowenstine, L.J.; Young, C.E.; Tarara, R.P.; Roberts, J.A. Spontaneous Rat Bite Fever in Non-human Primates: A Review of Two Cases. J. Med. Primatol. 2002, 31, 345–349. [Google Scholar] [CrossRef]
- Mahmoodi, E.; Grainge, C.; Erdstein, A.; Okane, G. Septic arthritis caused by pet rodents: A diagnostic dilemma. AMJ 2016, 09. [Google Scholar] [CrossRef]
- Kelly, A.J.; Ivey, M.L.; Gulvik, C.A.; Humrighouse, B.W.; McQuiston, J.R. A Real-Time Multiplex PCR Assay for detection of the causative agents of rat bite fever, Streptobacillus moniliformis and zoonotic Streptobacillus species. Diagn. Microbiol. Infect. Dis. 2021, 100, 115335. [Google Scholar] [CrossRef]
- Pal, M.; Paulos Gutama, K. Rat Bite Fever: An Infectious Under Reported Bacterial Zoonotic Disease. Am. J. Public Health 2023, 11, 84–87. [Google Scholar] [CrossRef]
- Hryciw, B.; Wright, C.; Tan, K. Rat Bite Fever on Vancouver Island: 2010-2016. Can. Commun. Dis. Rep. 2018, 44, 215–219. [Google Scholar] [CrossRef]
- Mathé, P.; Schmidt, K.; Schindler, V.; Fawzy, A.; Schultze, T.; Voll, R.E.; Pauli, D.; Popova, M.; Schauer, F.; Eisenberg, T. Streptobacillus moniliformis and IgM and IgG Immune Response in Patient with Endocarditis1. Emerg. Infect. Dis. 2024, 30, 608–610. [Google Scholar] [CrossRef] [PubMed]
- Wullenweber, M.; Kaspareit-Rittinghausen, J.; Farouq, M. Streptobacillus moniliformis Epizootic in Barrier-Maintained C57BL/6J Mice and Susceptibility to Infection of Different Strains of Mice. Lab. Anim. Sci. 1990, 40, 608–612. [Google Scholar]
- Eisenberg, T.; Ewers, C.; Rau, J.; Akimkin, V.; Nicklas, W. Approved and Novel Strategies in Diagnostics of Rat Bite Fever and Other Streptobacillus Infections in Humans and Animals. Virulence 2016, 7, 630–648. [Google Scholar] [CrossRef]
- Yang, R.; Butler, T. Discovery of the Plague Pathogen: Lessons Learned. In Yersinia pestis: Retrospective and Perspective; Yang, R., Anisimov, A., Eds.; Advances in Experimental Medicine and Biology; Springer: Dordrecht, The Netherlands, 2016; Volume 918, pp. 27–33. ISBN 978-94-024-0888-1. [Google Scholar]
- World Health Organization (WHO). Plague. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/plague (accessed on 22 April 2025).
- Brubaker, R.R. The Genus Yersinia: Biochemistry and Genetics of Virulence With 3 Figures. In Modern Aspects of Electrochemistry; White, R.E., Bockris, J.O., Conway, B.E., Eds.; Modern Aspects of Electrochemistry; Springer: Boston, MA, USA, 1972; Volume 18, pp. 111–158. ISBN 978-1-4612-9003-2. [Google Scholar]
- Tan, S.Y.; Dutta, A.; Jakubovics, N.S.; Ang, M.Y.; Siow, C.C.; Mutha, N.V.; Heydari, H.; Wee, W.Y.; Wong, G.J.; Choo, S.W. YersiniaBase: A Genomic Resource and Analysis Platform for Comparative Analysis of Yersinia. BMC Bioinform. 2015, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, R.; Signoli, M.; Chevé, D.; Costedoat, C.; Tzortzis, S.; Aboudharam, G.; Raoult, D.; Drancourt, M. Yersinia Pestis: The Natural History of Plague. Clin. Microbiol. Rev. 2020, 34, e00044-19. [Google Scholar] [CrossRef]
- Bari, M.d.L.; Hossain, M.A.; Isshiki, K.; Ukuku, D. Behavior of Yersinia enterocolitica in Foods. J. Pathog. 2011, 2011, 1–13. [Google Scholar] [CrossRef]
- Hinnebusch, B.J.; Erickson, D.L. Yersinia Pestis Biofilm in the Flea Vector and Its Role in the Transmission of Plague. In Bacterial Biofilms; Romeo, T., Ed.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2008; Volume 322, pp. 229–248. ISBN 978-3-540-75417-6. [Google Scholar]
- Butler, T. Plague Gives Surprises in the Second Decade of the Twenty-First Century. Am. J. Trop. Med. Hyg. 2023, 109, 985–988. [Google Scholar] [CrossRef]
- Wong, D.; Wild, M.A.; Walburger, M.A.; Higgins, C.L.; Callahan, M.; Czarnecki, L.A.; Lawaczeck, E.W.; Levy, C.E.; Patterson, J.G.; Sunenshine, R.; et al. Primary Pneumonic Plague Contracted from a Mountain Lion Carcass. Clin. Infect. Dis. 2009, 49, e33–e38. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dubyanskiy, V.M.; Yeszhanov, A.B. Ecology of Yersinia Pestis and the Epidemiology of Plague. Adv. Exp. Med. Biol. 2016, 918, 101–170. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, A.; Kryštufek, B.; Sludsky, A.; Schmid, B.V.; DEAlmeida, A.M.P.; Lei, X.; Ramasindrazana, B.; Bertherat, E.; Yeszhanov, A.; Stenseth, N.C.; et al. Plague Reservoir Species throughout the World. Integr. Zool. 2021, 16, 820–833. [Google Scholar] [CrossRef]
- Han, B.A.; Schmidt, J.P.; Bowden, S.E.; Drake, J.M. Rodent Reservoirs of Future Zoonotic Diseases. Proc. Natl. Acad. Sci. USA 2015, 112, 7039–7044. [Google Scholar] [CrossRef]
- Li, H.; Yao, X.; Xu, C.; Cong, X.; Shao, K.; Ju, C. Plague Risk Assessment—China, 2022. China CDC Wkly. 2022, 4, 417–420. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Maps and Statistics. 2025. Available online: https://www.cdc.gov/plague/maps-statistics/index.html (accessed on 22 April 2025).
- Chernin, E. Richard Pearson Strong and the Manchurian Epidemic of Pneumoic Plague, 1910–1911. J. Hist. Med. Allied Sci. 1989, 44, 296–319. [Google Scholar] [CrossRef] [PubMed]
- Gamsa, M. The Epidemic of Pneumonic Plague in Manchuria 1910–1911. Past Present 2006, 190, 147–183. [Google Scholar] [CrossRef]
- Nishiura, H. Epidemiology of a Primary Pneumonic Plague in Kantoshu, Manchuria, from 1910 to 1911: Statistical Analysis of Individual Records Collected by the Japanese Empire. Int. J. Epidemiol. 2006, 35, 1059–1065. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Persson, B. Pestens Gåta: Farsoter i Det Tidiga 1700-Talets Skåne; Lund University: Lund, Sweden, 2001; Volume 5. [Google Scholar][Green Version]
- Pollitzer, R.; World Health Organization. Plague; World Health Organization: Geneva, Switzerland, 1954. [Google Scholar][Green Version]
- Hinnebusch, B.J. The Evolution of Flea-Borne Transmission in Yersinia Pestis. Curr. Issues Mol. Biol. 2005, 7, 197–212. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Ostfeld, R.S.; Peterson, A.T.; Poulin, R.; De La Fuente, J. Effects of Environmental Change on Zoonotic Disease Risk: An Ecological Primer. Trends Parasitol. 2014, 30, 205–214. [Google Scholar] [CrossRef]
- Carlson, C.J. embarcadero: Species Distribution Modelling with Bayesian Additive Regression Trees in r. Methods Ecol. Evol. 2020, 11, 850–858. [Google Scholar] [CrossRef]
- Carlson, C.J.; Bevins, S.N.; Schmid, B.V. Plague Risk in the Western United States over Seven Decades of Environmental Change. Glob. Change Biol. 2022, 28, 753–769. [Google Scholar] [CrossRef]
- Kausrud, K.L.; Begon, M.; Ari, T.B.; Viljugrein, H.; Esper, J.; Büntgen, U.; Leirs, H.; Junge, C.; Yang, B.; Yang, M.; et al. Modeling the Epidemiological History of Plague in Central Asia: Palaeoclimatic Forcing on a Disease System over the Past Millennium. BMC Biol. 2010, 8, 112. [Google Scholar] [CrossRef]
- Yue, R.P.H.; Lee, H.F. The Delayed Effect of Cooling Reinforced the NAO-Plague Connection in Pre-Industrial Europe. Sci. Total Environ. 2021, 762, 143122. [Google Scholar] [CrossRef] [PubMed]
- Rudnev, G.P. Clinical Picture of Plague; Medgiz: Moscow, Russia, 1940. [Google Scholar]
- Yang, R.; Anisimov, A. (Eds.) Yersinia pestis: Retrospective and Perspective; Advances in Experimental Medicine and Biology; Springer: Dordrecht, The Netherlands, 2016; ISBN 978-94-024-0888-1. [Google Scholar]
- Hull, H.F.; Montes, J.M.; Mann, J.M. Septicemic Plague in New Mexico. J. Infect. Dis. 1987, 155, 113–118. [Google Scholar] [CrossRef]
- Perry, R.D.; Fetherston, J.D. Yersinia pestis—Etiologic Agent of Plague. Clin. Microbiol. Rev. 1997, 10, 35–66. [Google Scholar] [CrossRef] [PubMed]
- Butler, T. Plague into the 21st Century. Clin. Infect. Dis. 2009, 49, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Yersin, A. La peste bubonique à Hong Kong. Ann. Inst. Pasteur. 1894, 8, 662–667. [Google Scholar]
- Nichols, M.C.; Ettestad, P.J.; VinHatton, E.S.; Melman, S.D.; Onischuk, L.; Pierce, E.A.; Aragon, A.S. Yersinia pestis Infection in Dogs: 62 Cases (2003–2011). J. Am. Vet. Med. Assoc. 2014, 244, 1176–1180. [Google Scholar] [CrossRef]
- Weller, C.; Malmlov, A.; Daniels, J.; Schaffer, P.; Pabilonia, K. Detection of Yersinia Pestis in Canine and Feline Companion Animals in the United States. Int. J. Infect. Dis. 2025, 152, 107546. [Google Scholar] [CrossRef]
- Chanteau, S.; Rahalison, L.; Ralafiarisoa, L.; Foulon, J.; Ratsitorahina, M.; Ratsifasoamanana, L.; Carniel, E.; Nato, F. Development and Testing of a Rapid Diagnostic Test for Bubonic and Pneumonic Plague. Lancet 2003, 361, 211–216. [Google Scholar] [CrossRef]
- Hinnebusch, J.; Schwan, T.G. New Method for Plague Surveillance Using Polymerase Chain Reaction to Detect Yersinia Pestis in Fleas. J. Clin. Microbiol. 1993, 31, 1511–1514. [Google Scholar] [CrossRef] [PubMed]
- Tsukano, H.; Itoh, K.; Suzuki, S.; Watanabe, H. Detection and Identification of Yersinia Pestis by Polymerase Chain Reaction (PCR) Using Multiplex Primers. Microbiol. Immunol. 1996, 40, 773–775. [Google Scholar] [CrossRef]
- Parkhill, J.; Wren, B.W.; Thomson, N.R.; Titball, R.W.; Holden, M.T.; Prentice, M.B.; Sebaihia, M.; James, K.D.; Churcher, C.; Mungall, K.L.; et al. Genome Sequence of Yersinia Pestis, the Causative Agent of Plague. Nature 2001, 413, 523–527. [Google Scholar] [CrossRef]
- Feng, N.; Zhou, Y.; Fan, Y.; Bi, Y.; Yang, R.; Zhou, Y.; Wang, X. Yersinia Pestis Detection by Loop-Mediated Isothermal Amplification Combined with Magnetic Bead Capture of DNA. Braz. J. Microbiol. 2018, 49, 128–137. [Google Scholar] [CrossRef]
- World Health Organization (WHO). How to Safely Collect Sputum Samples from Patients Suspected to Be Infected with Pneumonic Plague; Technical Guidance; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Yang, R. Plague: Recognition, Treatment, and Prevention. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef]
- Meyer, K.F. Effectiveness of Live or Killed Plague Vaccines in Man. Bull. World Health Organ. 1970, 42, 653–666. [Google Scholar] [PubMed]
- Quenee, L.E.; Schneewind, O. Plague Vaccines and the Molecular Basis of Immunity against Yersinia Pestis. Hum. Vaccin. 2009, 5, 817–823. [Google Scholar] [CrossRef]
- Heath, D.G.; Anderson, G.W.; Mauro, J.M.; Welkos, S.L.; Andrews, G.P.; Adamovicz, J.; Friedlander, A.M. Protection against Experimental Bubonic and Pneumonic Plague by a Recombinant Capsular F1-V Antigen Fusion Protein Vaccine. Vaccine 1998, 16, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wei, D.; Qu, Z.; Sun, L.; Miao, Y.; Yang, Y.; Lu, J.; Du, W.; Wang, B.; Li, B. A Safety and Immunogenicity Study of a Novel Subunit Plague Vaccine in Cynomolgus Macaques. J. Appl. Toxicol. 2018, 38, 408–417. [Google Scholar] [CrossRef]
- Hu, J.; Jiao, L.; Hu, Y.; Chu, K.; Li, J.; Zhu, F.; Li, T.; Wu, Z.; Wei, D.; Meng, F.; et al. One Year Immunogenicity and Safety of Subunit Plague Vaccine in Chinese Healthy Adults: An Extended Open-Label Study. Hum. Vaccin. Immunother. 2018, 14, 2701–2705. [Google Scholar] [CrossRef]
- Bourhy, P.; Picardeau, M.; Septfons, A.; Trombert, S.; Cart-tanneur, E. Émergence de la leptospirose humaine en France métropolitaine ? Actualités sur la surveillance. Méd. Mal. Infect. 2017, 47, S150. [Google Scholar] [CrossRef]
- Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, R.V. Food-Related Illness and Death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625. [Google Scholar] [CrossRef]
- Voetsch, A.C.; Van Gilder, T.J.; Angulo, F.J.; Farley, M.M.; Shallow, S.; Marcus, R.; Cieslak, P.R.; Deneen, V.C.; Tauxe, R.V.; The Emerging Infections Program FoodNet Working Group. FoodNet Estimate of the Burden of Illness Caused by Nontyphoidal Salmonella Infections in the United States. Clin. Infect. Dis. 2004, 38, S127–S134. [Google Scholar] [CrossRef]
- Agbaje, M.; Begum, R.H.; Oyekunle, M.A.; Ojo, O.E.; Adenubi, O.T. Evolution of Salmonella Nomenclature: A Critical Note. Folia Microbiol. 2011, 56, 497–503. [Google Scholar] [CrossRef]
- Keerthirathne, T.; Ross, K.; Fallowfield, H.; Whiley, H. A Review of Temperature, pH, and Other Factors That Influence the Survival of Salmonella in Mayonnaise and Other Raw Egg Products. Pathogens 2016, 5, 63. [Google Scholar] [CrossRef]
- Waldman, J.; Souza, M.N.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R. Direct Detection of Salmonella from Poultry Samples by DNA Isothermal Amplification. Br. Poult. Sci. 2020, 61, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Mylona, E.; Frankel, G. Typhoidal Salmonella: Distinctive Virulence Factors and Pathogenesis. Cell Microbiol. 2018, 20, e12939. [Google Scholar] [CrossRef]
- Andino, A.; Hanning, I. Salmonella enterica: Survival, Colonization, and Virulence Differences among Serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, H.J.; Cho, W.H.; Kim, J.H.; Oh, M.H.; Kim, S.H.; Lee, B.K.; Ricke, S.C.; Kim, H.Y. Identification of Salmonella Enterica Subspecies I, Salmonella Enterica Serovars Typhimurium, Enteritidis and Typhi Using Multiplex PCR. FEMS Microbiol. Lett. 2009, 301, 137–146. [Google Scholar] [CrossRef]
- Guibourdenche, M.; Roggentin, P.; Mikoleit, M.; Fields, P.I.; Bockemühl, J.; Grimont, P.A.D.; Weill, F.-X. Supplement 2003–2007 (No. 47) to the White-Kauffmann-Le Minor Scheme. Res. Microbiol. 2010, 161, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Beltran, P.; Musser, J.M.; Helmuth, R.; Farmer, J.J.; Frerichs, W.M.; Wachsmuth, I.K.; Ferris, K.; McWhorter, A.C.; Wells, J.G.; Cravioto, A. Toward a Population Genetic Analysis of Salmonella: Genetic Diversity and Relationships among Strains of Serotypes S. Choleraesuis, S. Derby, S. Dublin, S. Enteritidis, S. Heidelberg, S. Infantis, S. Newport, and S. Typhimurium. Proc. Natl. Acad. Sci. USA 1988, 85, 7753–7757. [Google Scholar] [CrossRef]
- Dietrich, J.; Hammerl, J.-A.; Johne, A.; Kappenstein, O.; Loeffler, C.; Nöckler, K.; Rosner, B.; Spielmeyer, A.; Szabo, I.; Richter, M.H. Impact of Climate Change on Foodborne Infections and Intoxications. J. Health Monit. 2023, 8 (Suppl. S3), 78. [Google Scholar] [CrossRef]
- Henzler, D.J.; Opitz, H.M. The Role of Mice in the Epizootiology of Salmonella Enteritidis Infection on Chicken Layer Farms. Avian Dis. 1992, 36, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.; Wray, C. Mice as Carriers of Salmonella Enteritidis on Persistently Infected Poultry Units. Vet. Rec. 1995, 137, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Lapuz, R.; Tani, H.; Sasai, K.; Shirota, K.; Katoh, H.; Baba, E. The Role of Roof Rats (Rattus rattus) in the Spread of Salmonella Enteritidis and S. Infantis contamination in layer farms in Eastern Japan. Epidemiol. Infect. 2008, 136, 1235–1243. [Google Scholar] [CrossRef]
- Le Moine, V.; Vannier, P.; Jestin, A. Microbiological Studies of Wild Rodents in Farms as Carriers of Pig Infectious Agents. Prev. Vet. Med. 1987, 4, 399–408. [Google Scholar] [CrossRef]
- Pocock, M.J.O.; Searle, J.B.; Betts, W.B.; White, P.C.L. Patterns of Infection by Salmonella and Yersinia spp. in Commensal House Mouse (Mus musculus domesticus) Populations. J. Appl. Microbiol. 2001, 90, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Meerburg, B.G.; Jacobs-Reitsma, W.F.; Wagenaar, J.A.; Kijlstra, A. Presence of Salmonella and Campylobacter spp. in Wild Small Mammals on Organic Farms. Appl. Environ. Microbiol. 2006, 72, 960–962. [Google Scholar] [CrossRef]
- Petrie, G.F.; O’Brien, E.A. The Experimental Production of the Carrier-State by Feeding. Proc. R. Soc. Med. 1911, 4, 70–72. [Google Scholar] [CrossRef]
- Bartram, M.T.; Welch, H.; Ostrolenk, M. Incidence of Members of the Salmonella Group in Rats. J. Infect. Dis. 1940, 67, 222–226. [Google Scholar] [CrossRef]
- Habermann, R.T.; Williams, F.P. Salmonellosis in Laboratory Animals. J. Natl. Cancer Inst. 1958, 20, 933–947. [Google Scholar]
- Sparrow, S. Diseases of Pet Rodents. J. Small Anim. Pract. 1980, 21, 1–16. [Google Scholar] [CrossRef]
- Steffen, E.K.; Wagner, J.E. Salmonella Enteriditis Serotype Amsterdam in a Commercial Rat Colony. Lab. Anim. Sci. 1983, 33, 454–456. [Google Scholar]
- Healing, T.D. Salmonella in Rodents: A Risk to Man? CDR (Lond. Engl. Rev.) 1991, 1, R114–R116. [Google Scholar]
- Swanson, S.J.; Snider, C.; Braden, C.R.; Boxrud, D.; Wünschmann, A.; Rudroff, J.A.; Lockett, J.; Smith, K.E. Multidrug-Resistant Salmonella enterica Serotype Typhimurium Associated with Pet Rodents. N. Engl. J. Med. 2007, 356, 21–28. [Google Scholar] [CrossRef]
- Sivaramalingam, T.; Pearl, D.L.; McEwen, S.A.; Ojkic, D.; Guerin, M.T. A Temporal Study of Salmonella Serovars from Fluff Samples from Poultry Breeder Hatcheries in Ontario between 1998 and 2008. Can. J. Vet. Res. 2013, 77, 12–23. [Google Scholar]
- Ribas, A.; Saijuntha, W.; Agatsuma, T.; Prantlová, V.; Poonlaphdecha, S. Rodents as a Source of Salmonella Contamination in Wet Markets in Thailand. Vector-Borne Zoonotic Dis. 2016, 16, 537–540. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Salmonella (Non-Typhoidal). 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal) (accessed on 22 April 2025).
- Akil, L.; Ahmad, H.A.; Reddy, R.S. Effects of Climate Change on Salmonella Infections. Foodborne Pathog. Dis. 2014, 11, 974–980. [Google Scholar] [CrossRef]
- Chua, P.L.C.; Ng, C.F.S.; Tobias, A.; Seposo, X.T.; Hashizume, M. Associations between Ambient Temperature and Enteric Infections by Pathogen: A Systematic Review and Meta-Analysis. Lancet Planet. Health 2022, 6, e202–e218. [Google Scholar] [CrossRef]
- Sabeq, I.; Awad, D.; Hamad, A.; Nabil, M.; Aboubakr, M.; Abaza, M.; Fouad, M.; Hussein, A.; Shama, S.; Ramadan, H.; et al. Prevalence and Molecular Characterization of Foodborne and Human-derived Salmonella Strains for Resistance to Critically Important Antibiotics. Transbounding Emerg. Dis. 2022, 69. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, J.; Zhang, R.; Chen, L.; Zhang, H.; Qi, X.; Chen, J. Epidemiology of Foodborne Diseases Caused by Salmonella in Zhejiang Province, China, between 2010 and 2021. Front. Public Health 2023, 11, 1127925. [Google Scholar] [CrossRef]
- Smith, R.; Takkinen, J.; Editorial Team, C. Lyme Borreliosis: Europe-Wide Coordinated Surveillance and Action Needed? Euro Surveill. 2006, 11, E060622.1. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.L.; Lynne, A.M. Food Animal-Associated Salmonella Challenges: Pathogenicity and Antimicrobial Resistance. J. Anim. Sci. 2008, 86, E173–E187. [Google Scholar] [CrossRef]
- Meltzer, E.; Sadik, C.; Schwartz, E. Enteric Fever in Israeli Travelers: A Nationwide Study. J. Travel Med. 2005, 12, 275–281. [Google Scholar] [CrossRef][Green Version]
- Patel, T.A.; Armstrong, M.; Morris-Jones, S.D.; Wright, S.G.; Doherty, T. Imported Enteric Fever: Case Series from the Hospital for Tropical Diseases, London, United Kingdom. Am. Soc. Trop. Med. Hyg. 2010, 82, 1121–1126. [Google Scholar] [CrossRef]
- Olsen, S.J.; Bleasdale, S.C.; Magnano, A.R.; Landrigan, C.; Holland, B.H.; Tauxe, R.V.; Mintz, E.D.; Luby, S. Outbreaks of Typhoid Fever in the United States, 1960–99. Epidemiol. Infect. 2003, 130, 13–21. [Google Scholar] [CrossRef]
- Peek, S.F.; Mcguirk, S.M.; Sweeney, R.W.; Cummings, K.J. Infectious Diseases of the Gastrointestinal Tract. In Rebhun’s Diseases of Dairy Cattle; Elsevier: Amsterdam, The Netherlands, 2018; pp. 249–356. ISBN 978-0-323-39055-2. [Google Scholar]
- Pecoraro, H.L.; Thompson, B.; Duhamel, G.E. Histopathology Case Definition of Naturally Acquired Salmonella enterica Serovar Dublin Infection in Young Holstein Cattle in the Northeastern United States. J. Vet. Diagn. Investig. 2017, 29, 860–864. [Google Scholar] [CrossRef]
- Nielsen, L.R. Review of Pathogenesis and Diagnostic Methods of Immediate Relevance for Epidemiology and Control of Salmonella Dublin in Cattle. Vet. Microbiol. 2013, 162, 1–9. [Google Scholar] [CrossRef]
- Burgess, B.A. Salmonella in Horses. Vet. Clin. N. Am. Equine Pract. 2023, 39, 25–35. [Google Scholar] [CrossRef]
- Wray, C.; Wray, A. Salmonella Infections in Dogs and Cats. In Salmonella in Domestic Animals; CABI: London, UK, 2013; 238 AD. [Google Scholar]
- Marks, S.L.; Rankin, S.C.; Byrne, B.A.; Weese, J.S. Enteropathogenic Bacteria in Dogs and Cats: Diagnosis, Epidemiology, Treatment, and Control. Vet. Intern. Med. 2011, 25, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Ellingson, J.L.E.; Anderson, J.L.; Carlson, S.A.; Sharma, V.K. Twelve Hour Real-Time PCR Technique for the Sensitive and Specific Detection of Salmonella in Raw and Ready-to-Eat Meat Products. Mol. Cell Probes 2004, 18, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Iijima, Y.; Asako, N.T.; Aihara, M.; Hayashi, K. Improvement in the Detection Rate of Diarrhoeagenic Bacteria in Human Stool Specimens by a Rapid Real-Time PCR Assay. J. Med. Microbiol. 2004, 53, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Liming, S.H.; Bhagwat, A.A. Application of a Molecular Beacon-Real-Time PCR Technology to Detect Salmonella Species Contaminating Fruits and Vegetables. Int. J. Food Microbiol. 2004, 95, 177–187. [Google Scholar] [CrossRef]
- Ward, M.P.; Alinovi, C.A.; Couëtil, L.L.; Wu, C.C. Evaluation of a PCR to Detect Salmonella in Fecal Samples of Horses Admitted to a Veterinary Teaching Hospital. J. Vet. Diagn. Investig. 2005, 17, 118–123. [Google Scholar] [CrossRef]
- Bohaychuk, V.M.; Gensler, G.E.; McFall, M.E.; King, R.K.; Renter, D.G. A Real-Time PCR Assay for the Detection of Salmonella in a Wide Variety of Food and Food-Animal Matricest. J. Food Prot. 2007, 70, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, A.; Shabbir, N. Salmonella. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Meerburg, B.G.; Kijlstra, A. Role of Rodents in Transmission of Salmonella and Campylobacter. J. Sci. Food Agric. 2007, 87, 2774–2781. [Google Scholar] [CrossRef]
- Zamora-Sanabria, R.; Alvarado, A.M. Preharvest Salmonella Risk Contamination and the Control Strategies. In Current Topics in Salmonella and Salmonellosis; Mares, M., Ed.; InTech: Rijeka, Croatia, 2017; ISBN 978-953-51-3065-9. [Google Scholar]
- Simanjuntak, C.H.; Paleologo, F.P.; Punjabi, N.H.; Darmowigoto, R.; Soeprawoto, n.u.l.l.; Totosudirjo, H.; Haryanto, P.; Suprijanto, E.; Witham, N.D.; Hoffman, S.L. Oral Immunisation against Typhoid Fever in Indonesia with Ty21a Vaccine. Lancet 1991, 338, 1055–1059. [Google Scholar] [CrossRef]
- Levine, M.M.; Ferreccio, C.; Black, R.E.; Lagos, R.; San Martin, O.; Blackwelder, W.C. Ty21a Live Oral Typhoid Vaccine and Prevention of Paratyphoid Fever Caused by Salmonella enterica Serovar Paratyphi B. Clin. Infect. Dis. 2007, 45 (Suppl. S1), S24–S28. [Google Scholar] [CrossRef]
- Shakya, M.; Colin-Jones, R.; Theiss-Nyland, K.; Voysey, M.; Pant, D.; Smith, N.; Liu, X.; Tonks, S.; Mazur, O.; Farooq, Y.G.; et al. Phase 3 Efficacy Analysis of a Typhoid Conjugate Vaccine Trial in Nepal. N. Engl. J. Med. 2019, 381, 2209–2218. [Google Scholar] [CrossRef]
- World Organization for Animal Health (WOAH). Tularemia. 2016. Available online: https://www.woah.org/en/disease/tularemia/ (accessed on 22 April 2025).
- Petersen, J.M.; Mead, P.S.; Schriefer, M.E. Francisella tularensis: An Arthropod-Borne Pathogen. Vet. Res. 2009, 40, 7. [Google Scholar] [CrossRef] [PubMed]
- Sjöstedt, A. Tularemia: History, Epidemiology, Pathogen Physiology, and Clinical Manifestations. Ann. N. Y. Acad. Sci. 2007, 1105, 1–29. [Google Scholar] [CrossRef]
- Jackson, J.; McGregor, A.; Cooley, L.; Ng, J.; Brown, M.; Ong, C.W.; Darcy, C.; Sintchenko, V. Francisella tularensis Subspecies holarctica, Tasmania, Australia, 2011. Emerg. Infect. Dis. 2012, 18, 1484–1486. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.M.; Dresvyannikova, S. Tularemia in the Arctic. In Arctic One Health. Challenges for Northern Animals and People; Tryland, M., Ed.; Springer: Cham, Switzerland, 2022; pp. 377–392. [Google Scholar]
- Kaysser, P.; Seibold, E.; Mätz-Rensing, K.; Pfeffer, M.; Essbauer, S.; Splettstoesser, W.D. Re-Emergence of Tularemia in Germany: Presence of Francisella tularensis in Different Rodent Species in Endemic Areas. BMC Infect. Dis. 2008, 8, 157. [Google Scholar] [CrossRef]
- Gurcan, S. Epidemiology of Tularemia. Balk. Med. J. 2014, 33, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Wobeser, G.A. Essentials of Diseases in Wild Animals, 1st ed.; Blackwell Publishing Ltd.: Oxford, UK, 2006. [Google Scholar]
- Rossow, H.; Sissonen, S.; Koskela, K.A.; Kinnunen, P.M.; Hemmilä, H.; Niemimaa, J.; Huitu, O.; Kuusi, M.; Vapalahti, O.; Henttonen, H.; et al. Detection of Francisella tularensis in Voles in Finland. Vector-Borne Zoonotic Dis. 2014, 14, 193–198. [Google Scholar] [CrossRef]
- Şahin, M. Francisella tularensis’ in Vektörleri ve Doğal Rezervuarları. In Francisella tularensis ve Tularemi; Gürcan, Ş., Ed.; Nobel Tıp Kitabevleri: İstanbul, Türkiye, 2009; pp. 139–160. [Google Scholar]
- Akalın, H.; Helvacı, S.; Gedikoğlu, S. Re-Emergence of tularemia in Turkey. Int. J. Infect. Dis. 2009, 13, 547–551. [Google Scholar] [CrossRef]
- Hennebique, A.; Boisset, S.; Maurin, M. Tularemia as a Waterborne Disease: A Review. Emerg. Microbes Infect. 2019, 8, 1027–1042. [Google Scholar] [CrossRef] [PubMed]
- Beermann, S.; Dobler, G.; Faber, M.; Frank, C.; Habedank, B.; Hagedorn, P.; Kampen, H.; Kuhn, C.; Nygren, T.; Schmidt-Chanasit, J.; et al. Impact of Climate Change on Vector- and Rodent-Borne Infectious Diseases. J. Health Monit. 2023, 8 (Suppl. S3), 33. [Google Scholar] [CrossRef]
- Wherry, W.B.; Lamb, B.H. Infection of Man with Bacterium Tularense. J. Infect. Dis. 1914, 15, 331–340. [Google Scholar] [CrossRef]
- Snowden, J.; Simonsen, K.A. Tularemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Maurin, M.; Gyuranecz, M. Tularaemia: Clinical Aspects in Europe. Lancet Infect. Dis. 2016, 16, 113–124. [Google Scholar] [CrossRef]
- Maurin, M.; Pelloux, I.; Brion, J.P.; Del Banõ, J.-N.; Picard, A. Human Tularemia in France, 2006-2010. Clin. Infect. Dis. 2011, 53, e133–e141. [Google Scholar] [CrossRef]
- Kwit, N.A.; Middaugh, N.A.; VinHatton, E.S.; Melman, S.D.; Onischuk, L.; Aragon, A.S.; Nelson, C.A.; Mead, P.S.; Ettestad, P.J. Francisella Tularensis Infection in Dogs: 88 Cases (2014–2016). J. Am. Vet. Med. Assoc. 2020, 256, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.N. Natural Occurrence of Tularemia in Dogs Used as a Source of Canine Distemper Virus. J. Lab. Clin. Med. 1944, 29, 906–915. [Google Scholar]
- Woods, J.P.; Crystal, M.A.; Morton, R.J.; Panciera, R.J. Tularemia in Two Cats. J. Am. Vet. Med. Assoc. 1998, 212, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Valentine, B.A.; DeBey, B.M.; Sonn, R.J.; Stauffer, L.R.; Pielstick, L.G. Localized Cutaneous Infection with Francisella tularensis Resembling Ulceroglandular Tularemia in a Cat. J. Vet. Diagn. Investig. 2004, 16, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Tärnvik, A.; Chu, M.C. New Approaches to Diagnosis and Therapy of Tularemia. Ann. N. Y. Acad. Sci. 2007, 1105, 378–404. [Google Scholar] [CrossRef]
- Hepburn, M.J.; Simpson, A.J. Tularemia: Current Diagnosis and Treatment Options. Expert. Rev. Anti-Infect. Ther. 2008, 6, 231–240. [Google Scholar] [CrossRef]
- Dennis, D.T.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Layton, M.; et al. Tularemia as a Biological Weapon: Medical and Public Health Management. JAMA 2001, 285, 2763. [Google Scholar] [CrossRef]
- Bossi, P.; Tegnell, A.; Baka, A.; Van Loock, F.; Hendriks, J.; Werner, A.; Maidhof, H.; Gouvras, G. Bichat Guidelines for the Clinical Management of Tularaemia and Bioterrorism-Related Tularaemia. Euro Surveill. 2004, 9, 27–28. [Google Scholar] [CrossRef]
- Balestra, A.; Bytyci, H.; Guillod, C.; Braghetti, A.; Elzi, L. A Case of Ulceroglandular Tularemia Presenting with Lymphadenopathy and an Ulcer on a Linear Morphoea Lesion Surrounded by Erysipelas. Int. Med. Case Rep. J. 2018, 11, 313–318. [Google Scholar] [CrossRef]
- Donate-Pérez-Molino, P.; Castelló-Abietar, C.; Fernández-Suárez, J.; de Vicente, J.C. Tularemia: Diagnosis of an Unexpected Oculoglandular Case in a Non-Endemic Area by Universal PCR. Enferm. Infecc. Microbiol. Clin. (Engl. Ed.) 2019, 37, 620–621. [Google Scholar] [CrossRef]
- Kwit, N.A.; Schwartz, A.; Kugeler, K.J.; Mead, P.S.; Nelson, C.A. Human Tularaemia Associated with Exposure to Domestic Dogs-United States, 2006–2016. Zoonoses Public Health 2019, 66, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Tularemia. 2024. Available online: https://www.cdc.gov/tularemia/about/index.html (accessed on 22 April 2025).
- Eigelsbach, H.T.; Downs, C.M. Prophylactic Effectiveness of Live and Killed Tularemia Vaccines. J. Immunol. 1961, 87, 415–425. [Google Scholar] [CrossRef]
- Elkins, K.L.; Kurtz, S.L.; De Pascalis, R. Progress, Challenges, and Opportunities in Francisella Vaccine Development. Expert Rev. Vaccines 2016, 15, 1183–1196. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Borreliosis (Lyme Disease). 2025. Available online: https://www.ecdc.europa.eu/en/borreliosis-lyme-disease (accessed on 22 April 2025).
- Sykes, R.A.; Makiello, P. An Estimate of Lyme Borreliosis Incidence in Western Europe. J. Public Health 2017, 39, 74–81. [Google Scholar] [CrossRef]
- Rosenberg, R.; Lindsey, N.P.; Fischer, M.; Gregory, C.J.; Hinckley, A.F.; Mead, P.S.; Paz-Bailey, G.; Waterman, S.H.; Drexler, N.A.; Kersh, G.J.; et al. Vital Signs: Trends in Reported Vectorborne Disease Cases—United States and Territories, 2004-2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 496–501. [Google Scholar] [CrossRef]
- Gylfe, A.; Bergström, S.; Lundström, J.; Olsen, B. Reactivation of Borrelia Infection in Birds. Nature 2000, 403, 724–725. [Google Scholar] [CrossRef]
- Kurtenbach, K.; De Michelis, S.; Etti, S.; Schäfer, S.M.; Sewell, H.-S.; Brade, V.; Kraiczy, P. Host Association of Borrelia burgdorferi Sensu Lato—The Key Role of Host Complement. Trends Microbiol. 2002, 10, 74–79. [Google Scholar] [CrossRef]
- Gernat, A.A.; Santos, F.B.O.; Grimes, J.L. Alternative Antimicrobials in the Turkey Industry: Challenges and Perspectives. Ger. J. Vet. Res. 2021, 1, 37–47. [Google Scholar] [CrossRef]
- Schwartz, A.M.; Kugeler, K.J.; Nelson, C.A.; Marx, G.E.; Hinckley, A.F. Use of Commercial Claims Data for Evaluating Trends in Lyme Disease Diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Hanincová, K.; Schäfer, S.M.; Etti, S.; Sewell, H.S.; Taragelová, V.; Ziak, D.; Labuda, M.; Kurtenbach, K. Association of Borrelia afzelii with Rodents in Europe. Parasitology 2003, 126, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Strnad, M.; Hönig, V.; Růžek, D.; Grubhoffer, L.; Rego, R.O.M. Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Appl. Environ. Microbiol. 2017, 83, e00609-17. [Google Scholar] [CrossRef]
- Barbour, A.G.; Fish, D. The Biological and Social Phenomenon of Lyme Disease. Science 1993, 260, 1610–1616. [Google Scholar] [CrossRef]
- Ostfeld, R.S. Lyme Disease: The Ecology of a Complex System; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Eisen, L. Vector Competence Studies with Hard Ticks and Borrelia burgdorferi Sensu Lato Spirochetes: A Review. Ticks Tick-Borne Dis. 2020, 11, 101359. [Google Scholar] [CrossRef]
- Desrosiers, N.; Morin, R.; Jutras, J. Atlas Des Micromammifères Du Québec; Société de La Faune et Des Parcs Du Québec, Direction Du Développement de La Faune: Québec City, QC, Canada, 2002. [Google Scholar]
- Shaw, M.T.; Keesing, F.; McGrail, R.; Ostfeld, R.S. Factors Influencing the Distribution of Larval Blacklegged Ticks on Rodent Hosts. Am. J. Trop. Med. Hyg. 2003, 68, 447–452. [Google Scholar] [CrossRef]
- Eisen, R.J.; Piesman, J.; Zielinski-Gutierrez, E.; Eisen, L. What Do We Need to Know About Disease Ecology to Prevent Lyme Disease in the Northeastern United States? J. Med. Entomol. 2012, 49, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Steere, A.C.; Malawista, S.E.; Snydman, D.R.; Shope, R.E.; Andiman, W.A.; Ross, M.R.; Steele, F.M. Lyme Arthritis: An Epidemic of Oligoarticular Arthritis in Children and Adults in Three Connecticut Communities. Arthritis Rheum. 1977, 20, 7–17. [Google Scholar] [CrossRef]
- Steere, A.C.; Coburn, J.; Glickstein, L. The Emergence of Lyme Disease. J. Clin. Investig. 2004, 113, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Embers, M.E.; Barthold, S.W.; Borda, J.T.; Bowers, L.; Doyle, L.; Hodzic, E.; Jacobs, M.B.; Hasenkampf, N.R.; Martin, D.S.; Narasimhan, S.; et al. Persistence of Borrelia burgdorferi in Rhesus Macaques Following Antibiotic Treatment of Disseminated Infection. PLoS ONE 2012, 7, e29914. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Factsheet about Borreliosis. 2016. Available online: https://www.ecdc.europa.eu/en/borreliosis/facts/factsheet (accessed on 22 April 2025).
- Lindgren, E.; Jaenson, G.T.T. Lyme Borreliosis in Europe: Influences of Climate and Climate Change, Epidemiology, Ecology and Adaptation Measures; WHO: Geneva, Switzerland, 2006; Available online: https://iris.who.int/bitstream/handle/10665/107800/E89522.pdf?sequence=1&isAllowed=y (accessed on 22 April 2025).
- Kugeler, K.J.; Schwartz, A.M.; Delorey, M.J.; Mead, P.S.; Hinckley, A.F. Estimating the Frequency of Lyme Disease Diagnoses, United States, 2010-2018. Emerg. Infect. Dis. 2021, 27, 616–619. [Google Scholar] [CrossRef]
- Stanek, G.; Wormser, G.P.; Gray, J.; Strle, F. Lyme Borreliosis. Lancet 2012, 379, 461–473. [Google Scholar] [CrossRef]
- Halperin, J.J. Diagnosis and Management of Lyme Neuroborreliosis. Expert Rev. Anti-Infect. Ther. 2018, 16, 5–11. [Google Scholar] [CrossRef]
- Cayol, C.; Giermek, A.; Gomez-Chamorro, A.; Hytönen, J.; Kallio, E.R.; Mappes, T.; Salo, J.; Voordouw, M.J.; Koskela, E. Borrelia afzelii Alters Reproductive Success in a Rodent Host. Proc. Biol. Sci. 2018, 285, 20181056. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Brisson, D.; Oggenfuss, K.; Devine, J.; Levy, M.Z.; Keesing, F. Effects of a Zoonotic Pathogen, Borrelia burgdorferi, on the Behavior of a Key Reservoir Host. Ecol. Evol. 2018, 8, 4074–4083. [Google Scholar] [CrossRef] [PubMed]
- Voordouw, M.J.; Lachish, S.; Dolan, M.C. The Lyme Disease Pathogen Has No Effect on the Survival of Its Rodent Reservoir Host. PLoS ONE 2015, 10, e0118265. [Google Scholar] [CrossRef]
- Appel, M.J.; Allan, S.; Jacobson, R.H.; Lauderdale, T.L.; Chang, Y.F.; Shin, S.J.; Thomford, J.W.; Todhunter, R.J.; Summers, B.A. Experimental Lyme Disease in Dogs Produces Arthritis and Persistent Infection. J. Infect. Dis. 1993, 167, 651–664. [Google Scholar] [CrossRef]
- Magnarelli, L.A.; Anderson, J.F.; Shaw, E.; Post, J.E.; Palka, F.C. Borreliosis in Equids in Northeastern United States. Am. J. Vet. Res. 1988, 49, 359–362. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Testing and Diagnosis for Lyme Disease. 2024. Available online: https://www.cdc.gov/lyme/diagnosis-testing/index.html (accessed on 22 April 2025).
- Wormser, G.P.; Dattwyler, R.J.; Shapiro, E.D.; Dumler, J.S.; O’Connell, S.; Radolf, J.D.; Nadelman, R.B. Single-Dose Prophylaxis against Lyme Disease. Lancet Infect. Dis. 2007, 7, 371–373. [Google Scholar] [CrossRef]
- Wormser, G.P. Early Lyme Disease. N. Engl. J. Med. 2006, 354, 2794–2801. [Google Scholar] [CrossRef]
- White, A.; Gaff, H. Review: Application of Tick Control Technologies for Blacklegged, Lone Star, and American Dog Ticks. J. Integr. Pest. Manag. 2018, 9. [Google Scholar] [CrossRef]
- Schuijt, T.J.; Hovius, J.W.; Van Der Poll, T.; Van Dam, A.P.; Fikrig, E. Lyme Borreliosis Vaccination: The Facts, the Challenge, the Future. Trends Parasitol. 2011, 27, 40–47. [Google Scholar] [CrossRef]
- Comstedt, P.; Hanner, M.; Schüler, W.; Meinke, A.; Lundberg, U. Design and Development of a Novel Vaccine for Protection against Lyme Borreliosis. PLoS ONE 2014, 9, e113294. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.-E.; et al. Update on Tick-Borne Rickettsioses around the World: A Geographic Approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [PubMed]
- Abdad, M.Y.; Abou Abdallah, R.; Fournier, P.-E.; Stenos, J.; Vasoo, S. A Concise Review of the Epidemiology and Diagnostics of Rickettsioses: Rickettsia and Orientia spp. J. Clin. Microbiol. 2018, 56, e01728-17. [Google Scholar] [CrossRef]
- Adem, P.V. Emerging and Re-Emerging Rickettsial Infections. Semin. Diagn. Pathol. 2019, 36, 146–151. [Google Scholar] [CrossRef]
- Raoult, D.; Roux, V. Rickettsioses as Paradigms of New or Emerging Infectious Diseases. Clin. Microbiol. Rev. 1997, 10, 694–719. [Google Scholar] [CrossRef] [PubMed]
- Lippi, C.A.; Ryan, S.J.; White, A.L.; Gaff, H.D.; Carlson, C.J. Trends and Opportunities in Tick-Borne Disease Geography. J. Med. Entomol. 2021, 58, 2021–2029. [Google Scholar] [CrossRef]
- Portillo, A.; Santibáñez, S.; García-Álvarez, L.; Palomar, A.M.; Oteo, J.A. Rickettsioses in Europe. Microbes Infect. 2015, 17, 834–838. [Google Scholar] [CrossRef]
- Gillespie, J.J.; Williams, K.; Shukla, M.; Snyder, E.E.; Nordberg, E.K.; Ceraul, S.M.; Dharmanolla, C.; Rainey, D.; Soneja, J.; Shallom, J.M.; et al. Rickettsia Phylogenomics: Unwinding the Intricacies of Obligate Intracellular Life. PLoS ONE 2008, 3, e2018. [Google Scholar] [CrossRef]
- McCormick, D.W.; Nicholson, W.L. Rickettsial Diseases. In CDC Yellow Book; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Zanetti, G.; Francioli, P.; Tagan, D.; Paddock, C.D.; Zaki, S.R. Imported Epidemic Typhus. Lancet 1998, 352, 1709. [Google Scholar] [CrossRef]
- Bernabeu-Wittel, M.; Pachón, J.; Alarcón, A.; López-Cortés, L.F.; Viciana, P.; Jiménez-Mejías, M.E.; Villanueva, J.L.; Torronteras, R.; Caballero-Granado, F.J. Murine Typhus as a Common Cause of Fever of Intermediate Duration: A 17-Year Study in the South of Spain. Arch. Intern. Med. 1999, 159, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Socolovschi, C.; Bitam, I.; Raoult, D.; Parola, P. Transmission of Rickettsia conorii conorii in Naturally Infected Rhipicephalus sanguineus. Clin. Microbiol. Infect. 2009, 15, 319–321. [Google Scholar] [CrossRef]
- Sexton, D.J.; Walker, D.H. Spotted Fever Group Rickettsioses. In Tropical Infectious Diseases: Principles, Pathogens and Practice; Elsevier: Amsterdam, The Netherlands, 2011; pp. 323–328. ISBN 978-0-7020-3935-5. [Google Scholar]
- Biggs, H.M.; Behravesh, C.B.; Bradley, K.K.; Dahlgren, F.S.; Drexler, N.A.; Dumler, J.S.; Folk, S.M.; Kato, C.Y.; Lash, R.R.; Levin, M.L.; et al. Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky Mountain Spotted Fever and Other Spotted Fever Group Rickettsioses, Ehrlichioses, and Anaplasmosis—United States: A Practical Guide for Health Care and Public Health Professionals. MMWR Recomm. Rep. 2016, 65, 1–44. [Google Scholar] [CrossRef]
- Fournier, P.-E.; Fujita, H.; Takada, N.; Raoult, D. Genetic Identification of Rickettsiae Isolated from Ticks in Japan. J. Clin. Microbiol. 2002, 40, 2176–2181. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, P.-H.; Du, J.; Yang, Z.-D.; Cui, N.; Xing, B.; Zhang, X.-A.; Liu, W. Rickettsia japonica Infections in Humans, Xinyang, China, 2014–2017. Emerg. Infect. Dis. 2019, 25, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Pillay, A.; Manyangadze, T.; Mukaratirwa, S. Prevalence of Rickettsia africae in Tick Vectors Collected from Mammalian Hosts in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. Ticks Tick-Borne Dis. 2022, 13, 101960. [Google Scholar] [CrossRef] [PubMed]
- Radulovic, S.; Feng, H.M.; Morovic, M.; Djelalija, B.; Popov, V.; Crocquet-Valdes, P.; Walker, D.H. Isolation of Rickettsia akari from a Patient in a Region Where Mediterranean Spotted Fever Is Endemic. Clin. Infect. Dis. 1996, 22, 216–220. [Google Scholar] [CrossRef]
- Renvoisé, A.; van’t Wout, J.W.; van der Schroeff, J.-G.; Beersma, M.F.; Raoult, D. A Case of Rickettsialpox in Northern Europe. Int. J. Infect. Dis. 2012, 16, e221–e222. [Google Scholar] [CrossRef]
- Blanton, L.S. The Rickettsioses: A Practical Update. Infect. Dis. Clin. N. Am. 2019, 33, 213–229. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Epidemiology and Statistics. Rocky Mountain Spotted Fever (RMSF). 2020. Available online: https://www.cdc.gov/rocky-mountain-spotted-fever/about/index.html (accessed on 22 April 2025).
- Botelho-Nevers, E.; Rovery, C.; Richet, H.; Raoult, D. Analysis of Risk Factors for Malignant Mediterranean Spotted Fever Indicates That Fluoroquinolone Treatment Has a Deleterious Effect. J. Antimicrob. Chemother. 2011, 66, 1821–1830. [Google Scholar] [CrossRef]
- Silva-Ramos, C.R.; Faccini-Martínez, Á.A. Clinical, Epidemiological, and Laboratory Features of Rickettsia africae Infection, African Tick-Bite Fever: A Systematic Review. Infez. Med. 2021, 29, 366–377. [Google Scholar] [CrossRef]
- Bayliss, D.B.; Morris, A.K.; Horta, M.C.; Labruna, M.B.; Radecki, S.V.; Hawley, J.R.; Brewer, M.M.; Lappin, M.R. Prevalence of Rickettsia Species Antibodies and Rickettsia Species DNA in the Blood of Cats with and without Fever. J. Feline Med. Surg. 2009, 11, 266–270. [Google Scholar] [CrossRef]
- Piranda, E.M.; Faccini, J.L.H.; Pinter, A.; Saito, T.B.; Pacheco, R.C.; Hagiwara, M.K.; Labruna, M.B. Experimental Infection of Dogs with a Brazilian Strain of Rickettsia rickettsii: Clinical and Laboratory Findings. Mem. Inst. Oswaldo Cruz 2008, 103, 696–701. [Google Scholar] [CrossRef]
- Breitschwerdt, E.B.; Meuten, D.J.; Walker, D.H.; Levy, M.; Kennedy, K.; King, M.; Curtis, B. Canine Rocky Mountain Spotted Fever: A Kennel Epizootic. Am. J. Vet. Res. 1985, 46, 2124–2128. [Google Scholar] [CrossRef]
- Levin, M.L.; Killmaster, L.F.; Zemtsova, G.E.; Ritter, J.M.; Langham, G. Clinical Presentation, Convalescence, and Relapse of Rocky Mountain Spotted Fever in Dogs Experimentally Infected via Tick Bite. PLoS ONE 2014, 9, e115105. [Google Scholar] [CrossRef]
- Maurin, M.; Raoult, D. In Vitro Susceptibilities of Spotted Fever Group Rickettsiae and Coxiella burnetii to Clarithromycin. Antimicrob. Agents Chemother. 1993, 37, 2633–2637. [Google Scholar] [CrossRef]
- Ives, T.J.; Manzewitsch, P.; Regnery, R.L.; Butts, J.D.; Kebede, M. In Vitro Susceptibilities of Bartonella henselae, B. quintana, B. elizabethae, Rickettsia rickettsii, R. conorii, R. akari, and R. prowazekii to Macrolide Antibiotics as Determined by Immunofluorescent-Antibody Analysis of Infected Vero Cell Monolayers. Antimicrob. Agents Chemother. 1997, 41, 578–582. [Google Scholar] [CrossRef]
- Rolain, J.M.; Maurin, M.; Vestris, G.; Raoult, D. In Vitro Susceptibilities of 27 Rickettsiae to 13 Antimicrobials. Antimicrob. Agents Chemother. 1998, 42, 1537–1541. [Google Scholar] [CrossRef]
- Nakamura, T.; Takagaki, K.; Matsubara, Y.; Kikuchi, K. Predictive Values of Clinical Parameters for Severe Japanese Spotted Fever. J. Infect. Chemother. 2011, 17, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.H.; Raoult, D. Typhus Group Rickettsioses. In Tropical Infectious Diseases: Principles, Pathogens, and Practice; Guerrant, R.L., Walker, D.H., Weller, P.F., Eds.; Elsevier: New York, NY, USA, 2011; pp. 329–334. [Google Scholar]
- Huys, J.; Kayhigi, J.; Freyens, P.; Berghe, G.V. Single-Dose Treatment of Epidemic Typhus with Doxycyline. Chemotherapy 1973, 18, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Paddock, C.D.; Raoult, D. Tick-Borne Rickettsioses around the World: Emerging Diseases Challenging Old Concepts. Clin. Microbiol. Rev. 2005, 18, 719–756. [Google Scholar] [CrossRef]
- Iyakaremye, V. Epidemiology and Tropical Diseases. Int. J. Emerg. Trends Sci. Technol. 2016. [Google Scholar] [CrossRef]
- Weigl, R. Immunization against Typhus Fever in Poland during World War II. Med. Dent. Bull. 1947, 19, 106. [Google Scholar] [PubMed]
- Walker, D.H. The Realities of Biodefense Vaccines against Rickettsia. Vaccine 2009, 27, D52–D55. [Google Scholar] [CrossRef]
- Zinsser, H.; Castaneda, M.R. Studies on Typhus Fever: Vii. Active Immunization against Mexican Typhus Fever with Dead Virus. J. Exp. Med. 1931, 53, 493–497. [Google Scholar] [CrossRef][Green Version]
- Kenyon, R.H.; Pedersen, C.E. Preparation of Rocky Mountain Spotted Fever Vaccine Suitable for Human Immunization. J. Clin. Microbiol. 1975, 1, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, R.H.; Sammons, L.S.; Pedersen, C.E. Comparison of Three Rocky Mountain Spotted Fever Vaccines. J. Clin. Microbiol. 1975, 2, 300–304. [Google Scholar] [CrossRef]
- Gonder, J.C.; Kenyon, R.H.; Pedersen, C.E. Evaluation of a Killed Rocky Mountain Spotted Fever Vaccine in Cynomolgus Monkeys. J. Clin. Microbiol. 1979, 10, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Maugh, T.H. Rickettsiae: A New Vaccine for Rocky Mountain Spotted Fever. Science 1978, 201, 604. [Google Scholar] [CrossRef] [PubMed]
- Clements, M.L.; Wisseman, C.L.; Woodward, T.E.; Fiset, P.; Dumler, J.S.; McNamee, W.; Black, R.E.; Rooney, J.; Hughes, T.P.; Levine, M.M. Reactogenicity, Immunogenicity, and Efficacy of a Chick Embryo Cell-Derived Vaccine for Rocky Mountain Spotted Fever. J. Infect. Dis. 1983, 148, 922–930. [Google Scholar] [CrossRef]
- Kawamura, R.; Kasahar, S.; Toyama, T.; Nishinarita, F.; Tsubaki, S. On the Prevention of Tsutsugamushi. Results of Preventive Inoculations for People in the Endemic Region, and Laboratory Tests with the Pescadores Strain. Trop. Dis. Bull. 1940, 37, 269–270. [Google Scholar]
- Prins, C.; Sreekumar, D.; Sejian, V. Climate Change and Wildlife Biodiversity: Impact and Mitigation Strategies. Arch. Life Sci. Res. 2025, 1, 6–22. [Google Scholar] [CrossRef]
Transmission | Form of the Disease | Etiology | Vector | Animal Host(s) | Reference |
---|---|---|---|---|---|
Lice | Epidemic typhus | Rickettsia prowazekii | Pediculus humanus corporis | Humans flying squirrels | [228] |
Endemic typhus or murine typhus | Rickettsia typhi | X. cheopis | Rodents | [229] | |
Ticks | Tick-Borne Lymphadenopathy, Dermacentor-Borne-Necrosis-Erythema-Lymphadenopathy, Scalp Eschar Neck Lymphadenopathy, Mediterranean spotted fever (MSF) | Rickettsia slovaca, Candidatus Rickettsia rioja, Rickettsia raoultii, Rickettsia conorii | Dermacentor marginatus, Dermacentor reticulatus, Rhipicephalus sanguineus | Dogs, rodents | [230] |
Rocky Mountain spotted fever (RMSF), Brazilian spotted fever (BSF) | Rickettsia rickettsii | Dermacentor spp., Rhipicephalus sanguineus, Amblyoma spp. | Rodents | [231,232] | |
Japanese spotted fever (JSF) | Rickettsia japonica | Dermacentor taiwanensis, | Rodents | [233,234] | |
Haemaphysalis flava, Ixodes spp. | |||||
African tick-bite fever (ATBF) | Rickettsia africae | Amblyomma spp., Rhipicephalus spp., Hyalomma | Domestic and wild ruminants | [235] | |
Mites | Smallpox (rickettsialpox) | Rickettsia akari | Liponyssoides sanguineus | House mice, wild rodents | [236,237] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basiouni, S.; Rodriguez-Morales, A.J.; Shehata, A.A.; Duarte, P.M. Silent Carriers: The Role of Rodents in the Emergence of Zoonotic Bacterial Threats. Pathogens 2025, 14, 928. https://doi.org/10.3390/pathogens14090928
Basiouni S, Rodriguez-Morales AJ, Shehata AA, Duarte PM. Silent Carriers: The Role of Rodents in the Emergence of Zoonotic Bacterial Threats. Pathogens. 2025; 14(9):928. https://doi.org/10.3390/pathogens14090928
Chicago/Turabian StyleBasiouni, Shereen, Alfonso J. Rodriguez-Morales, Awad A. Shehata, and Phelipe Magalhães Duarte. 2025. "Silent Carriers: The Role of Rodents in the Emergence of Zoonotic Bacterial Threats" Pathogens 14, no. 9: 928. https://doi.org/10.3390/pathogens14090928
APA StyleBasiouni, S., Rodriguez-Morales, A. J., Shehata, A. A., & Duarte, P. M. (2025). Silent Carriers: The Role of Rodents in the Emergence of Zoonotic Bacterial Threats. Pathogens, 14(9), 928. https://doi.org/10.3390/pathogens14090928