Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,223)

Search Parameters:
Keywords = risk-neutral

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1536 KiB  
Article
Control Strategy of Multiple Battery Energy Storage Stations for Power Grid Peak Shaving
by Peiyu Chen, Wenqing Cui, Jingan Shang, Bin Xu, Chao Li and Danyang Lun
Appl. Sci. 2025, 15(15), 8656; https://doi.org/10.3390/app15158656 (registering DOI) - 5 Aug 2025
Abstract
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy [...] Read more.
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy for multiple battery energy storage stations (BESSs), improving the performance of peak shaving. Firstly, the strategy involves constructing an optimization model incorporating load forecasting, capacity constraints, and security indices to design a coordination mechanism tracking the target load band with the equivalent power. Secondly, it establishes a quantitative evaluation system using metrics such as peak–valley difference and load standard deviation. Comparison based on typical daily cases shows that, compared with the constant power strategy, the coordinated variable-power control strategy has a more obvious and comprehensive improvement in overall peak-shaving effects. Furthermore, it employs a “dynamic dispatch of multiple BESS” mode, effectively mitigating the risks and flexibility issues associated with single BESSs. This strategy provides a reliable new approach for large-scale energy storage to participate in high-precision peaking. Full article
Show Figures

Figure 1

22 pages, 1078 KiB  
Review
The Cannabinoid Pharmacology of Bone Healing: Developments in Fusion Medicine
by Gabriel Urreola, Michael Le, Alan Harris, Jose A. Castillo, Augustine M. Saiz, Hania Shahzad, Allan R. Martin, Kee D. Kim, Safdar Khan and Richard Price
Biomedicines 2025, 13(8), 1891; https://doi.org/10.3390/biomedicines13081891 - 3 Aug 2025
Viewed by 330
Abstract
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual [...] Read more.
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual cannabinoids affect fracture repair and spinal arthrodesis. Methods: PubMed, Web of Science and Scopus were searched from inception to 31 May 2025 with the terms “cannabinoid”, “CB1”, “CB2”, “spinal fusion”, “fracture”, “osteoblast” and “osteoclast”. Animal studies, in vitro experiments and clinical reports that reported bone outcomes were eligible. Results: CB2 signaling was uniformly osteogenic. CB2-knockout mice developed high-turnover osteoporosis, whereas CB2 agonists (HU-308, JWH-133, HU-433, JWH-015) restored trabecular volume, enhanced osteoblast activity and strengthened fracture callus. Cannabidiol (CBD), a non-psychoactive phytocannabinoid with CB2 bias, accelerated early posterolateral fusion in rats and reduced the RANKL/OPG ratio without compromising final union. In contrast, sustained or high-dose Δ9-tetrahydrocannabinol (THC) activation of CB1 slowed chondrocyte hypertrophy, decreased mesenchymal-stromal-cell mineralization and correlated clinically with 6–10% lower bone-mineral density and a 1.8–3.6-fold higher pseudarthrosis or revision risk. Short-course or low-dose THC appeared skeletal neutral. Responses varied with sex, age and genetic background; no prospective trials defined safe perioperative dosing thresholds. Conclusions: CB2 activation and CBD consistently favor bone repair, whereas chronic high-THC exposure poses a modifiable risk for nonunion in spine surgery. Prospective, receptor-specific trials stratified by THC/CBD ratio, patient sex and ECS genotype are needed to establish evidence-based cannabinoid use in spinal fusion. Full article
(This article belongs to the Topic Cannabis, Cannabinoids and Its Derivatives)
Show Figures

Figure 1

20 pages, 3258 KiB  
Article
Loss of SVIP Results in Metabolic Reprograming and Increased Retention of Very-Low-Density Lipoproteins in Hepatocytes
by Vandana Sekhar, Thomas Andl and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(15), 7465; https://doi.org/10.3390/ijms26157465 - 1 Aug 2025
Viewed by 196
Abstract
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance [...] Read more.
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance of discerning the role of different cellular proteins involved in VLDL biogenesis, transport, and secretion. Small VCP-Interacting Protein (SVIP) has been identified as a component of VLDL transport vesicles and VLDL secretion. This study evaluates the cellular effects stemming from the CRISPR-Cas9-mediated depletion of SVIP in rat hepatocytes. The SVIP-knockout (KO) cells display an increased VLDL retention with elevated intracellular levels of ApoB100 and neutral lipid staining. RNA sequencing studies reveal an impaired PPARα and Nrf2 signaling in the SVIP KO cells, implying a state of metabolic reprograming, with a shift from fatty acid uptake, synthesis, and oxidation to cells favoring the activation of glucose by impaired glycogen storage and increased glucose release. Additionally, SVIP KO cells exhibit a transcriptional profile indicative of acute phase response (APR) in hepatocytes. Many inflammatory markers and genes associated with APR are upregulated in the SVIP KO hepatocytes. In accordance with an APR-like response, the cells also demonstrate an increase in mRNA expression of genes associated with protein synthesis. Together, our data demonstrate that SVIP is critical in maintaining hepatic lipid homeostasis and metabolic balance by regulating key pathways such as PPARα, Nrf2, and APR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

20 pages, 4569 KiB  
Article
Lightweight Vision Transformer for Frame-Level Ergonomic Posture Classification in Industrial Workflows
by Luca Cruciata, Salvatore Contino, Marianna Ciccarelli, Roberto Pirrone, Leonardo Mostarda, Alessandra Papetti and Marco Piangerelli
Sensors 2025, 25(15), 4750; https://doi.org/10.3390/s25154750 - 1 Aug 2025
Viewed by 233
Abstract
Work-related musculoskeletal disorders (WMSDs) are a leading concern in industrial ergonomics, often stemming from sustained non-neutral postures and repetitive tasks. This paper presents a vision-based framework for real-time, frame-level ergonomic risk classification using a lightweight Vision Transformer (ViT). The proposed system operates directly [...] Read more.
Work-related musculoskeletal disorders (WMSDs) are a leading concern in industrial ergonomics, often stemming from sustained non-neutral postures and repetitive tasks. This paper presents a vision-based framework for real-time, frame-level ergonomic risk classification using a lightweight Vision Transformer (ViT). The proposed system operates directly on raw RGB images without requiring skeleton reconstruction, joint angle estimation, or image segmentation. A single ViT model simultaneously classifies eight anatomical regions, enabling efficient multi-label posture assessment. Training is supervised using a multimodal dataset acquired from synchronized RGB video and full-body inertial motion capture, with ergonomic risk labels derived from RULA scores computed on joint kinematics. The system is validated on realistic, simulated industrial tasks that include common challenges such as occlusion and posture variability. Experimental results show that the ViT model achieves state-of-the-art performance, with F1-scores exceeding 0.99 and AUC values above 0.996 across all regions. Compared to previous CNN-based system, the proposed model improves classification accuracy and generalizability while reducing complexity and enabling real-time inference on edge devices. These findings demonstrate the model’s potential for unobtrusive, scalable ergonomic risk monitoring in real-world manufacturing environments. Full article
(This article belongs to the Special Issue Secure and Decentralised IoT Systems)
Show Figures

Figure 1

19 pages, 397 KiB  
Review
Effects of Blood-Glucose Lowering Therapies on Body Composition and Muscle Outcomes in Type 2 Diabetes: A Narrative Review
by Ioana Bujdei-Tebeică, Doina Andrada Mihai, Anca Mihaela Pantea-Stoian, Simona Diana Ștefan, Claudiu Stoicescu and Cristian Serafinceanu
Medicina 2025, 61(8), 1399; https://doi.org/10.3390/medicina61081399 - 1 Aug 2025
Viewed by 196
Abstract
Background and Objectives: The management of type 2 diabetes (T2D) extends beyond glycemic control, requiring a more global strategy that includes optimization of body composition, even more so in the context of sarcopenia and visceral adiposity, as they contribute to poor outcomes. [...] Read more.
Background and Objectives: The management of type 2 diabetes (T2D) extends beyond glycemic control, requiring a more global strategy that includes optimization of body composition, even more so in the context of sarcopenia and visceral adiposity, as they contribute to poor outcomes. Past reviews have typically been focused on weight reduction or glycemic effectiveness, with limited inclusion of new therapies’ effects on muscle and fat distribution. In addition, the emergence of incretin-based therapies and dual agonists such as tirzepatide requires an updated synthesis of their impacts on body composition. This review attempts to bridge the gap by taking a systematic approach to how current blood-glucose lowering therapies affect lean body mass, fat mass, and the risk of sarcopenia in T2D patients. Materials and Methods: Between January 2015 and March 2025, we conducted a narrative review by searching the PubMed, Scopus, and Web of Science databases for English-language articles. The keywords were combinations of the following: “type 2 diabetes,” “lean body mass,” “fat mass,” “body composition,” “sarcopenia,” “GLP-1 receptor agonists,” “SGLT2 inhibitors,” “tirzepatide,” and “antidiabetic pharmacotherapy.” Reference lists were searched manually as well. The highest precedence was assigned to studies that aimed at adult type 2 diabetic subjects and reported body composition results. Inclusion criteria for studies were: (1) type 2 diabetic mellitus adult patients and (2) reporting measures of body composition (e.g., lean body mass, fat mass, or muscle function). We prioritized randomized controlled trials and large observational studies and excluded mixed diabetic populations, non-pharmacological interventions only, and poor reporting of body composition. Results: Metformin was widely found to be weight-neutral with minimal effects on muscle mass. Insulin therapy, being an anabolic hormone, often leads to fat mass accumulation and increases the risk of sarcopenic obesity. Incretin-based therapies induced substantial weight loss, mostly from fat mass. Notable results were observed in studies with tirzepatide, demonstrating superior reduction not only in fat mass, but also in visceral fat. Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) promote fat loss but are associated with a small yet significant decrease in lean muscle mass. Conclusions: Blood-glucose lowering therapies demonstrated clinically relevant effects on body composition. Treatment should be personalized, balancing glycemic control, cardiovascular, and renal benefits, together with optimal impact on muscle mass along with glycemic, cardiovascular, and renal benefits. Full article
(This article belongs to the Section Endocrinology)
17 pages, 4370 KiB  
Article
PSG and Other Candidate Genes as Potential Biomarkers of Therapy Resistance in B-ALL: Insights from Chromosomal Microarray Analysis and Machine Learning
by Valeriya Surimova, Natalya Risinskaya, Ekaterina Kotova, Abdulpatakh Abdulpatakhov, Anastasia Vasileva, Yulia Chabaeva, Sofia Starchenko, Olga Aleshina, Nikolay Kapranov, Irina Galtseva, Alina Ponomareva, Ilya Kanivets, Sergey Korostelev, Sergey Kulikov, Andrey Sudarikov and Elena Parovichnikova
Int. J. Mol. Sci. 2025, 26(15), 7437; https://doi.org/10.3390/ijms26157437 - 1 Aug 2025
Viewed by 156
Abstract
Chromosomal microarray analysis (CMA) was performed for 40 patients with B-ALL undergoing treatment according to the ALL-2016 protocol to investigate the copy number alterations (CNAs) and copy neutral loss of heterozygosity (cnLOH) associated with minimal residual disease (MRD)-positive remission. Aberrations involving over 20,000 [...] Read more.
Chromosomal microarray analysis (CMA) was performed for 40 patients with B-ALL undergoing treatment according to the ALL-2016 protocol to investigate the copy number alterations (CNAs) and copy neutral loss of heterozygosity (cnLOH) associated with minimal residual disease (MRD)-positive remission. Aberrations involving over 20,000 genes were identified, and a random forest approach was applied to isolate a subset of genes whose CNAs and cnLOH are significantly associated with poor therapeutic response. We have assembled the triple matched healthy population data and used that data as a reference, but not as a matched control. We identified a recurrent cluster of cnLOH in the 19q13.2–19q13.31 region, significantly enriched in MRD-positive patients (70% vs. 47% in the reference group vs. 16% in MRD-negative patients). This region includes the pregnancy-specific glycoprotein (PSG) gene family and the oncogene ERF, suggesting a potential role in leukemic persistence and treatment resistance. Additionally, we observed significant deletions involving 7p22.3 and 16q13, often as part of large-scale losses affecting almost the entire chromosomes 7 and 16, indicative of global chromosomal instability. These findings highlight specific genomic regions potentially involved in therapy resistance and may contribute to improved risk stratification in B-ALL. Our findings emphasize the value of high-resolution CMA in diagnostics and risk stratification and suggest that PSG genes and other candidate genes could serve as biomarkers for predicting treatment outcomes. Full article
(This article belongs to the Special Issue Cancer Genomics)
Show Figures

Figure 1

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 - 1 Aug 2025
Viewed by 174
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

28 pages, 437 KiB  
Article
The General Semimartingale Market Model
by Moritz Sohns
AppliedMath 2025, 5(3), 97; https://doi.org/10.3390/appliedmath5030097 (registering DOI) - 1 Aug 2025
Viewed by 138
Abstract
This paper develops a unified framework for mathematical finance under general semimartingale models that allow for dividend payments, negative asset prices, and unbounded jumps. We present a rigorous approach to the mathematical modeling of financial markets with dividend-paying assets by defining appropriate concepts [...] Read more.
This paper develops a unified framework for mathematical finance under general semimartingale models that allow for dividend payments, negative asset prices, and unbounded jumps. We present a rigorous approach to the mathematical modeling of financial markets with dividend-paying assets by defining appropriate concepts of numéraires, discounted processes, and self-financing trading strategies. While most of the mathematical results are not new, this unified framework has been missing in the literature. We carefully examine the transition between nominal and discounted price processes and define appropriate notions of admissible strategies that work naturally in both settings. By establishing the equivalence between these models and providing clear conditions for their applicability, we create a mathematical foundation that encompasses a wide range of realistic market scenarios and can serve as a basis for future work on mathematical finance and derivative pricing. We demonstrate the practical relevance of our framework through a comprehensive application to dividend-paying equity markets where the framework naturally handles discrete dividend payments. This application shows that our theoretical framework is not merely abstract but provides the rigorous foundation for pricing derivatives in real-world markets where classical assumptions need extension. Full article
Show Figures

Figure 1

24 pages, 2310 KiB  
Review
Exploring the Use of Viral Vectors Pseudotyped with Viral Glycoproteins as Tools to Study Antibody-Mediated Neutralizing Activity
by Miguel Ramos-Cela, Vittoria Forconi, Roberta Antonelli, Alessandro Manenti and Emanuele Montomoli
Microorganisms 2025, 13(8), 1785; https://doi.org/10.3390/microorganisms13081785 - 31 Jul 2025
Viewed by 260
Abstract
Recent outbreaks of highly pathogenic human RNA viruses from probable zoonotic origin have highlighted the relevance of epidemic preparedness as a society. However, research in vaccinology and virology, as well as epidemiologic surveillance, is often constrained by the biological risk that live virus [...] Read more.
Recent outbreaks of highly pathogenic human RNA viruses from probable zoonotic origin have highlighted the relevance of epidemic preparedness as a society. However, research in vaccinology and virology, as well as epidemiologic surveillance, is often constrained by the biological risk that live virus experimentation entails. These also involve expensive costs, time-consuming procedures, and advanced personnel expertise, hampering market access for many drugs. Most of these drawbacks can be circumvented with the use of pseudotyped viruses, which are surrogate, non-pathogenic recombinant viral particles bearing the surface envelope protein of a virus of interest. Pseudotyped viruses significantly expand the research potential in virology, enabling the study of non-culturable or highly infectious pathogens in a safer environment. Most are derived from lentiviral vectors, which confer a series of advantages due to their superior efficiency. During the past decade, many studies employing pseudotyped viruses have evaluated the efficacy of vaccines or monoclonal antibodies for relevant pathogens such as HIV-1, Ebolavirus, Influenza virus, or SARS-CoV-2. In this review, we aim to provide an overview of the applications of pseudotyped viruses when evaluating the neutralization capacity of exposed individuals, or candidate vaccines and antivirals in both preclinical models and clinical trials, to further help develop effective countermeasures against emerging neutralization-escape phenotypes. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

18 pages, 4051 KiB  
Article
Chimeric Vesicular Stomatitis Virus Bearing Western Equine Encephalitis Virus Envelope Proteins E2-E1 Is a Suitable Surrogate for Western Equine Encephalitis Virus in a Plaque Reduction Neutralization Test
by Kerri L. Miazgowicz, Bailey E. Maloney, Melinda A. Brindley, Mattie Cassaday, Raegan J. Petch, Paul Bates, Aaron C. Brault and Amanda E. Calvert
Viruses 2025, 17(8), 1067; https://doi.org/10.3390/v17081067 - 31 Jul 2025
Viewed by 253
Abstract
In December 2023, infections of western equine encephalitis virus (WEEV) within Argentina were reported to the World Health Organization (WHO). By April 2024, more than 250 human infections, 12 of which were fatal, and 2500 equine infections were identified in South America. Laboratory [...] Read more.
In December 2023, infections of western equine encephalitis virus (WEEV) within Argentina were reported to the World Health Organization (WHO). By April 2024, more than 250 human infections, 12 of which were fatal, and 2500 equine infections were identified in South America. Laboratory diagnosis and surveillance in affected countries were hindered by a lack of facilities equipped with BSL-3 laboratories, as confirmatory serodiagnosis for WEEV requires live virus in the plaque reduction neutralization test (PRNT). To expand serodiagnosis for WEEV in the Americas, we developed a virus chimera composed of vesicular stomatitis virus (VSV) engineered to display the E2-E1 glycoproteins of WEEV (VSV/WEEV) in place of the VSV glycoprotein (G). PRNT90 and IC90 values of parental WEEV and VSV/WEEV were analogous using sera collected from mice, horses, and chickens. VSV/WEEV rapidly formed plaques with clear borders and reduced the assay readout time by approximately 8 h compared to the parental virus. Overall, we demonstrate that chimeric VSV/WEEV is a suitable surrogate for WEEV in a diagnostic PRNT. Use of chimeric VSV/WEEV in place of authentic WEEV will dramatically expand testing capacity by enabling PRNTs to be performed at BSL-2 containment, while simultaneously decreasing the health risk to testing personnel. Full article
(This article belongs to the Special Issue Mosquito-Borne Encephalitis Viruses)
Show Figures

Figure 1

12 pages, 328 KiB  
Article
Polygenic Embryo Risk Scores: A Survey of Public Perception
by Alexandra Peyser, Cailey Brogan, Lilli Zimmerman and Randi H. Goldman
Reprod. Med. 2025, 6(3), 19; https://doi.org/10.3390/reprodmed6030019 - 31 Jul 2025
Viewed by 234
Abstract
Background: Preimplantation genetic testing for polygenic diseases (PGT-P) is a reproductive technology that has made it possible to assign risk scores to embryos for various complex polygenic conditions such as diabetes, hypertension, breast cancer, and schizophrenia. Whether there is public interest in utilizing [...] Read more.
Background: Preimplantation genetic testing for polygenic diseases (PGT-P) is a reproductive technology that has made it possible to assign risk scores to embryos for various complex polygenic conditions such as diabetes, hypertension, breast cancer, and schizophrenia. Whether there is public interest in utilizing PGT-P and what public opinions are regarding this technology is unknown. Therefore, the objective of our study was to evaluate the opinion of the general United States (US) public regarding PGT-P. Methods: A web-based questionnaire consisting of 25 questions was administered to a nationally representative sample of adult US residents according to age and sex. The survey contained a description of PGT-P, followed by questions with Likert-scale responses ranging from strongly agree to strongly disagree. Results: Of the 715 respondents recruited, 673 (94%) completed the survey. Most respondents agreed that use of PGT-P is ethical (54%), and another 37% were neutral; however, approximately 9% of respondents disagreed and were opposed to the use of PGT-P. Those that opposed PGT-P cited that it was “unethical” (46%) or “not natural” (39%), believed children could be negatively affected (31%), or stated that it went against their religion (15%). The majority of respondents did not know whether PGT-P was safe for embryos (68%) or children (67%) and felt that anyone should be able to utilize it (53%). Conclusions: Participants who were younger, were Atheist, or were Democrats were more likely to agree that “PGT-P is ethical”. This study identified that more than half of respondents supported the use of PGT-P. However, concerns regarding its safety and ethical implications persist. Full article
Show Figures

Figure 1

19 pages, 6265 KiB  
Article
Adsorption Behavior of Tetracycline by Polyethylene Microplastics in Groundwater Environment
by Jiahui Li, Hui Li, Wei Zhang, Xiongguang Li, Xiangke Kong and Min Liu
Sustainability 2025, 17(15), 6908; https://doi.org/10.3390/su17156908 - 30 Jul 2025
Viewed by 244
Abstract
Previous studies have mostly focused on the adsorption behavior of microplastics for antibiotics in soil or aqueous environments. This study explores the adsorption characteristics of microplastics for antibiotics under groundwater environmental conditions and the influence of typical influencing factors of the groundwater environment [...] Read more.
Previous studies have mostly focused on the adsorption behavior of microplastics for antibiotics in soil or aqueous environments. This study explores the adsorption characteristics of microplastics for antibiotics under groundwater environmental conditions and the influence of typical influencing factors of the groundwater environment (pH, pollutant concentration, aquifer media, dissolved organic matter, and ionic strength) on the adsorption process. Polyethylene (PE) and tetracycline (TC) were selected as typical microplastics and antibiotics in the experiment. The study results showed that the adsorption of TC by PE reached equilibrium at 48 h, and the adsorption kinetics fitted pseudo-second-order kinetics models well. The adsorption isotherm was consistent with the Langmuir model. The adsorption capacity of PE for TC was highest under neutral conditions and positively correlated with the initial concentration of TC. The aquifer media exhibited limited effects on the adsorption process. Fulvic acid (FA) significantly suppressed TC adsorption onto PE, attributable to competitive adsorption mechanisms. TC adsorption on PE initially increased then declined with Ca2+ concentration due to Ca2+ bridging and competition. This research elucidates the adsorption mechanisms of PE towards TC, providing theoretical basis and reference for assessing the environmental risk of microplastics and antibiotics in groundwater. Full article
Show Figures

Figure 1

25 pages, 2333 KiB  
Article
Loss of Heterozygosity in Pediatric Acute Lymphoblastic Leukemia and Its Prognostic Impact: A Retrospective Study
by Borys Styka, Gabriela Ręka, Aleksandra Ozygała, Mariola Janiszewska, Magdalena Stelmach, Paulina Skowera, Zuzanna Urbańska and Monika Lejman
Cancers 2025, 17(15), 2500; https://doi.org/10.3390/cancers17152500 - 29 Jul 2025
Viewed by 206
Abstract
Background: In childhood acute lymphoblastic leukemia (ALL), in addition to classical chromosomal abnormalities, loss of heterozygosity (LOH), including copy-neutral LOH, is also observed. While LOH has been described in the literature, its clinical relevance in pediatric ALL remains unclear. The aim of this [...] Read more.
Background: In childhood acute lymphoblastic leukemia (ALL), in addition to classical chromosomal abnormalities, loss of heterozygosity (LOH), including copy-neutral LOH, is also observed. While LOH has been described in the literature, its clinical relevance in pediatric ALL remains unclear. The aim of this study is to identify and analyze patterns of LOH, assess their frequency, and evaluate their association with clinical characteristics and early treatment response during the induction phase of the ALL protocol. Methods: The study included 853 pediatric ALL patients, of whom 120 had B-ALL LOH+ and 58 had T-ALL LOH+. LOH was analyzed using CytoScan HD SNP microarrays. Patients were stratified using multiple correspondence analysis (MCA) and hierarchical clustering on principal components (HCPC), which identified three genetically and clinically distinct clusters. Results: In B-ALL, two clusters with extensive LOH—particularly involving chromosome 9—were associated with poor prognosis and suboptimal response to therapy. In contrast, Cluster 2, characterized by CDKN2A duplication and rare LOH, showed a favorable clinical course. In T-ALL, Cluster 1 had LOH in CDKN2A but favorable outcomes; Cluster 2 exhibited biallelic CDKN2A deletion and aggressive disease; Cluster 3 lacked CDKN2A alterations and showed a genetically stable profile. LOH was common on chromosomes not typically affected by trisomy and rare on those gained. Conclusions: Our study indicates that LOH profiling can positively influence patient stratification by identifying high-risk subgroups, inform prognosis by highlighting unfavorable genetic alterations, and help predict poor treatment response in specific clinical profiles. Full article
(This article belongs to the Special Issue Genetics in Hematological Malignancies)
Show Figures

Figure 1

27 pages, 5196 KiB  
Article
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
by Kan Wang, Jiahui Mi, Hao Wang, Xiaolei Liu and Tingting Shi
Hydrogen 2025, 6(3), 52; https://doi.org/10.3390/hydrogen6030052 - 29 Jul 2025
Viewed by 252
Abstract
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical [...] Read more.
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25, 50, 100 mm), transient release duration, dispersion patterns, and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship, with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk, producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile, increased wind velocities (>10 m/s) accelerate hydrogen dilution, reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces, leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications. Full article
Show Figures

Figure 1

8 pages, 1302 KiB  
Communication
Vaccinia and Monkeypox Virus-Neutralizing Antibodies in People Living with HIV: A Serological Study in a Orthopoxvirus-Endemic, Low-Income Region in Brazil
by Thyago José Silva, Ana Gabriella Stoffella-Dutra, Victor Lacerda Gripp, Pollyana R. C. Gorgens, Iago José da Silva Domingos, Pedro Henrique Bastos e Silva, Bruna Caroline Chaves-Garcia, Erna Geessien Kroon, Etel Rocha-Vieira, Giliane de Souza Trindade and Danilo Bretas de Oliveira
Pathogens 2025, 14(8), 733; https://doi.org/10.3390/pathogens14080733 - 25 Jul 2025
Viewed by 307
Abstract
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks [...] Read more.
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks affect rural communities. This epidemiological context is especially relevant for at-risk populations, such as people living with HIV (PLHIV). This study aimed to assess the presence of neutralizing antibodies (NAbs) against OPV in PLHIV in this endemic setting. Serum samples were collected from 177 PLHIV in treatment at the specialized service between December 2021 and August 2022. VACV and MPXV NAbs were measured using the plaque reduction neutralization test (PRNT) and VACV-infected cells. The overall occurrence of OPV NAbs was 27.7%. NAbs were higher in individuals born before 1980 (53.3%) than those born after 1980 (1.1%). Among anti-VACV-seropositive individuals, 40.8% also had MPXV NAbs, suggesting cross-immunity. These findings indicate the circulation of VACV in PLHIV and highlight the increased susceptibility to OPV infections among individuals born after the cessation of smallpox vaccination. The results reinforce the importance of continued surveillance of OPV, especially in endemic regions and vulnerable populations. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

Back to TopTop