Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (148)

Search Parameters:
Keywords = rock mass block

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 37848 KB  
Article
Stability and Dynamics Analysis of Rainfall-Induced Rock Mass Blocks in the Three Gorges Reservoir Area: A Multidimensional Approach for the Bijiashan WD1 Cliff Belt
by Hao Zhou, Longgang Chen, Yigen Qin, Zhihua Zhang, Changming Yang and Jin Xie
Water 2026, 18(2), 257; https://doi.org/10.3390/w18020257 (registering DOI) - 18 Jan 2026
Abstract
Accurately assessing collapse risks of high-elevation, concealed rock mass blocks within the steep cliffs of Bijiashan, Three Gorges Reservoir Area, is challenging. This study employed a multidimensional approach—integrating airborne Light Detection and Ranging (LiDAR), the transient electromagnetic method (TEM), close-range photogrammetry, horizontal drilling, [...] Read more.
Accurately assessing collapse risks of high-elevation, concealed rock mass blocks within the steep cliffs of Bijiashan, Three Gorges Reservoir Area, is challenging. This study employed a multidimensional approach—integrating airborne Light Detection and Ranging (LiDAR), the transient electromagnetic method (TEM), close-range photogrammetry, horizontal drilling, and borehole optical imaging—to characterize the rock mass structure of the WD1 cliff belt and delineate 52 individual blocks. Stability analysis incorporated stereographic projection for macro-scale assessment and employed mechanical models specific to three primary failure modes (toppling, sliding, falling). Finite element strength reduction quantified the stress–strain response of a representative block under natural and rainstorm conditions. Particle Flow Code (PFC) simulated dynamic instability of the exceptionally large block W1-37. Results indicate the WD1 rock mass is highly fractured, with base sections prone to weakness. Toppling failure dominates (90.4%). Under rainstorm conditions, the average Factor of Safety (FOS) decreased by 14.7%, and 73.1% of the blocks that were stable under natural conditions were destabilized—specifically transitioning to marginally stable or substable states—often triggering chain-reaction instability characterized by “crack propagation—base buckling”. W1-37 exhibited staged failure under rainstorm: “strain localization at fissure tips—penetration of basal cracks—overturning of the upper rock mass”. Its frontal rock reached a peak sliding velocity of 15.17 m/s, indicative of base-breaking toppling. The integrated “multi-technology survey—multi-method evaluation—multi-scale simulation” framework provides a quantitative basis for risk assessment of rock mass disasters in the Three Gorges Reservoir Area and offers a technical paradigm for similar high-steep canyon regions. Full article
30 pages, 15497 KB  
Article
Geological and Social Factors Related to Disasters Caused by Complex Mass Movements: The Quilloturo Landslide in Ecuador (2024)
by Liliana Troncoso, Francisco Javier Torrijo Echarri, Luis Pilatasig, Elías Ibadango, Alex Mateus, Olegario Alonso-Pandavenes, Adans Bermeo, Francisco Javier Robayo and Louis Jost
GeoHazards 2026, 7(1), 4; https://doi.org/10.3390/geohazards7010004 - 1 Jan 2026
Viewed by 354
Abstract
Complex landslides have characteristics and parameters that are difficult to analyze. The landslide on 16 June 2024 in the rural community of Quilloturo (Tungurahua, Ecuador) caused severe damage (14 deaths, 24 injuries, and hundreds of affected families) related to the area’s geological, social, [...] Read more.
Complex landslides have characteristics and parameters that are difficult to analyze. The landslide on 16 June 2024 in the rural community of Quilloturo (Tungurahua, Ecuador) caused severe damage (14 deaths, 24 injuries, and hundreds of affected families) related to the area’s geological, social, and anthropogenic conditions. Its location in the eastern foothills of Ecuador’s Cordillera Real exacerbated the effects of a landslide involving various processes (mud and debris flows, landslides, and rock falls). This event was preceded by intense rainfall lasting more than 10 h, which accumulated and caused natural damming of the streams prior to the event. The lithology of the investigated area includes deformed metamorphic and intrusive rocks overlain by superficial clayey colluvial deposits. The relationship between the geological structures found, such as fractures, joints, schistosity, and shear, favored the formation of blocks within the flow, making mass movement more complex. Geomorphologically, the area features a relief with steep slopes, where ancient landslides or material movements, composed of these colluvial deposits, have already occurred. At the foot of these steep slopes, on plains less than 300 m wide and bordered by the Pastaza River, there are human settlements with less than 60 years of emplacement and a complex history of territorial occupation, characterized by a lack of planning and organization. The memory of the inhabitants identified mass movements that have occurred since the mid-20th century, with the highest frequency of occurrence recorded in the last decade of the present century (2018, 2022, and 2024). Furthermore, it was possible to identify several factors within the knowledge of the inhabitants that can be considered premonitory of a mass movement, specifically a flood, and that must be incorporated as critical elements in decision-making, both individual and collective, for the evacuation of the area. Full article
Show Figures

Figure 1

18 pages, 13431 KB  
Article
Research on Synergistic Fracturing Technology for Lateral Multi-Layer Thick Hard Rock Stratum in Fully Mechanized Faces with Large Mining Height Based on the Triangular Slip Zone Theory
by Hui Gao, Chenlong Qian, Xufeng Wang, Chongpeng Ren and Yuanman Xie
Appl. Sci. 2026, 16(1), 130; https://doi.org/10.3390/app16010130 - 22 Dec 2025
Viewed by 167
Abstract
In response to ground pressure problems such as an abnormal increase in working face support resistance and severe roadway floor heave induced by the lateral composite structure of the multi-layer thick and hard roof in the 11,223 working face of Xiaojihan Coal Mine, [...] Read more.
In response to ground pressure problems such as an abnormal increase in working face support resistance and severe roadway floor heave induced by the lateral composite structure of the multi-layer thick and hard roof in the 11,223 working face of Xiaojihan Coal Mine, based on the triangle area slip theory, this study reveals that the lateral triangle area forms a composite structure of “cantilever beam + masonry beam”. The stress transfer and unloading mechanism of the high- and low-position thick and hard rock stratum fracturing was clarified. A technical scheme is proposed and implemented to weaken the high- and low-position thick and hard rock strata through horizontal Long Directional Borehole synergistic fracturing and optimize stress transfer. The results show that (1) the lateral overlying rock forms a triangular slip area under the clamping of the cantilever and masonry beam structures. This composite structure is the main reason for the increase in the support resistance at the end of the working face and the stress concentration of the roadway surrounding rock. (2) The influence law that the load of the triangular slip area is mainly influenced by the length of the broken block, and the breaking angle was clarified. The distribution characteristics of the load in the lateral triangle area under the fracturing of thick and hard rock strata at different horizons are mastered. When the length of the key block is reduced by 40%, the supporting force F1 of the rock mass below the broken block on it is reduced by 62.5%, and the supporting force F2 and the frictional force F3 of the end part on the broken area of the triangle area are reduced by 34.6%. (3) The fracturing of high- and low-position thick and hard rock strata can collaboratively weaken the stress accumulation at high and low positions. Fracturing the low-position thick and hard rock strata can cut off the low-position “cantilever beam” structure, and fracturing the high-position thick and hard rock strata at the same time can transfer the load of the “masonry beam”. Through simulation, it is seen that the stress peaks at the end of the working face and the roadway surrounding rock during synergistic fracturing are, respectively, reduced by 12.2% and 28.9%. (4) An industrial test of directional drilling hydraulic fracturing of lateral thick and hard rock strata is carried out, achieving the regulation effect that the average value of the support resistance at the end of the cycle is reduced from 27.2 MPa to 22.7 MPa, and the floor heave amount of the reused roadway is reduced by 62.3%. The research results can provide a reference for the advanced treatment of the strong ground pressure area of the multi-layer thick and hard roof. Full article
Show Figures

Figure 1

28 pages, 3073 KB  
Article
Factors Influencing the Seismic Collapse of Stratified Steep Cliffs Based on Analytic Hierarchy Process (AHP)
by Naman Maimaiti, Ruiming Liu, Peng Zhang and Jili Qu
Appl. Sci. 2025, 15(23), 12485; https://doi.org/10.3390/app152312485 - 25 Nov 2025
Viewed by 304
Abstract
Rockfalls from stratified unstable rock masses on cliffs present a significant geological hazard. This study investigates their seismic failure mechanisms and quantifies the influence of key controlling factors through an integrated approach of shaking table tests and UDEC numerical simulations. The introduction of [...] Read more.
Rockfalls from stratified unstable rock masses on cliffs present a significant geological hazard. This study investigates their seismic failure mechanisms and quantifies the influence of key controlling factors through an integrated approach of shaking table tests and UDEC numerical simulations. The introduction of a displacement angle precisely defined failure initiation, with tests revealing that the collapse angle exhibited a strong positive correlation with block size. Numerical simulations on seven factors showed that the collapse displacement angle ranged from 9° to 21°, primarily controlled by joint spacing. The Analytic Hierarchy Process (AHP) quantified the factor priorities, identifying the degree of rock mass fragmentation as the most influential factor with a weight of 0.278, followed by seismic amplitude (0.222) and cliff slope angle (0.167). The results provide a quantitative basis for designing early-warning systems using displacement angle thresholds and prioritize targeted mitigation strategies for the most critical factors in seismic-prone regions. Full article
(This article belongs to the Special Issue Novel Insights into Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

29 pages, 5586 KB  
Article
Differences in the Correlation of Rock Mass–Structural Plane–Structural Block Shear Strength Parameters Between Sandstones and Mudstones in Continuous Strata
by Congyan Ran, Jin Liao, Jinshan Hu, Xiaodong Wang, Tao Xu, Enze Bao, Zhen Liu and Cuiying Zhou
Appl. Sci. 2025, 15(22), 11885; https://doi.org/10.3390/app152211885 - 7 Nov 2025
Viewed by 438
Abstract
In continuous strata engineering, such as foundations and underground caverns, the differences in shear strength between sandstone and mudstone rock mass–structural plane–structural block systems critically affect design and safety. However, the underlying mechanisms and controlling factors of these shear strength parameters remain poorly [...] Read more.
In continuous strata engineering, such as foundations and underground caverns, the differences in shear strength between sandstone and mudstone rock mass–structural plane–structural block systems critically affect design and safety. However, the underlying mechanisms and controlling factors of these shear strength parameters remain poorly understood, leading to challenges in optimizing engineering strategies. This study investigates the differences in shear strength parameter correlations between sandstone and mudstone and develops an intelligent model for predicting rock mass displacement. We constructed multi-parameter correlation models using laboratory and field shear test data combined with a random forest algorithm. The results show that the model achieved high prediction accuracy (R2 = 0.997–0.998, RMSE = 1.649–3.898, MAE = 1.110–2.991). For instance, the peak shear strength of sandstone structural planes was approximately 54% higher than that of mudstone. Sensitivity analysis revealed that for sandstone, structural plane shear stress (27.80%) and structural block stress (25.50%) are the most sensitive factors, while for mudstone, structural plane shear displacement (35.20%) and structural block strain (34.20%) dominate. These correlations are model-predicted based on empirical data from shear tests. These findings provide a mechanistic understanding of plastic instability in sandstone and slip-strain-induced fissure extension in mudstone, and they can guide shear strength prediction and stability assessment in mixed sandstone–mudstone strata. The study contributes to the field by offering a quantitative basis for stratified adaptive design in continuous strata engineering, enhancing the efficiency and safety of foundation treatment and cavern support. Full article
Show Figures

Figure 1

20 pages, 6683 KB  
Article
Numerical Simulation Study on Shear Mechanical Properties of Unfilled Three-Dimensional Rough Joint Surfaces Under Constant Normal Stiffness Boundary Conditions
by Xinmu Xu, Kui Zhao, Liangfeng Xiong, Peng Zeng, Cong Gong and Yifan Chen
Appl. Sci. 2025, 15(19), 10827; https://doi.org/10.3390/app151910827 - 9 Oct 2025
Viewed by 474
Abstract
When jointed rock masses are in a high-stress environment, the roughness of the joints is the key factor controlling their shear strength. Their loading behavior is also different from the constant normal load (CNL) conditions controlled in conventional laboratories; rather, they follow the [...] Read more.
When jointed rock masses are in a high-stress environment, the roughness of the joints is the key factor controlling their shear strength. Their loading behavior is also different from the constant normal load (CNL) conditions controlled in conventional laboratories; rather, they follow the constant normal stiffness (CNS) conditions. To investigate the effects of normal stiffness and roughness on the shear mechanical properties of unfilled joint surfaces, shear tests were simulated using PFC3D (5.0) software under CNS conditions. The effects of normal stiffness of 0 (constant normal stress of 4 MPa), 0.028 GPa/m (low normal stiffness), 0.28 GPa/m (medium normal stiffness), and 2.8 GPa/m (high normal stiffness), and joint roughness coefficients (JRC) of 2~4 (low roughness), 10~12 (medium roughness), and 18~20 (high roughness) on the shear stress, normal stress, normal deformation, surface resistance index, and block failure characteristics of the joint surface were obtained. The results indicate that for different combinations of normal stiffness—JRC—the shear simulation process primarily exhibits three deformation stages: linear stage, yield stage, and post-peak stage. Shear stress increases initially and then decreases as shear displacement increases. When normal stiffness is no less than 0.28 GPa/m, both normal stress and JRC increase gradually with increasing JRC and normal stiffness. When the normal stiffness is no greater than 0.028 GPa/m, the normal stress shows no significant change. The normal displacement changes from “shear contraction” to “shear expansion” with increasing shear displacement and from positive to negative values while the displacement gradually increases; the maximum normal displacement decreases with increasing normal stiffness and increases with increasing JRC. The peak SRI value increases with increasing JRC and decreases with increasing normal stiffness. As normal stiffness increases, the number of tensile cracks for JRC 2~4 first decreases and then increases, while the number of shear cracks gradually increases; for JRC 10~12 and 18~20, both the number of shear cracks and tensile cracks increase with increasing normal stiffness. This paper simulates the actual mechanical environment of deep underground joints to expound the influence of normal stiffness and joint roughness on the stability of deep rock masses. The research results can provide certain theoretical references for predicting the stability of deep surrounding rocks and the stress of support structures. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 13644 KB  
Article
Rock Surface Crack Recognition Based on Improved Mask R-CNN with CBAM and BiFPN
by Yu Hu, Naifu Deng, Fan Ye, Qinglong Zhang and Yuchen Yan
Buildings 2025, 15(19), 3516; https://doi.org/10.3390/buildings15193516 - 29 Sep 2025
Viewed by 887
Abstract
To address the challenges of multi-scale distribution, low contrast and background interference in rock crack identification, this paper proposes an improved Mask R-CNN model (CBAM-BiFPN-Mask R-CNN) that integrates the convolutional block attention mechanism (CBAM) module and the bidirectional feature pyramid network (BiFPN) module. [...] Read more.
To address the challenges of multi-scale distribution, low contrast and background interference in rock crack identification, this paper proposes an improved Mask R-CNN model (CBAM-BiFPN-Mask R-CNN) that integrates the convolutional block attention mechanism (CBAM) module and the bidirectional feature pyramid network (BiFPN) module. A dataset of 1028 rock surface crack images was constructed. The robustness of the model was improved by dynamically combining Gaussian blurring, noise overlay, and color adjustment to enhance data augmentation strategies. The model embeds the CBAM module after the residual block of the ResNet50 backbone network, strengthens the crack-related feature response through channel attention, and uses spatial attention to focus on the spatial distribution of cracks; at the same time, it replaces the traditional FPN with BiFPN, realizes the adaptive fusion of cross-scale features through learnable weights, and optimizes multi-scale crack feature extraction. Experimental results show that the improved model significantly improves the crack recognition effect in complex rock mass scenarios. The mAP index, precision and recall rate are improved by 8.36%, 9.1% and 12.7%, respectively, compared with the baseline model. This research provides an effective solution for rock crack detection in complex geological environments, especially the missed detection of small cracks and complex backgrounds. Full article
(This article belongs to the Special Issue Recent Scientific Developments in Structural Damage Identification)
Show Figures

Figure 1

23 pages, 4535 KB  
Article
Effective Elastic Moduli at Reservoir Scale: A Case Study of the Soultz-sous-Forêts Fractured Reservoir
by Dariush Javani, Jean Schmittbuhl and François H. Cornet
Geosciences 2025, 15(10), 371; https://doi.org/10.3390/geosciences15100371 - 24 Sep 2025
Cited by 1 | Viewed by 716
Abstract
The presence of discontinuities in fractured reservoirs, their mechanical and physical characteristics, and fluid flow through them are important factors influencing their effective large-scale properties. In this paper, the variation of elastic moduli in a block measuring 100 × 100 × 100 m [...] Read more.
The presence of discontinuities in fractured reservoirs, their mechanical and physical characteristics, and fluid flow through them are important factors influencing their effective large-scale properties. In this paper, the variation of elastic moduli in a block measuring 100 × 100 × 100 m3 that hosts a discrete fracture network (DFN) is evaluated using the discrete element method (DEM). Fractures are characterised by (1) constant, (2) interlocked, and (3) mismatched stiffness properties. First, three uniaxial verification tests were performed on a block (1 × 1 × 2 m3) containing a circular finite fracture (diameter = 0.5 m) to validate the developed numerical algorithm that implements the three fracture stiffnesses mentioned above. The validated algorithms were generalised to fractures in a DFN embedded in a 100 × 100 × 100 m3 rock block that reproduces in situ conditions at various depths (4.7 km, 2.3 km, and 0.5 km) of the Soultz-sous-Forêts geothermal site. The effective elastic moduli of this large-scale rock mass were then numerically evaluated through a triaxial loading scenario by comparing to the numerically evaluated stress field using the DFN, with the stress field computed using an effective homogeneous elastic block. Based on the results obtained, we evaluate the influence of fracture interaction and stress perturbation around fractures on the effective elastic moduli and subsequently on the large-scale P-wave velocity. The numerical results differ from the elastic moduli of the rock matrix at higher fracture densities, unlike the other methods. Additionally, the effect of nonlinear fracture stiffness is reduced by increasing the depth or stress level in both the numerical and semi-analytical methods. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

22 pages, 4004 KB  
Article
Numerical Modelling of Rock Fragmentation in Landslide Propagation: A Test Case
by Claudia Zito, Massimo Mangifesta, Mirko Francioni, Luigi Guerriero, Diego Di Martire, Domenico Calcaterra, Corrado Cencetti, Antonio Pasculli and Nicola Sciarra
Geosciences 2025, 15(9), 354; https://doi.org/10.3390/geosciences15090354 - 7 Sep 2025
Cited by 1 | Viewed by 1010
Abstract
Landslides and rockfalls can negatively impact human activities and cause radical changes to the surrounding environment. For example, they can destroy entire buildings and roadway infrastructure, block waterways and create sudden dams, resulting in upstream flooding and increased flood risk downstream. In extreme [...] Read more.
Landslides and rockfalls can negatively impact human activities and cause radical changes to the surrounding environment. For example, they can destroy entire buildings and roadway infrastructure, block waterways and create sudden dams, resulting in upstream flooding and increased flood risk downstream. In extreme cases, they can even cause loss of life. External factors such as weathering, vegetation and mechanical stress alterations play a decisive role in their evolution. These actions can reduce strength, which can have an adverse impact on the slope’s ability to withstand failure. For rockfalls, this process also affects fragmentation, creating variations in the size, shape and volume of detached blocks, which influences propagation and impact on the slope. In this context, the Morino-Rendinara landslide is a clear example of rockfall propagation influenced by fragmentation. In this case, fragmentation results from tectonic stresses acting on the materials as well as specific climatic conditions affecting rock mass properties. This study explores how different fragmentation scales influence both velocity and landslide propagation along the slope. Using numerical models, based on lumped mass approach and stochastic analyses, various scenarios of rock material fracturing were examined and their impact on runout was assessed. Different scenarios were defined, varying only the fragmentation degree and different random seed sets at the beginning of simulations, carried out using the Rock-GIS tool. The results suggest that rock masses with high fracturing show reduced cohesion along joints and cracks, which significantly lowers their shear strength and makes them more prone to failure. Increased fragmentation further decreases the bonding between rock blocks, thereby accelerating landslide propagation. Conversely, less fragmented rocks retain higher resistance, which limits the extent of movement. These processes are influenced by uncertainties related to the distribution and impact of different alteration grades, resulting from variable tectonic stresses and/or atmospheric weathering. Therefore, a stochastic distribution model was developed to integrate the results of all simulations and to reconstruct both the landslide propagation and the evolution of its deposits. This study emphasizes the critical role of fragmentation and the volume involved in rockfalls and their runout behaviour. Furthermore, the method provides a framework for enhancing risk assessment in complex geological environments and for developing mitigation strategies, particularly regarding runout distance and block size. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

18 pages, 6128 KB  
Article
Surrounding Rock Deformation Control of Ore-Drawing Roadway Under Cyclic Ore-Drawing Disturbance
by Shilong Xu, Fuming Qu, Yizhuo Li, Yingzhen Wang and Yaming Ji
Appl. Sci. 2025, 15(17), 9804; https://doi.org/10.3390/app15179804 - 7 Sep 2025
Viewed by 929
Abstract
Block caving is a cost-effective mining method that enables the highly efficient mining of thick and large ore bodies. During ore extraction in block caving operations, the ore-drawing roadways require especially high safety standards. However, the complex in situ stress conditions and cyclic [...] Read more.
Block caving is a cost-effective mining method that enables the highly efficient mining of thick and large ore bodies. During ore extraction in block caving operations, the ore-drawing roadways require especially high safety standards. However, the complex in situ stress conditions and cyclic loading from caved ore significantly deteriorate the stability of the surrounding rock. This makes rock mass control particularly challenging, such that it is crucial to study an effective method for maintaining the long-term stability of the roadways. This research proposes a comprehensive approach combining laboratory rock mechanics testing, numerical simulation, and field engineering validation to design effective support strategies for disturbance-affected roadways. Laboratory tests provide accurate mechanical parameters for the rock mass, the numerical simulations allow for the comprehensive analysis of deformation–failure mechanisms under disturbance conditions, and field validation ensures the reliability and practical applicability of the proposed support method. This study focuses on a −285 m ore-drawing roadway in the western section of the Yanqianshan Iron Mine. The in situ stress distribution was characterized through rock mechanics testing and acoustic emission monitoring. The propagation mechanisms of ore-drawing disturbance waves within the rock mass were analyzed, and numerical simulations revealed the deformation patterns and failure modes under dynamic disturbance, upon which the support scheme was designed. The results demonstrate that the designed bolt–mesh–shotcrete support scheme can effectively control surrounding rock deformation within 5 mm and resists the deformation induced by cyclic disturbances. This study provides valuable technical support for stability management in block caving mines with similar conditions. Full article
Show Figures

Figure 1

18 pages, 2565 KB  
Article
Rock Joint Segmentation in Drill Core Images via a Boundary-Aware Token-Mixing Network
by Seungjoo Lee, Yongjin Kim, Yongseong Kim, Jongseol Park and Bongjun Ji
Buildings 2025, 15(17), 3022; https://doi.org/10.3390/buildings15173022 - 25 Aug 2025
Cited by 1 | Viewed by 1001
Abstract
The precise mapping of rock joint traces is fundamental to the design and safety assessment of foundations, retaining structures, and underground cavities in building and civil engineering. Existing deep learning approaches either impose prohibitive computational demands for on-site deployment or disrupt the topological [...] Read more.
The precise mapping of rock joint traces is fundamental to the design and safety assessment of foundations, retaining structures, and underground cavities in building and civil engineering. Existing deep learning approaches either impose prohibitive computational demands for on-site deployment or disrupt the topological continuity of subpixel lineaments that govern rock mass behavior. This study presents BATNet-Lite, a lightweight encoder–decoder architecture optimized for joint segmentation on resource-constrained devices. The encoder introduces a Boundary-Aware Token-Mixing (BATM) block that separates feature maps into patch tokens and directionally pooled stripe tokens, and a bidirectional attention mechanism subsequently transfers global context to local descriptors while refining stripe features, thereby capturing long-range connectivity with negligible overhead. A complementary Multi-Scale Line Enhancement (MLE) module combines depth-wise dilated and deformable convolutions to yield scale-invariant responses to joints of varying apertures. In the decoder, a Skeletal-Contrastive Decoder (SCD) employs dual heads to predict segmentation and skeleton maps simultaneously, while an InfoNCE-based contrastive loss enforces their topological consistency without requiring explicit skeleton labels. Training leverages a composite focal Tversky and edge IoU loss under a curriculum-thinning schedule, improving edge adherence and continuity. Ablation experiments confirm that BATM, MLE, and SCD each contribute substantial gains in boundary accuracy and connectivity preservation. By delivering topology-preserving joint maps with small parameters, BATNet-Lite facilitates rapid geological data acquisition for tunnel face mapping, slope inspection, and subsurface digital twin development, thereby supporting safer and more efficient building and underground engineering practice. Full article
Show Figures

Figure 1

20 pages, 5875 KB  
Article
Optimizing Rock Bolt Support for Large Underground Structures Using 3D DFN-DEM Method
by Nooshin Senemarian Isfahani, Amin Azhari, Hem B. Motra, Hamid Hashemalhoseini, Mohammadreza Hajian Hosseinabadi, Alireza Baghbanan and Mohsen Bazargan
Geosciences 2025, 15(8), 293; https://doi.org/10.3390/geosciences15080293 - 2 Aug 2025
Viewed by 1612
Abstract
A systematic sensitivity analysis using three-dimensional discrete element models with discrete fracture networks (DEM-DFN) was conducted to evaluate underground excavation support in jointed rock masses at the CLAB2 site in Southeastern Sweden. The site features a joint network comprising six distinct joint sets, [...] Read more.
A systematic sensitivity analysis using three-dimensional discrete element models with discrete fracture networks (DEM-DFN) was conducted to evaluate underground excavation support in jointed rock masses at the CLAB2 site in Southeastern Sweden. The site features a joint network comprising six distinct joint sets, each with unique geometrical properties. The study examined 10 DFNs and 19 rock bolt patterns, both conventional and unconventional. It covered 200 scenarios, including 10 unsupported and 190 supported cases. Technical and economic criteria for stability were assessed for each support system. The results indicated that increasing rock bolt length enhances stability up to a certain point. However, multi-length rock bolt patterns with similar consumption can yield significantly different stability outcomes. Notably, the arrangement and properties of rock bolts are crucial for stability, particularly in blocks between bolting sections. These blocks remain interlocked in unsupported areas due to the induced pressure from supported sections. Although equal-length rock bolt patterns are commonly used, the analysis revealed that triple-length rock bolts (3, 6, and 9 m) provided the most effective support across all ten DFN scenarios. Full article
(This article belongs to the Special Issue Computational Geodynamic, Geotechnics and Geomechanics)
Show Figures

Figure 1

17 pages, 7633 KB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Cited by 1 | Viewed by 684
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

23 pages, 8674 KB  
Article
Characterization of Matrix Pore Structure of a Deep Coal-Rock Gas Reservoir in the Benxi Formation, NQ Block, ED Basin
by Guangfeng Liu, Dianyu Wang, Xiang Peng, Qingjiu Zhang, Bofeng Liu, Zhoujun Luo, Zeyu Zhang and Daoyong Yang
Eng 2025, 6(7), 142; https://doi.org/10.3390/eng6070142 - 30 Jun 2025
Viewed by 675
Abstract
In this study, a comprehensive experimental framework was developed to quantitatively characterize the pore structure of a deep coal-rock (DCR; reservoirs below [3000 m]) gas reservoir. Experimentally, petrological and mineral characteristics were determined by performing proximate analysis and scanning electron microscopy (SEM) as [...] Read more.
In this study, a comprehensive experimental framework was developed to quantitatively characterize the pore structure of a deep coal-rock (DCR; reservoirs below [3000 m]) gas reservoir. Experimentally, petrological and mineral characteristics were determined by performing proximate analysis and scanning electron microscopy (SEM) as well as by measuring vitrinite reflectance and maceral components. Additionally, physisorption and high-pressure mercury injection (HPMI) tests were conducted to quantitatively characterize the nano- to micron-scale pores in the DCR gas reservoir at multiple scales. The DCR in the NQ Block is predominantly composed of vitrinite, accounting for approximately 77.75%, followed by inertinite. The pore space is predominantly characterized by cellular pores, but porosity development is relatively limited as most of such pores are extensively filled with clay minerals. The isothermal adsorption curves of CO2 and N2 in the NQ Block and the DJ Block exhibit very similar variation patterns. The pore types and morphologies of the DCR reservoir are relatively consistent, with a significant development of nanoscale pores in both blocks. Notably, micropore metrics per unit mass (pore volume (PV): 0.0242 cm3/g; and specific surface area (SSA): 77.7545 m2/g) indicate 50% lower gas adsorption potential in the DJ Block. In contrast, the PV and SSA of the mesopores per unit mass in the NQ Block are relatively consistent with those in the DJ and SF Blocks. Additionally, the peak mercury intake in the NQ Block occurs within the pore diameter < 20 nm, with nearly 60% of the mercury beginning to enter in large quantities only when the pore size exceeds 20 nm. This indicates that nanoscale pores are predominantly developed in the DCR of the NQ block, which aligns with the findings from physical adsorption experiments and SEM analyses. Overall, the development characteristics of multi-scale pores in the DCR formations of the NQ Block and the eastern part of the Basin are relatively similar, with both total PV and total SSA showing an L-shaped distribution. Due to the disparity in micropore SSA, however, the total SSA of the DJ Block is approximately twice that of the NQ Block. This discovery has established a robust foundation for the subsequent exploitation of natural gas resources in DCR formations within the NQ Block. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

22 pages, 9006 KB  
Article
Stability Assessment of Rock Slopes in the Former Quarry of Wojciech Bednarski Park in Kraków—A Case Study
by Malwina Kolano, Marek Cała, Agnieszka Stopkowicz, Piotr Olchowy and Marek Wendorff
Appl. Sci. 2025, 15(13), 7197; https://doi.org/10.3390/app15137197 - 26 Jun 2025
Cited by 2 | Viewed by 1083
Abstract
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly [...] Read more.
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly conducted geological surveys, stability calculations were performed for eight representative cross-sections corresponding to designated sectors. Numerical analyses were conducted using a finite element method (FEM) programme, based on the actual structure of the rock mass, specifically its discontinuities. This ensured a reliable reflection of the real conditions governing the slope instability mechanisms. Factors of safety were estimated with the Shear Strength Reduction Technique. The results indicate that slope failure is highly unlikely in Sectors 1 and 2 (FS > 1.50), unlikely but not fully meeting the safety criteria in Sector 3 (FS < 1.50), and highly probable in Sectors 4 and 6 (FS << 1.00), where unstable rock blocks and deeper structural slides are anticipated. In Sector 5, failure is considered probable (FS < 1.30) due to rockfalls, unstable blocks, and creeping weathered cover. For Sectors 7 and 8, assuming debris cover above the rock walls, failure is unlikely (FS > 1.50). In contrast, under the assumption of weathered material, it becomes probable in Sector 7 (FS < 1.30), and remains unlikely in Sector 8 (FS > 1.50). Due to the necessity of adopting several modelling assumptions, the results should be interpreted primarily in qualitative terms. The outcomes of this research provide a critical basis for assessing the stability of rock slopes within Wojciech Bednarski Park and support decision-making processes related to its planned revitalisation. Full article
Show Figures

Figure 1

Back to TopTop