Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,842)

Search Parameters:
Keywords = river hydrology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2022 KiB  
Article
A Practical Method for Ecological Flow Calculation to Support Integrated Ecological Functions of the Lower Yellow River, China
by Xinyuan Chen, Lixin Zhang and Lei Tang
Water 2025, 17(15), 2326; https://doi.org/10.3390/w17152326 - 5 Aug 2025
Abstract
The lower Yellow River is characterized by low water discharge and a high sediment load, resulting in a fragile aquatic ecosystem. It is important to develop a reasonable method of ecological flow calculation that can be applied to the water-scarce rivers like the [...] Read more.
The lower Yellow River is characterized by low water discharge and a high sediment load, resulting in a fragile aquatic ecosystem. It is important to develop a reasonable method of ecological flow calculation that can be applied to the water-scarce rivers like the Yellow River. In this paper, we selected the Huayuankou hydrological station in the lower Yellow River as our study site and assessed the ecological flow using several methodologies including the monthly frequency calculation method, the sediment transportation method, the habitat simulation method, and the improved annual distribution method. Based on the seasonal applicability of the four methods across months of the year, we established an ecological flow calculation method that considers the integrated ecological functions of the lower Yellow River. In this method, ecological flow in the lower Yellow River during the dry season (November to March) can be determined by using the improved annual distribution method, ecological flow in the fish spawning period (April to June) can be calculated using the habitat simulation method, and the ecological flow during the flood season (July to October) can be calculated using the sediment transportation method. The optimal ecological flow regime for the Huayuankou section was determined using the established method. The ecological flow regimes derived in our study ranged from 310 m3/s to 1532 m3/s. However, we also observed that the ecological flow has a relatively low assurance rate during the flood season in the lower Yellow River, with the assurance rate not exceeding 63%. This highlights the fact that more attention should be given in reservoir regulations to facilitating sediment transport downstream. Full article
Show Figures

Figure 1

14 pages, 2532 KiB  
Article
Machine Learning for Spatiotemporal Prediction of River Siltation in Typical Reach in Jiangxi, China
by Yong Fu, Jin Luo, Die Zhang, Lingjia Liu, Gan Luo and Xiaofang Zu
Appl. Sci. 2025, 15(15), 8628; https://doi.org/10.3390/app15158628 (registering DOI) - 4 Aug 2025
Abstract
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal [...] Read more.
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal sedimentation and hydrological variability. To enable fine-scale prediction, we developed a data-driven framework using a random forest regression model that integrates high-resolution bathymetric surveys with hydrological and meteorological observations. Based on the field data from April to July 2024, the model was trained to forecast monthly siltation volumes at a 30 m grid scale over a six-month horizon (July–December 2024). The results revealed a marked increase in siltation from July to September, followed by a decline during the winter months. The accumulation of sediment, combined with falling water levels, was found to significantly reduce the channel depth and width, particularly in the upstream sections, posing a potential risk to navigation safety. This study presents an initial, yet promising attempt to apply machine learning for spatially explicit siltation prediction in data-constrained river systems. The proposed framework provides a practical tool for early warning, targeted dredging, and adaptive channel management. Full article
Show Figures

Figure 1

18 pages, 3354 KiB  
Article
Hydrological Modeling of the Chikugo River Basin Using SWAT: Insights into Water Balance and Seasonal Variability
by Francis Jhun Macalam, Kunyang Wang, Shin-ichi Onodera, Mitsuyo Saito, Yuko Nagano, Masatoshi Yamazaki and Yu War Nang
Sustainability 2025, 17(15), 7027; https://doi.org/10.3390/su17157027 - 2 Aug 2025
Viewed by 212
Abstract
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the [...] Read more.
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the performance of the Soil and Water Assessment Tool (SWAT) in simulating streamflow, water balance, and seasonal hydrological dynamics in the Chikugo River Basin, Kyushu Island, Japan. The basin, originating from Mount Aso and draining into the Ariake Sea, is subject to frequent typhoons and intense rainfall, making it a critical case for sustainable water governance. Using the Sequential Uncertainty Fitting Version 2 (SUFI-2) approach, we calibrated the SWAT model over the period 2007–2021. Water balance analysis revealed that baseflow plays dominant roles in basin hydrology which is essential for agricultural and domestic water needs by providing a stable groundwater contribution despite increasing precipitation and varying water demand. These findings contribute to a deeper understanding of hydrological behavior in temperate catchments and offer a scientific foundation for sustainable water allocation, planning, and climate resilience strategies. Full article
Show Figures

Figure 1

14 pages, 5954 KiB  
Article
Mapping Wet Areas and Drainage Networks of Data-Scarce Catchments Using Topographic Attributes
by Henrique Marinho Leite Chaves, Maria Tereza Leite Montalvão and Maria Rita Souza Fonseca
Water 2025, 17(15), 2298; https://doi.org/10.3390/w17152298 - 2 Aug 2025
Viewed by 160
Abstract
Wet areas, which are locations in the landscape that consistently retain moisture, and channel networks are important landscape compartments, with key hydrological and ecological functions. Hence, defining their spatial boundaries is an important step towards sustainable watershed management. In catchments of developing countries, [...] Read more.
Wet areas, which are locations in the landscape that consistently retain moisture, and channel networks are important landscape compartments, with key hydrological and ecological functions. Hence, defining their spatial boundaries is an important step towards sustainable watershed management. In catchments of developing countries, wet areas and small order channels of river networks are rarely mapped, although they represent a crucial component of local livelihoods and ecosystems. In this study, topographic attributes generated with a 30 m SRTM DEM were used to map wet areas and stream networks of two tropical catchments in Central Brazil. The topographic attributes for wet areas were the local slope and the slope curvature, and the Topographic Wetness Index (TWI) was used to delineate the stream networks. Threshold values of the selected topographic attributes were calibrated in the Santa Maria catchment, comparing the synthetically generated wet areas and drainage networks with corresponding reference (map) features, and validated in the nearby Santa Maria basin. Drainage network and wet area delineation accuracies were estimated using random basin transects and multi-criteria and confusion matrix methods. The drainage network accuracies were 67.2% and 70.7%, and wet area accuracies were 72.7% and 73.8%, for the Santa Maria and Gama catchments, respectively, being equivalent or higher than previous studies. The mapping errors resulted from model incompleteness, DEM vertical inaccuracy, and cartographic misrepresentation of the reference topographic maps. The study’s novelty is the use of readily available information to map, with simplicity and robustness, wet areas and channel initiation in data-scarce, tropical environments. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 2032 KiB  
Article
The Impact of Hydrological Streamflow Drought on Pollutant Concentration and Its Implications for Sustainability in a Small River in Poland
by Leszek Hejduk, Ewa Kaznowska, Michał Wasilewicz and Agnieszka Hejduk
Sustainability 2025, 17(15), 6995; https://doi.org/10.3390/su17156995 - 1 Aug 2025
Viewed by 142
Abstract
The paper presents the results of investigations into the relationship between selected water quality parameters and hydrological streamflow drought in a small river situated in the Mazovian Lowlands in Poland. As hydrological streamflow drought periods become more frequent in Poland, investigations about the [...] Read more.
The paper presents the results of investigations into the relationship between selected water quality parameters and hydrological streamflow drought in a small river situated in the Mazovian Lowlands in Poland. As hydrological streamflow drought periods become more frequent in Poland, investigations about the relationship between flow and water quality parameters can be an essential contribution to a better understanding of the impact of low flow on the status of water rivers. Data from a three-year study of a small lowland river along with significant agricultural land management was used to analyze the connection between low flows and specific water quality indicators. The separation of low-flow data from water discharge records was achieved using two criteria: Q90% (the discharge value from a flow duration curve) and a minimum low-flow duration of 10 days. During these periods, the concentration of water quality indicators was determined based on collected water samples. In total, 30 samples were gathered and examined for pH, suspended sediments, dissolved substances, hardness, ammonium, nitrates, nitrites, phosphates, total phosphorus, chloride, sulfate, calcium, magnesium, and water temperature during sampling. The study’s main aim was to describe the relation between hydrological streamflow droughts and chosen water quality parameters. The analysis results demonstrate an inverse statistically significant relationship between concentration and low-flow values for total hardness and sulfate. In contrast, there was a direct relationship between nutrient indicators, suspended sediment concentration, and river hydrological streamflow drought. Statistical tests were applied to compare the datasets between years, revealing statistical differences only for nutrient indicators. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

20 pages, 7673 KiB  
Article
Impact of Elevation and Hydrography Data on Modeled Flood Map Accuracy Using ARC and Curve2Flood
by Taylor James Miskin, L. Ricardo Rosas, Riley C. Hales, E. James Nelson, Michael L. Follum, Joseph L. Gutenson, Gustavious P. Williams and Norman L. Jones
Hydrology 2025, 12(8), 202; https://doi.org/10.3390/hydrology12080202 - 1 Aug 2025
Viewed by 257
Abstract
This study assesses the accuracy of flood extent predictions in five U.S. watersheds. We generated flood maps for four return periods using various digital elevation models (DEMs)—FABDEM, SRTM, ALOS, and USGS 3DEP—and two versions of the GEOGLOWS River Forecast System (RFS) hydrography. These [...] Read more.
This study assesses the accuracy of flood extent predictions in five U.S. watersheds. We generated flood maps for four return periods using various digital elevation models (DEMs)—FABDEM, SRTM, ALOS, and USGS 3DEP—and two versions of the GEOGLOWS River Forecast System (RFS) hydrography. These comparisons are notable because they build on operational global hydrology models so subsequent work can develop global modeled flood products. Models were made using the Automated Rating Curve (ARC) and Curve2Flood tools. Accuracy was measured against USGS reference maps using the F-statistic. Our results show that flood map accuracy generally increased with higher return periods. The most consistent and reliable improvements in accuracy occurred when both the DEM and hydrography datasets were upgraded to higher-resolution sources. While DEM improvements generally had a greater impact, hydrography refinements were more important for lower return periods when flood extents were the smallest. Generally, DEM resolution improved accuracy metrics more as the return period increased and hydrography and bare earth DEMs mattered more as the return period decreased. There was a 38.9% increase in the mean F-statistic between the two principal pairings of interest (FABDEM-RFS2 and SRTM 30 m DEM-RFS1). FABDEM’s bare-earth representation combined with RFS2 sometimes outperformed higher-resolution non-bare-earth DEMs, suggesting that there remains a need for site-specific investigation. Using ARC and Curve2Flood with FABDEM and RFS2 is a suitable baseline combination for general flood extent application. Full article
Show Figures

Figure 1

26 pages, 3711 KiB  
Article
Probability Characteristics of High and Low Flows in Slovakia: A Comprehensive Hydrological Assessment
by Pavla Pekárová, Veronika Bačová Mitková and Dana Halmová
Hydrology 2025, 12(8), 199; https://doi.org/10.3390/hydrology12080199 - 31 Jul 2025
Viewed by 218
Abstract
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability [...] Read more.
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability characteristics of long-term M-day maximum/minimum discharges in the Carpathian region of Slovakia. We analyze the long-term data from 26 gauging stations covering 90 years of observation. Slovak rivers show considerable intra-annual variability, especially between the summer–autumn (SA) and winter–spring (WS) seasons. To allow consistent comparisons, we apply a uniform methodology to estimate T-year daily maximum and minimum specific discharges over durations of 1 and 7 days for both seasons. Our findings indicate that 1-day maximum specific discharges are generally higher during the SA season compared to the WS season. The 7-day minimum specific discharges are lower during the WS season compared to the SA season. Slovakia’s diverse orographic and climatic conditions cause significant spatial variability in extreme discharges. However, the estimated T-year 7-day minimum and 1-day maximum specific discharges, based on the mean specific discharge and the altitude of the water gauge, exhibit certain nonlinear dependences. These relationships could support the indirect estimation of T-year M-day discharges in regions with similar runoff characteristics. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

22 pages, 6878 KiB  
Article
Separate Versus Unified Ecological Networks: Validating a Dual Framework for Biodiversity Conservation in Anthropogenically Disturbed Freshwater–Terrestrial Ecosystems
by Tianyi Cai, Qie Shi, Tianle Luo, Yuechun Zheng, Xiaoming Shen and Yuting Xie
Land 2025, 14(8), 1562; https://doi.org/10.3390/land14081562 - 30 Jul 2025
Viewed by 333
Abstract
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual [...] Read more.
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual EN framework in the Yangtze River Delta’s Ecological Green Integration Demonstration Zone, constructing freshwater and terrestrial networks independently before merging them. Using InVEST Habitat Quality, MSPA, the MCR model, and Linkage Mapper, we delineated sources and corridors: freshwater sources combined NDWI-InVEST indicators with a modified, sluice-weighted resistance surface, producing 78 patches (mean 348.7 ha) clustered around major lakes and 456.4 km of corridors (42.50% primary). Terrestrial sources used NDVI-InVEST with a conventional resistance surface, yielding 100 smaller patches (mean 121.6 ha) dispersed across woodlands and agricultural belts and 658.8 km of corridors (36.45% primary). Unified models typically favor large sources from dominant ecosystems while overlooking small, high-value patches in non-dominant systems, generating corridors that span both freshwater and terrestrial habitats and mismatch species migration patterns. Our dual framework better reflects species migration characteristics, accurately captures dispersal paths, and successfully integrates key agroforestry-complex patches that unified models miss, providing a practical tool for biodiversity protection in disturbed freshwater–terrestrial landscapes. Full article
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
Hydrological Responses to Territorial Spatial Change in the Xitiaoxi River Basin: A Simulation Study Using the SWAT Model Driven by China Meteorological Assimilation Driving Datasets
by Dongyan Kong, Huiguang Chen and Kongsen Wu
Water 2025, 17(15), 2267; https://doi.org/10.3390/w17152267 - 30 Jul 2025
Viewed by 244
Abstract
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined [...] Read more.
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined multi-source data such as DEM, soil texture and land use type, in order to construct scenarios of territorial spatial change (TSC) across distinct periods. Based on the CMADS-L40 data and the SWAT model, it simulated the runoff dynamics in the Xitiaoxi River Basin, and analyzed the hydrological response characteristics under different TSCs. The results showed that The SWAT model, driven by CMADS-L40 data, demonstrated robust performance in monthly runoff simulation. The coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE), and the absolute value of percentage bias (|PBIAS|) during the calibration and validation period all met the accuracy requirements of the model, which validated the applicability of CMADS-L40 data and the SWAT model for runoff simulation at the watershed scale. Changes in territorial spatial patterns are closely correlated with runoff variation. Changes in agricultural production space and forest ecological space show statistically significant negative correlation with runoff change, while industrial production space change exhibits a significant positive correlation with runoff change. The expansion of production space, particularly industrial production space, leads to increased runoff, whereas the enlargement of agricultural production space and forest ecological space can reduce runoff. This article contributes to highlighting the role of land use policy in hydrological regulation, providing a scientific basis for optimizing territorial spatial planning to mitigate flood risks and protect water resources. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

19 pages, 4896 KiB  
Article
Calculation of Connectivity Between Surface and Underground Three-Dimensional Water Systems in the Luan River Basin
by Jingyao Wang, Zhixiong Tang, Belay Z. Abate, Zhuoxun Wu and Li He
Sustainability 2025, 17(15), 6913; https://doi.org/10.3390/su17156913 - 30 Jul 2025
Viewed by 213
Abstract
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for [...] Read more.
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for optimizing spatial water distribution, maintaining ecohydrological equilibrium, and enhancing flood–drought regulation efficacy is important. Focusing on the regulated reaches of the Panjiakou, Daheiting, and Taolinkou reservoirs in the Luan River Basin, this study established and integrated a three-dimensional assessment framework that synthesizes hydrological processes, hydraulic structural effects, and human activities as three fundamental drivers, and employed the Analytic Hierarchy Process (AHP) to develop a quantitative connectivity evaluation system. Results indicate that water conservancy projects significantly altered basin connectivity: surface water connectivity decreased by 0.40, while groundwater connectivity experienced a minor reduction (0.25) primarily through reservoir seepage. Consequently, the integrated surface–groundwater system declined by 0.39. Critically, project scale governs surface connectivity attenuation intensity, which substantially exceeds impacts on groundwater systems. The comprehensive assessment system developed in this study provides theoretical and methodological support for diagnosing river connectivity, formulating ecological restoration strategies, and protecting basin ecosystems. Full article
Show Figures

Figure 1

25 pages, 10240 KiB  
Article
Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability
by Saman Maroufpoor and Xiaosheng Qin
Water 2025, 17(15), 2256; https://doi.org/10.3390/w17152256 - 29 Jul 2025
Viewed by 317
Abstract
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over [...] Read more.
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over these environmental impacts have already led to halts in dam construction across the region. This study assesses the potential of run-of-river hydropower plants (RHPs) across 199 hydrometric stations in Mainland Southeast Asia (MSEA). The assessment utilizes power duration curves for the historical period and projections from the HBV hydrological model, which is driven by an ensemble of 31 climate models for future scenarios. Energy production was analyzed at four levels (minimum, maximum, balanced, and optimal) for both historical and future periods under varying Shared Socioeconomic Pathways (SSPs). To promote sustainable development, environmental flow constraints and carbon dioxide (CO2) emissions were evaluated for both historical and projected periods. The results indicate that the aggregate energy production potential during the historical period ranges from 111.15 to 229.62 MW (Malaysia), 582.78 to 3615.36 MW (Myanmar), 555.47 to 3142.46 MW (Thailand), 1067.05 to 6401.25 MW (Laos), 28.07 to 189.77 MW (Vietnam), and 566.13 to 2803.75 MW (Cambodia). The impact of climate change on power production varies significantly across countries, depending on the level and scenarios. At the optimal level, an average production change of −9.2–5.9% is projected for the near future, increasing to 15.3–19% in the far future. Additionally, RHP development in MSEA is estimated to avoid 32.5 Mt of CO2 emissions at the optimal level. The analysis further shows avoidance change of 8.3–25.3% and −8.6–25.3% under SSP245 and SSP585, respectively. Full article
Show Figures

Graphical abstract

22 pages, 9790 KiB  
Article
Assessing the Hazard of Flooding from Breaching of the Alacranes Dam in Villa Clara, Cuba
by Victor Manuel Carvajal González, Carlos Lázaro Castillo García, Lisdelys González-Rodriguez, Luciana Silva and Jorge Jiménez
Sustainability 2025, 17(15), 6864; https://doi.org/10.3390/su17156864 - 28 Jul 2025
Viewed by 922
Abstract
Flooding due to dam failures is a critical issue with significant impacts on human safety, infrastructure, and the environment. This study assessed the potential flood hazard that could be generated from breaching of the Alacranes dam in Villa Clara, Cuba. Thirteen reservoir breaching [...] Read more.
Flooding due to dam failures is a critical issue with significant impacts on human safety, infrastructure, and the environment. This study assessed the potential flood hazard that could be generated from breaching of the Alacranes dam in Villa Clara, Cuba. Thirteen reservoir breaching scenarios were simulated under several criteria for modeling the flood wave through the 2D Saint Venant equations using the Hydrologic Engineering Center’s River Analysis System (HEC-RAS). A sensitivity analysis was performed on Manning’s roughness coefficient, demonstrating a low variability of the model outputs for these events. The results show that, for all modeled scenarios, the terrain topography of the coastal plain expands the flood wave, reaching a maximum width of up to 105,057 km. The most critical scenario included a 350 m breach in just 0.67 h. Flood, velocity, and hazard maps were generated, identifying populated areas potentially affected by the flooding events. The reported depths, velocities, and maximum flows could pose extreme danger to infrastructure and populated areas downstream. These types of studies are crucial for both risk assessment and emergency planning in the event of a potential dam breach. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

27 pages, 6584 KiB  
Article
Evaluating Geostatistical and Statistical Merging Methods for Radar–Gauge Rainfall Integration: A Multi-Method Comparative Study
by Xuan-Hien Le, Naoki Koyama, Kei Kikuchi, Yoshihisa Yamanouchi, Akiyoshi Fukaya and Tadashi Yamada
Remote Sens. 2025, 17(15), 2622; https://doi.org/10.3390/rs17152622 - 28 Jul 2025
Viewed by 315
Abstract
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile [...] Read more.
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile Adaptive Gaussian (QAG), Empirical Quantile Mapping (EQM), and radial basis function (RBF)—and three geostatistical approaches—external drift kriging (EDK), Bayesian Kriging (BAK), and Residual Kriging (REK). The evaluation was conducted over the Huong River Basin in Central Vietnam, a region characterized by steep terrain, monsoonal climate, and frequent hydrometeorological extremes. Two observational scenarios were established: Scenario S1 utilized 13 gauges for merging and 7 for independent validation, while Scenario S2 employed all 20 stations. Hourly radar and gauge data from peak rainy months were used for the evaluation. Each method was assessed using continuous metrics (RMSE, MAE, CC, NSE, and KGE), categorical metrics (POD and CSI), and spatial consistency indicators. Results indicate that all merging methods significantly improved the accuracy of rainfall estimates compared to raw radar data. Among them, RBF consistently achieved the highest accuracy, with the lowest RMSE (1.24 mm/h), highest NSE (0.954), and strongest spatial correlation (CC = 0.978) in Scenario S2. RBF also maintained high classification skills across all rainfall categories, including very heavy rain. EDK and BAK performed better with denser gauge input but required recalibration of variogram parameters. EQM and REK yielded moderate performance and had limitations near basin boundaries where gauge coverage was sparse. The results highlight trade-offs between method complexity, spatial accuracy, and robustness. While complex methods like EDK and BAK offer detailed spatial outputs, they require more calibration. Simpler methods are easier to apply across different conditions. RBF emerged as the most practical and transferable option, offering strong generalization, minimal calibration needs, and computational efficiency. These findings provide useful guidance for integrating radar and gauge data in flood-prone, data-scarce regions. Full article
Show Figures

Figure 1

20 pages, 4109 KiB  
Review
Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways
by Oluwafemi E. Adeyeri
Water 2025, 17(15), 2247; https://doi.org/10.3390/w17152247 - 28 Jul 2025
Viewed by 293
Abstract
African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 [...] Read more.
African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 °C/decade), leading to more intense hydrological extremes and regionally varied responses. For example, East Africa has shown reversed temperature–moisture correlations since the Holocene onset, while West African rivers demonstrate nonlinear runoff sensitivity (a threefold reduction per unit decline in rainfall). Land-use and land-cover changes (LULCC) are as impactful as climate change, with analysis from 1959–2014 revealing extensive conversion of primary non-forest land and a more than sixfold increase in the intensity of pastureland expansion by the early 21st century. Future projections, exemplified by studies in basins like Ethiopia’s Gilgel Gibe and Ghana’s Vea, indicate escalating aridity with significant reductions in surface runoff and groundwater recharge, increasing aquifer stress. These findings underscore the need for integrated adaptation strategies that leverage remote sensing, nature-based solutions, and transboundary governance to build resilient water futures across Africa’s diverse basins. Full article
Show Figures

Figure 1

27 pages, 4973 KiB  
Article
LSTM-Based River Discharge Forecasting Using Spatially Gridded Input Data
by Kamilla Rakhymbek, Balgaisha Mukanova, Andrey Bondarovich, Dmitry Chernykh, Almas Alzhanov, Dauren Nurekenov, Anatoliy Pavlenko and Aliya Nugumanova
Data 2025, 10(8), 122; https://doi.org/10.3390/data10080122 - 27 Jul 2025
Viewed by 512
Abstract
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using [...] Read more.
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using the ERA5-Land dataset, we developed an LSTM model that integrates grid-based meteorological inputs and assesses their relative importance. We conducted experiments on two snow-dominated basins with contrasting physiographic characteristics, the Uba River basin in Kazakhstan and the Flathead River basin in the USA, to answer three research questions: (1) whether full-grid input outperforms reduced configurations and models trained on Caravan, (2) the impact of spatial resolution on accuracy and efficiency, and (3) the effect of partial spatial coverage on prediction reliability. Specifically, we compared the full-grid LSTM with a single-cell LSTM, a basin-average LSTM, a Caravan-trained LSTM, and coarser cell aggregations. The results demonstrate that the full-grid LSTM consistently yields the highest forecasting performance, achieving a median Nash–Sutcliffe efficiency of 0.905 for Uba and 0.93 for Middle Fork Flathead, while using coarser grids and random subsets reduces performance. Our findings highlight the critical importance of spatial input richness and provide a reproducible framework for grid selection in flood-prone basins lacking dense observation networks. Full article
(This article belongs to the Special Issue New Progress in Big Earth Data)
Show Figures

Figure 1

Back to TopTop