Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = robotic-assisted gait training

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1927 KB  
Review
Research on Control Strategy of Lower Limb Exoskeleton Robots: A Review
by Xin Xu, Changbing Chen, Zuo Sun, Wenhao Xian, Long Ma and Yingjie Liu
Sensors 2026, 26(2), 355; https://doi.org/10.3390/s26020355 - 6 Jan 2026
Viewed by 402
Abstract
With an aging population and the high incidence of neurological diseases, rehabilitative lower limb exoskeleton robots, as a wearable assistance device, present important application prospects in gait training and human function recovery. As the core of human–computer interaction, control strategy directly determines the [...] Read more.
With an aging population and the high incidence of neurological diseases, rehabilitative lower limb exoskeleton robots, as a wearable assistance device, present important application prospects in gait training and human function recovery. As the core of human–computer interaction, control strategy directly determines the exoskeleton’s ability to perceive and respond to human movement intentions. This paper focuses on the control strategies of rehabilitative lower limb exoskeleton robots. Based on the typical hierarchical control architecture of “perception–decision–execution,” it systematically reviews recent research progress centered around four typical control tasks: trajectory reproduction, motion following, Assist-As-Needed (AAN), and motion intention prediction. It emphasizes analyzing the core mechanisms, applicable scenarios, and technical characteristics of different control strategies. Furthermore, from the perspectives of drive system and control coupling, multi-source perception, and the universality and individual adaptability of control algorithms, it summarizes the key challenges and common technical constraints currently faced by control strategies. This article innovatively separates the end-effector control strategy from the hardware implementation to provide support for a universal control framework for exoskeletons. Full article
Show Figures

Figure 1

13 pages, 711 KB  
Article
Exoskeleton-Assisted Gait: Exploring New Rehabilitation Perspectives in Degenerative Spinal Cord Injury
by Martina Regazzetti, Mirko Zitti, Giovanni Lazzaro, Samuel Vianello, Sara Federico, Błażej Cieślik, Agnieszka Guzik, Carlos Luque-Moreno and Pawel Kiper
Technologies 2026, 14(1), 17; https://doi.org/10.3390/technologies14010017 - 25 Dec 2025
Viewed by 477
Abstract
Background: Recovery following incomplete spinal cord injury (iSCI) remains challenging, with conventional rehabilitation often emphasizing compensation over functional restoration. As most new spinal cord injury cases preserve some motor or sensory pathways, there is increasing interest in therapies that harness neuroplasticity. Robotic exoskeletons [...] Read more.
Background: Recovery following incomplete spinal cord injury (iSCI) remains challenging, with conventional rehabilitation often emphasizing compensation over functional restoration. As most new spinal cord injury cases preserve some motor or sensory pathways, there is increasing interest in therapies that harness neuroplasticity. Robotic exoskeletons provide a promising means to deliver task-specific, repetitive gait training that may promote adaptive neural reorganization. This feasibility study investigates the feasibility, safety, and short-term effects of exoskeleton-assisted walking in individuals with degenerative iSCI. Methods: Two cooperative male patients (patients A and B) with degenerative iSCI (AIS C, neurological level L1) participated in a four-week intervention consisting of one hour of neuromotor physiotherapy followed by one hour of exoskeleton-assisted gait training, three times per week. Functional performance was assessed using the 10-Meter Walk Test, while gait quality was examined through spatiotemporal gait analysis. Vendor-generated surface electromyography (sEMG) plots were available only for qualitative description. Results: Patient A demonstrated a clinically meaningful increase in walking speed (+0.15 m/s). Spatiotemporal parameters showed mixed and non-uniform changes, including longer cycle, stance, and swing times, which reflect a slower stepping pattern rather than improved efficiency or coordination. Patient B showed a stable walking speed (+0.03 m/s) and persistent gait asymmetries. Qualitative sEMG plots are presented descriptively but cannot support interpretations of muscle recruitment patterns or neuromuscular changes. Conclusions: In this exploratory study, exoskeleton-assisted gait training was feasible and well tolerated when combined with conventional physiotherapy. However, observed changes were heterogeneous and do not allow causal or mechanistic interpretation related to neuromuscular control, muscle recruitment, or device-specific effects. These findings highlight substantial inter-individual variability and underscore the need for larger controlled studies to identify predictors of response and optimize rehabilitation protocols. Full article
Show Figures

Figure 1

17 pages, 1694 KB  
Systematic Review
From Dogs to Robots: Pet-Assisted Interventions for Depression in Older Adults—A Network Meta-Analysis of Randomized Controlled Trials
by Mei-Ling Dai, Berne Ting, Ray Jui-Hung Tseng, Yu-Ling Huang, Chia-Ching Lin, Min-Hsiung Chen, Pan-Yen Lin and Tzu-Yu Liu
Healthcare 2026, 14(1), 38; https://doi.org/10.3390/healthcare14010038 - 23 Dec 2025
Viewed by 546
Abstract
Background/Objectives: Late-life depression is prevalent yet frequently underdiagnosed, underscoring the need for accessible and safe non-pharmacological approaches. Pet-assisted interventions, including live animal-assisted therapy and robotic pets, have gained attention, but their comparative effectiveness remains unclear. This study aimed to evaluate and rank [...] Read more.
Background/Objectives: Late-life depression is prevalent yet frequently underdiagnosed, underscoring the need for accessible and safe non-pharmacological approaches. Pet-assisted interventions, including live animal-assisted therapy and robotic pets, have gained attention, but their comparative effectiveness remains unclear. This study aimed to evaluate and rank different pet-assisted approaches for reducing depressive symptoms in older adults using network meta-analysis. Methods: We systematically searched PubMed, Embase, Web of Science, and the Cochrane Library up to August 2025 for randomized controlled trials involving adults aged 60 years or older with depression. The protocol was prospectively registered on INPLASY (INPLASY2025100023). Depression severity, assessed using validated scales, was synthesized using a frequentist random-effects network meta-analysis framework. Results: Twenty trials involving 1073 participants were included. Live animal-assisted therapy produced the greatest reduction in depressive symptoms versus passive control (SMD −2.04; 95% CI −3.03 to −1.04). Combining it with gait training (structured walking-based activity conducted with the animal) was associated with a reduction in depressive symptoms (SMD −4.82; 95% CI −6.69 to −2.95). Robotic pets showed a directionally beneficial but non-significant effect (SMD −1.21; 95% CI −2.79 to 0.38). Conclusions: Pet-assisted interventions are effective in reducing depressive symptoms among older adults. Live animal-assisted therapy, particularly when delivered in structured or combined formats, shows the greater benefit. Robotic pets may serve as a practical alternative when live animals cannot be implemented. Full article
Show Figures

Figure 1

27 pages, 1719 KB  
Review
Cable-Driven End-Effector Robots for Gait Rehabilitation: A Review and Future Research Directions
by Javier Dario Sanjuan De Caro, Jose David Castillo-Blanco, Daniela Charris, Daniel José Romero Martínez, Mohammad H. Rahman and Chadi Nohra
Robotics 2025, 14(11), 169; https://doi.org/10.3390/robotics14110169 - 19 Nov 2025
Viewed by 1169
Abstract
Robot-Assisted Gait Training (RAGT) has emerged as a promising approach to improve motor recovery for stroke survivors. Among RAGT devices, exoskeletons offer precise joint actuation, but they are costly, mechanically complex and present risks related to joint misalignment. End-effector systems present a more [...] Read more.
Robot-Assisted Gait Training (RAGT) has emerged as a promising approach to improve motor recovery for stroke survivors. Among RAGT devices, exoskeletons offer precise joint actuation, but they are costly, mechanically complex and present risks related to joint misalignment. End-effector systems present a more affordable and simpler alternative, but face limitations in workspace and adaptability for assist-as-needed therapy. Cable-Driven End-Effector Gait Rehabilitation Robots (CDEGRs) combine the strengths of both approaches, offering low inertia, flexible configurations, and scalable designs. This review systematically examines the current landscape of CDEGRs, encompassing their kinematic classifications, control strategies, and platform configurations. Unlike previous reviews that broadly addressed exoskeletons or upper-limb rehabilitation devices, this work provides a focused and detailed analysis of lower-limb end-effector systems. In doing so, it identifies persistent gaps in design and control frameworks and highlights future research directions toward more efficient and clinically validated CDEGR architectures. Full article
(This article belongs to the Special Issue Development of Biomedical Robotics)
Show Figures

Figure 1

19 pages, 1342 KB  
Article
Multimodal Rehabilitation in Spinal Cord Lesion: Comparative Outcomes of Vojta Therapy and Lokomat Training
by Anamaria Gherle, Carmen Delia Nistor-Cseppento, Liviu Lazar, Ștefania Deac, Mirela Elena Bodea, Florin Mihai Marcu, Sebastian Tirla and Mariana Lidia Cevei
Medicina 2025, 61(11), 2041; https://doi.org/10.3390/medicina61112041 - 15 Nov 2025
Viewed by 748
Abstract
Background and Objectives: Spinal cord lesion is a severe disorder of the central nervous system, leading to partial or complete interruption of nerve impulse transmission between the brain and the periphery and causing severe neurological and functional deficits. Conventional rehabilitation offers limited [...] Read more.
Background and Objectives: Spinal cord lesion is a severe disorder of the central nervous system, leading to partial or complete interruption of nerve impulse transmission between the brain and the periphery and causing severe neurological and functional deficits. Conventional rehabilitation offers limited outcomes, while robotic gait training (Lokomat®) and Vojta Therapy have shown benefits individually. Evidence on their combined effect remains scarce. To evaluate the combined effect of Vojta Therapy and Lokomat-assisted gait training on motor recovery, functional independence, and quality of life in SCL patients. Materials and Methods: A retrospective clinical study was conducted on 205 patients with traumatic and non-traumatic SCL. Patients were allocated to four groups: (F)—conventional rehabilitation; (V)—conventional + Vojta; (L)—conventional + Lokomat; (VL)—conventional + Vojta + Lokomat. Assessments included the ASIA Impairment Scale (AIS), ASIA motor/sensory scores, spasticity (Modified Ashworth Scale, MAS), functional independence (Functional Independence Measure, FIM), and health-related quality of life (EQ-5D), performed at admission and discharge. Statistical analyses comprised paired t-tests, Wilcoxon signed-rank tests, chi-square tests, Kruskal–Wallis with Dunn’s post hoc corrections, and linear regression. Results: The most frequent lesion levels were C7 (21%) and L1 (20%). All groups showed improvement in FIM scores, with the greatest gains in the VL group (from 79.25 to 84.79, p < 0.05). Post hoc analysis confirmed significantly higher FIM outcomes in VL compared with L. Regression analysis identified the ASIA motor score as the strongest predictor of functional independence (β = 0.76, p < 0.001), with VL group membership adding +10.3 points (p = 0.004). EQ-5D indicated persistent deficits in mobility and self-care, especially in VL patients, consistent with higher lesion severity. Conclusions: Combining Vojta Therapy with Lokomat training provides additional functional benefits compared with Lokomat or Vojta alone. Multimodal individualized rehabilitation appears promising for patients with spinal cord lesions. Prospective randomized controlled trials with long-term follow-up are warranted. Full article
Show Figures

Graphical abstract

15 pages, 531 KB  
Review
Wearable-Sensor and Virtual Reality-Based Interventions for Gait and Balance Rehabilitation in Stroke Survivors: A Systematic Review
by Alejandro Caña-Pino and Paula Holgado-López
Signals 2025, 6(3), 48; https://doi.org/10.3390/signals6030048 - 11 Sep 2025
Viewed by 2660
Abstract
Stroke remains one of the leading causes of disability worldwide, often resulting in persistent impairments in gait and balance. Traditional rehabilitation methods—though beneficial—are limited by factors such as therapist dependency, low patient adherence, and restricted access. In recent years, sensor-supported technologies, including virtual [...] Read more.
Stroke remains one of the leading causes of disability worldwide, often resulting in persistent impairments in gait and balance. Traditional rehabilitation methods—though beneficial—are limited by factors such as therapist dependency, low patient adherence, and restricted access. In recent years, sensor-supported technologies, including virtual reality (VR), robotic-assisted gait training (RAGT), and wearable feedback systems, have emerged as promising adjuncts to conventional therapy. This systematic review evaluates the effectiveness of wearable and immersive technologies for gait and balance rehabilitation in adult stroke survivors. Following PRISMA guidelines, a systematic search of the PubMed and ScienceDirect databases retrieved 697 articles. After screening, eight studies published between 2015 and 2025 were included, encompassing 186 participants. The interventions included VR-based gait training, electromechanical devices (e.g., HAL, RAGT), auditory rhythmic cueing, and smart insoles, compared against conventional rehabilitation or baseline function. Most studies reported significant improvements in motor function, dynamic balance, or gait speed, particularly when interventions were intensive, task-specific, and personalized. Patient engagement, adherence, and feasibility were generally high. However, heterogeneity in study design, small sample sizes, and limited long-term data reduced the strength of the evidence. Technologies were typically implemented as complementary tools rather than standalone treatments. In conclusion, wearable and immersive systems represent promising adjuncts to conventional stroke rehabilitation, with potential to enhance motor outcomes and patient engagement. However, the heterogeneity in protocols, small sample sizes, and methodological limitations underscore the need for more robust, large-scale trials to validate their clinical effectiveness and guide implementation. Full article
Show Figures

Figure 1

5 pages, 174 KB  
Proceeding Paper
Robotic Gait Training in an Adolescent with Idiopathic Transverse Myelitis: A Case Report
by Maria Ana Neves, André Lima, Gonçalo Duarte, Susana Wandschneider, Tiago Teixeira, Lia Jacobsohn, Carlos Ernesto Júnior and Isabel Batalha
Med. Sci. Forum 2025, 37(1), 14; https://doi.org/10.3390/msf2025037014 - 27 Aug 2025
Viewed by 878
Abstract
Transverse myelitis is a rare spinal cord condition that can cause severe motor, sensory, and autonomic dysfunction. This case report describes a 16-year-old male with incomplete paraplegia due to idiopathic transverse myelitis who underwent robotic-assisted gait training (RAGT) using the EKSO exoskeleton, integrated [...] Read more.
Transverse myelitis is a rare spinal cord condition that can cause severe motor, sensory, and autonomic dysfunction. This case report describes a 16-year-old male with incomplete paraplegia due to idiopathic transverse myelitis who underwent robotic-assisted gait training (RAGT) using the EKSO exoskeleton, integrated into an intensive rehabilitation programme. After one month, he showed significant improvements in gait speed, dynamic balance, effort tolerance, and trunk mobility. RAGT promoted better weight distribution and reduced compensatory patterns during ambulation. The intervention proved safe and clinically beneficial, highlighting the potential of robotic technologies as effective adjuncts in paediatric spinal cord injury rehabilitation. Full article
23 pages, 4319 KB  
Article
Four-Week Exoskeleton Gait Training on Balance and Mobility in Minimally Impaired Individuals with Multiple Sclerosis: A Pilot Study
by Micaela Schmid, Stefania Sozzi, Bruna Maria Vittoria Guerra, Caterina Cavallo, Matteo Vandoni, Alessandro Marco De Nunzio and Stefano Ramat
Bioengineering 2025, 12(8), 826; https://doi.org/10.3390/bioengineering12080826 - 30 Jul 2025
Viewed by 2514
Abstract
Multiple Sclerosis (MS) is a chronic neurological disorder affecting the central nervous system that significantly impairs postural control and functional abilities. Robotic-assisted gait training mitigates this functional deterioration. This preliminary study aims to investigate the effects of a four-week gait training with the [...] Read more.
Multiple Sclerosis (MS) is a chronic neurological disorder affecting the central nervous system that significantly impairs postural control and functional abilities. Robotic-assisted gait training mitigates this functional deterioration. This preliminary study aims to investigate the effects of a four-week gait training with the ExoAtlet II exoskeleton on static balance control and functional mobility in five individuals with MS (Expanded Disability Status Scale ≤ 2.5). Before and after the training, they were assessed in quiet standing under Eyes Open (EO) and Eyes Closed (EC) conditions and with the Timed Up and Go (TUG) test. Center of Pressure (CoP) Sway Area, Antero–Posterior (AP) and Medio–Lateral (ML) CoP displacement, Stay Time, and Total Instability Duration were computed. TUG test Total Duration, sit-to-stand, stand-to-sit, and linear walking phase duration were analyzed. To establish target reference values for rehabilitation advancement, the same evaluations were performed on a matched healthy cohort. After the training, an improvement in static balance with EO was observed towards HS values (reduced Sway Area, AP and ML CoP displacement, and Total Instability Duration and increased Stay Time). Enhancements under EC condition were less marked. TUG test performance improved, particularly in the stand-to-sit phase. These preliminary findings suggest functional benefits of exoskeleton gait training for individuals with MS. Full article
(This article belongs to the Special Issue Advances in Physical Therapy and Rehabilitation)
Show Figures

Figure 1

17 pages, 1123 KB  
Article
Effects of a Single Session of Robot-Assisted Gait Training vs. Aquatic Therapy, Immersion in Water, and Supported Standing on Post-Immediate Knee Musculoskeletal Conditions in Children with Cerebral Palsy: A Case Report
by Andrés Ramiro Ferrando, Anna Arnal-Gómez, Sara Cortés-Amador, Noelia Gimeno Muñoz, Luis Beltrán Alós and Esther Mur-Gimeno
Appl. Sci. 2025, 15(15), 8203; https://doi.org/10.3390/app15158203 - 23 Jul 2025
Viewed by 1677
Abstract
Background: Aquatic therapy (AT), immersion in hot water, and supported standing are frequently used to manage spasticity, contractures, and joint retractions in children with cerebral palsy (CP). Recently, the use of exoskeletons has been offering a new treatment option for severe CP. This [...] Read more.
Background: Aquatic therapy (AT), immersion in hot water, and supported standing are frequently used to manage spasticity, contractures, and joint retractions in children with cerebral palsy (CP). Recently, the use of exoskeletons has been offering a new treatment option for severe CP. This study aimed to compare the post-immediate effects of four treatments on spasticity, range of motion, and the heart rate of children with severe CP. Methods: Three children with spastic CP (levels IV and V GMFCS) received a single 30-min session in consecutive weeks of robot-assisted gait training (RAGT), AT, supported standing, and immersion in hot water. Post-immediate assessments included knee flexor spasticity (modified Ashworth scale, MAS, and modified Tardieu scale, MTS); knee range of motion (ROM, in degrees (°)); and heart rate (HR). Results: AT and supported standing induced greater reductions in spasticity based on MAS scores. RAGT demonstrated superior spasticity reduction using MTS and yielded the greatest improvement in popliteal angle (mean increase: 27°). AT and RAGT induced a 14 beats-per-minute change in HR, indicating moderate cardiovascular engagement. Conclusions: RAGT appears particularly effective in improving spasticity and ROM in children with severe CP. Nonetheless, conventional treatments still offer an effective option when addressing spasticity. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

15 pages, 1081 KB  
Systematic Review
Effectiveness of Robot-Assisted Gait Training in Stroke Rehabilitation: A Systematic Review and Meta-Analysis
by Jun Hyeok Lee and Gaeun Kim
J. Clin. Med. 2025, 14(13), 4809; https://doi.org/10.3390/jcm14134809 - 7 Jul 2025
Cited by 5 | Viewed by 7513
Abstract
Background/Objectives: Robotic-assisted gait training (RAGT) is a promising adjunct to conventional rehabilitation for stroke survivors. However, its additive benefit over standard therapy remains to be fully clarified. This systematic review and meta-analysis evaluated the effectiveness of combining RAGT with conventional rehabilitation in improving [...] Read more.
Background/Objectives: Robotic-assisted gait training (RAGT) is a promising adjunct to conventional rehabilitation for stroke survivors. However, its additive benefit over standard therapy remains to be fully clarified. This systematic review and meta-analysis evaluated the effectiveness of combining RAGT with conventional rehabilitation in improving gait-related outcomes among individuals with stroke. Methods: We searched PubMed, Embase, CINAHL, and Cochrane CENTRAL through September 2024 for randomized controlled trials (RCTs) comparing combined RAGT and conventional rehabilitation versus conventional rehabilitation alone in adults post-stroke. Data were synthesized using a random-effects model, and subgroup analyses examined effects by intervention duration, stroke chronicity, and robotic system type. Results: Twenty-three RCTs (n = 907) were included. The combined intervention significantly improved gait function (SMD = 0.51, p = 0.001), gait speed (SMD = 0.47, p = 0.010), balance (MD = 4.58, p < 0.001), and ADL performance (SMD = 0.35, p = 0.001). Subgroup analyses revealed that end-effector robotic systems yielded superior outcomes compared to exoskeletons, particularly in subacute stroke patients. The most pronounced benefits were seen in gait velocity and dynamic balance, especially with ≤15 training sessions. Conclusions: Integrating RAGT with conventional rehabilitation enhances motor recovery and functional performance in stroke survivors. End-effector devices appear most effective in subacute phases, supporting individualized RAGT application based on patient and device characteristics. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

14 pages, 874 KB  
Case Report
Robotic-Assisted Gait Training Combined with Multimodal Rehabilitation for Functional Recovery in Acute Dermatomyositis: A Case Report
by Wilmer Esparza, Rebeca Benalcazar-Aguilar, Gabriela Moreno-Andrade and Israel Vinueza-Fernández
Brain Sci. 2025, 15(6), 650; https://doi.org/10.3390/brainsci15060650 - 17 Jun 2025
Viewed by 1233
Abstract
This case report examines the impact of robotic-assisted therapy (Lokomat) on functional recovery in a 28-year-old male patient with acute dermatomyositis (DM), an autoimmune inflammatory myopathy causing progressive muscle weakness and disability. The patient underwent 21 sessions of robotic therapy combined with physical [...] Read more.
This case report examines the impact of robotic-assisted therapy (Lokomat) on functional recovery in a 28-year-old male patient with acute dermatomyositis (DM), an autoimmune inflammatory myopathy causing progressive muscle weakness and disability. The patient underwent 21 sessions of robotic therapy combined with physical therapy, and occupational therapy over seven weeks. Assessments were conducted at baseline, week 10, and week 21 using standardized measures for balance, muscle strength, and functionality. Results demonstrated significant improvements across all domains: balance scores progressed from severe impairment (4/56 Berg, 0/28 Tinetti) to near-normal function (55/56, 24/28, respectively); muscle strength increased from grade 1/5 to 4/5 (MMT-8) in all tested muscle groups; and functionality improved from moderate dependence (59/126 FIM) to complete independence (126/126). The trunk functionality scores showed remarkable recovery from 12/100 to 100/100 (TCT), indicating restored trunk control. Lokomat-assisted therapy combined with conventional rehabilitation effectively improves proximal weakness and postural instability in DM. Robotic therapy enhances motor learning via repetitive movements and reduces therapist workload. Though limited by a single-case design, this study offers preliminary evidence for robotic rehabilitation in DM, previously unexplored. Controlled studies are needed to standardize protocols and validate results in larger cohorts. Advanced technologies show promise for functional recovery in inflammatory myopathies. Full article
Show Figures

Figure 1

19 pages, 7961 KB  
Article
A Gait Sub-Phase Switching-Based Active Training Control Strategy and Its Application in a Novel Rehabilitation Robot
by Junyu Wu, Ran Wang, Zhuoqi Man, Yubin Liu, Jie Zhao and Hegao Cai
Biosensors 2025, 15(6), 356; https://doi.org/10.3390/bios15060356 - 4 Jun 2025
Viewed by 1147
Abstract
This research study proposes a heuristic hybrid deep neural network (DNN) gait sub-phase recognition model based on multi-source heterogeneous motion data fusion which quantifies gait phases and is applied in balance disorder rehabilitation control, achieving a recognition accuracy exceeding 99%. Building upon this [...] Read more.
This research study proposes a heuristic hybrid deep neural network (DNN) gait sub-phase recognition model based on multi-source heterogeneous motion data fusion which quantifies gait phases and is applied in balance disorder rehabilitation control, achieving a recognition accuracy exceeding 99%. Building upon this model, a motion control strategy for a novel rehabilitation training robot is designed and developed. For patients with some degree of independent movement, an active training strategy is introduced; it combines gait recognition with a variable admittance control strategy. This strategy provides assistance during the stance phase and moderate support during the swing phase, effectively enhancing the patient’s autonomous movement capabilities and increasing engagement in the rehabilitation process. The gait phase recognition system not only provides rehabilitation practitioners with a comprehensive tool for patient assessment but also serves as a theoretical foundation for collaborative control in rehabilitation robots. Through the innovative active–passive training control strategy and its application in the novel rehabilitation robot, this research study overcomes the limitations of traditional rehabilitation robots, which typically operate in a single functional mode, thereby expanding their functional boundaries and enabling more precise, personalized rehabilitation training programs tailored to the needs of patients in different stages of recovery. Full article
(This article belongs to the Special Issue Wearable Sensors for Precise Exercise Monitoring and Analysis)
Show Figures

Figure 1

30 pages, 1614 KB  
Review
Mapping the Role of Robot-Assisted Gait Training in Post-Stroke Recovery Among Elderly Patients: A Scoping Review
by Cinzia Marinaro, Lucia Muglia, Simona Squartecchia, Annalisa Cozza, Andrea Corsonello, Luigi Pranno, Maurizio Ferrarin and Tiziana Lencioni
J. Clin. Med. 2025, 14(11), 3922; https://doi.org/10.3390/jcm14113922 - 3 Jun 2025
Cited by 1 | Viewed by 3290
Abstract
Background/Objective: Stroke is one of the leading causes of death and disability worldwide, with older survivors (aged > 65 years) bearing significant health and economic impacts, particularly in industrialized countries. While gait rehabilitation is a cornerstone in post-stroke recovery and robotic technologies offer [...] Read more.
Background/Objective: Stroke is one of the leading causes of death and disability worldwide, with older survivors (aged > 65 years) bearing significant health and economic impacts, particularly in industrialized countries. While gait rehabilitation is a cornerstone in post-stroke recovery and robotic technologies offer promising tools to enhance its effectiveness, the existing literature has largely overlooked elderly populations. Most studies on robot-assisted gait training (RAGT)—which uses exoskeleton or end-effector devices to support and guide movement—either exclude older adults or do not analyze their outcomes separately. This review aims to critically evaluate the current evidence on RAGT in elderly post-stroke patients, addressing a significant gap in the literature and providing novel insights into the effectiveness and adaptability of RAGT for this specific population. Methods: The search included databases such as PubMed, Scopus, Embase, Web of Science, and ClinicalTrials. The inclusion criteria covered studies published up to March 2025, focusing on post-stroke individuals aged >65 years, who underwent RAGT. Results: 25 studies were included in the review, 21 involving exoskeleton and 4 end-effector devices. The primary focus was on motor outcomes, such as gait independence, gait parameters, and balance control. Only a few studies examined non-motor aspects, including cognitive and emotional functions, fatigue, pain, and neuroplasticity. Moreover, data on the long-term effects on the elderly population remain scarce. Conclusions: RAGT is an effective strategy for promoting motor recovery and improving functional outcomes, from independence in daily activities to quality of life, in the post-stroke elderly population. Early and high-intensity interventions are particularly useful with positive effects on neuronal plasticity, cognitive function, and well-being. Full article
(This article belongs to the Special Issue Rehabilitation and Management of Stroke)
Show Figures

Figure 1

20 pages, 4551 KB  
Article
Research on Iterative Learning Method for Lower Limb Exoskeleton Rehabilitation Robot Based on RBF Neural Network
by Jing Li, Huimin Jiang, Moyao Gao, Shuang Li, Zhanli Wang, Zaixiang Pang, Yang Zhang and Yang Jiao
Appl. Sci. 2025, 15(11), 6053; https://doi.org/10.3390/app15116053 - 28 May 2025
Cited by 3 | Viewed by 1582
Abstract
This study addresses gait reference trajectory tracking control in a 13-degree-of-freedom lower-limb rehabilitation robot, where patients exhibit nonlinear perturbations in lower-limb muscle groups and gait irregularities during exoskeleton-assisted walking. We propose a novel control strategy integrating iterative learning with RBF neural network-based sliding [...] Read more.
This study addresses gait reference trajectory tracking control in a 13-degree-of-freedom lower-limb rehabilitation robot, where patients exhibit nonlinear perturbations in lower-limb muscle groups and gait irregularities during exoskeleton-assisted walking. We propose a novel control strategy integrating iterative learning with RBF neural network-based sliding mode control, featuring a single hidden-layer pre-feedback architecture. The RBF neural network effectively approximates uncertainties arising from lower-limb muscle perturbations, while adaptive regulation through parameter simplification ensures precise torque tracking at each joint, meeting real-time rehabilitation requirements. MATLAB 2021 simulations demonstrate the proposed algorithm’s superior trajectory tracking performance compared to conventional sliding mode control, effectively eliminating control chattering. Experimental results show maximum angular errors of 1.77° (hip flexion/extension), 1.87° (knee flexion/extension), and 0.72° (ankle dorsiflexion/plantarflexion). The integrated motion capture system enables the development of patient-specific skeletal muscle models and optimized gait trajectories, ensuring both training efficacy and safety for spasticity patients. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

27 pages, 540 KB  
Review
Efficacy of Neurorehabilitation Approaches in Traumatic Brain Injury Patients: A Comprehensive Review
by Diana Andrei, Alexandra Laura Mederle, Laura Andreea Ghenciu, Claudia Borza and Alexandra Corina Faur
Life 2025, 15(3), 503; https://doi.org/10.3390/life15030503 - 20 Mar 2025
Cited by 3 | Viewed by 8306
Abstract
Traumatic brain injury (TBI) represents a significant public health issue, causing long-term disabilities and imposing considerable socioeconomic and healthcare challenges. While advancements in acute care have improved survival rates, the demand for effective neurorehabilitation is increasing. This narrative review explores the evidence on [...] Read more.
Traumatic brain injury (TBI) represents a significant public health issue, causing long-term disabilities and imposing considerable socioeconomic and healthcare challenges. While advancements in acute care have improved survival rates, the demand for effective neurorehabilitation is increasing. This narrative review explores the evidence on neurorehabilitation strategies for TBI, focusing on interventions targeting cognitive, motor, and psychological recovery. A total of 32 studies were included and categorized into six approaches: non-invasive brain stimulation, virtual reality (VR), computer-based training, telerehabilitation, robot-assisted therapy (RAT), and mixed approaches. Non-invasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), showed variable effectiveness in improving cognitive outcomes. VR-based therapies enhanced attention and executive functions, while RAT, such as Lokomat and exoskeletons, improved gait symmetry and functional mobility. Computer-assisted programs demonstrated benefits in rehabilitating social cognition and executive functions. Telerehabilitation and telephone-based treatments provided short-term gains but lacked sustained effects. Overall, cognitive improvements were better described and represented, while several motor improvements lacked consistency. Despite the promising results, significant gaps remain, including heterogeneity in methodologies, small sample sizes, and limited long-term outcome data. Full article
Show Figures

Figure 1

Back to TopTop