Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = riparian buffers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4674 KiB  
Article
Linking Riparian Forest to the Functional Diversity of Ephemeroptera, Plecoptera, and Trichoptera in First-Order Tropical Streams
by Diego Simeone and Marcus E. B. Fernandes
Diversity 2025, 17(7), 438; https://doi.org/10.3390/d17070438 - 20 Jun 2025
Viewed by 322
Abstract
Riparian forests are important for maintaining aquatic biodiversity, yet they face increasing pressure from logging activities. This study assessed the functional diversity of Ephemeroptera, Plecoptera, and Trichoptera (EPT) in 30 Amazonian first-order streams across three riparian forests: pristine, selectively logged, and conventionally logged. [...] Read more.
Riparian forests are important for maintaining aquatic biodiversity, yet they face increasing pressure from logging activities. This study assessed the functional diversity of Ephemeroptera, Plecoptera, and Trichoptera (EPT) in 30 Amazonian first-order streams across three riparian forests: pristine, selectively logged, and conventionally logged. We evaluated four habitat attributes linked to ecosystem functioning (canopy cover, water temperature, sediment organic matter, and small woody debris) and calculated two indices of functional diversity: richness and divergence. Functional diversity was highest in pristine streams, intermediate in selectively logged streams, and lowest in conventionally logged streams. Functional richness and divergence declined significantly in conventionally logged forests, indicating a loss of ecological traits and potential reductions in ecosystem functions. We also observed that canopy cover, sediment organic matter, and woody debris were positively associated with EPT functional diversity, while water temperature had a negative association. These findings highlight that conventional logging leads to the functional homogenization of aquatic insect assemblages, compromising key ecological processes. Selective logging that maintains riparian buffers may preserve functional diversity, even though these differences may be influenced by site-specific environmental conditions. Our results underscore the importance of conserving riparian integrity to sustain the resilience and functioning of tropical stream ecosystems in logged landscapes. Full article
Show Figures

Figure 1

31 pages, 1727 KiB  
Review
A Novel Framework to Represent Hypoxia in Coastal Systems
by Aavudai Anandhi, Ruth Book and Gulnihal Ozbay
Land 2025, 14(6), 1169; https://doi.org/10.3390/land14061169 - 29 May 2025
Viewed by 523
Abstract
Policymakers face the challenge of increasing food and energy production while reducing nutrient pollution. Coastal hypoxic zones, often caused by human activity, are a key indicator of sustainability. The purpose of this study is to develop a novel framework that can be used [...] Read more.
Policymakers face the challenge of increasing food and energy production while reducing nutrient pollution. Coastal hypoxic zones, often caused by human activity, are a key indicator of sustainability. The purpose of this study is to develop a novel framework that can be used by policymakers to assess strategies to reduce or eliminate hypoxic zones in coastal waters. The developed framework includes socioecological conditions by integrating the Driver–Pressure–State–Impact–Response (DPSIR) framework and multiple thinking approaches (nexus, systems, and goal-oriented) with sustainable development goals (SDGs) and their targets, the food–energy–water (FEW) nexus, agricultural conservation practices (ACPs), and the collective knowledge from the published literature and experts, all applied to hypoxia in oceans. Four categories of ACPs with potential positive effects on hypoxia were identified: conservation cropping systems, conservation drainage systems, riparian buffer systems, and wetland systems. The Gulf of Mexico, a large hypoxic zone, served as a case study. The methods from the development of this framework may be tailored to some 500 global coastal hypoxic zones, covering 245,000 km2 of oceans. Full article
(This article belongs to the Section Water, Energy, Land and Food (WELF) Nexus)
Show Figures

Figure 1

18 pages, 2147 KiB  
Article
Multi-Scale Impacts of Land Use Change on River Water Quality in the Xinxian River, Yangtze River Basin
by Yongsheng Guo, Ying Liu, Weilin Li, Xiting Cai, Xinyi Liu and Haikuo Liao
Water 2025, 17(10), 1541; https://doi.org/10.3390/w17101541 - 20 May 2025
Viewed by 475
Abstract
This study investigated the impact of land use change on water quality in the Xinxian River Basin amidst rapid urbanization. While previous studies have predominantly focused on single-scale buffer analyses or specific land use types, the interactions between multi-scale riparian buffers and diverse [...] Read more.
This study investigated the impact of land use change on water quality in the Xinxian River Basin amidst rapid urbanization. While previous studies have predominantly focused on single-scale buffer analyses or specific land use types, the interactions between multi-scale riparian buffers and diverse land cover dynamics remain rarely understudied, particularly in a rapidly urbanizing county in the Yangtze River Basin. Land use type data for the Xinxian River Basin in 2000, 2010, and 2020 were acquired using GIS technology, and subsequent analysis quantified land use pattern changes over this 20-year period. Additionally, 2023 land use data for riparian buffer zones (50 m, 100 m, 200 m, 400 m, and 600 m) were obtained via GIS and subjected to Redundancy Analysis (RDA) with 2023 water quality monitoring data to evaluate the impact of land use on water quality. The results revealed significant land use conversion dynamics, particularly between natural and anthropogenic cover types. Forest cover exhibited negative correlations with riverine nutrient concentrations, while built-up areas displayed strong positive associations, especially at finer scales (50–100 m buffers). Notably, the dominant influencing factor shifted from built-up land at smaller buffer scales (50–100 m) to forest land at larger scales (400–600 m), whereas agricultural land showed no significant correlation. These findings highlight scale-dependent relationships between land use and aquatic ecosystems, emphasizing the critical role of spatial planning in mitigating urbanization impacts. The work is conducive to the sustainable development of Longgan Lake National Wetland Nature Reserve and the protection of water ecology in the middle and lower reaches of the Yangtze River. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

23 pages, 7688 KiB  
Article
Assessing River Corridor Stability and Erosion Dynamics in the Mekong Delta: Implications for Sustainable Management
by Dinh Van Duy, Tran Van Ty, Lam Tan Phat, Huynh Vuong Thu Minh, Nguyen Truong Thanh and Nigel K. Downes
Earth 2025, 6(2), 34; https://doi.org/10.3390/earth6020034 - 6 May 2025
Viewed by 679
Abstract
This study assessed riverbank erosion and stability along the Mekong and Bassac Rivers to propose safe river corridors and mitigate erosion risks in the Mekong Delta. Using Landsat imagery (2000–2023), field surveys, and numerical simulations, we identified severe erosion hotspots, where erosion rates [...] Read more.
This study assessed riverbank erosion and stability along the Mekong and Bassac Rivers to propose safe river corridors and mitigate erosion risks in the Mekong Delta. Using Landsat imagery (2000–2023), field surveys, and numerical simulations, we identified severe erosion hotspots, where erosion rates reach up to 40 m annually, in the meandering sections of the Mekong River,. In contrast, the Bassac River exhibited significant sedimentation, though this trend was diminishing due to upstream sediment deficits caused by hydropower dams. Stability assessments revealed optimal safety corridor distances ranging from 20 to 38 m, influenced by local geotechnical conditions and structural loads. A significant proportion of riverbanks in Dong Thap (88%) and An Giang (48%) do not comply with conservation standards, exacerbating erosion risks and threatening infrastructure. The results of this study highlight the urgent need for enforcing conservation regulations, implementing nature-based solutions like riparian buffers, and adopting sustainable land-use planning. By addressing the interplay between natural processes and anthropogenic pressures, these findings offer actionable insights to enhance riverbank stability, protect ecosystems, and sustain livelihoods in the Mekong Delta amidst growing environmental challenges. Full article
Show Figures

Figure 1

17 pages, 5644 KiB  
Article
Comparable Riparian Tree Cover in Historical Grasslands and Current Croplands of the Eastern Great Plains, with Model Expansion to the Entire Great Plains, U.S.A.
by Brice B. Hanberry
Land 2025, 14(5), 935; https://doi.org/10.3390/land14050935 - 25 Apr 2025
Viewed by 503
Abstract
One question about historical grassland ecosystems in the Great Plains region of central North America is the percentage of tree cover overall and near major rivers, compared to current tree cover. Here, I assessed tree cover in reconstructions of historical grasslands in the [...] Read more.
One question about historical grassland ecosystems in the Great Plains region of central North America is the percentage of tree cover overall and near major rivers, compared to current tree cover. Here, I assessed tree cover in reconstructions of historical grasslands in the eastern Great Plains, isolating tree cover adjacent to major rivers, and then compared historical land cover to current (year 2019) land cover. As an extension to supply information for the entire Great Plains region, I modeled historical cover. For the 28 million ha extent of the eastern Great Plains, historical land cover was 86% grasslands and 14% trees, but 57% grasslands and 43% trees within 100 m of rivers. Tree cover near rivers ranged from 5.4% to 90% for 15 large river watersheds, indicating that any amount of tree cover could occur near rivers at landscape scales. Currently, the overall extent was 3.6% herbaceous vegetation and 6.6% forested, with 82% crops and pasture and 8% development. Within 100 m of rivers, crop and pasture decreased to 44% of cover, resulting in 14% herbaceous cover and 38% forested cover. Current tree cover ranged from 6.2% to 66% near rivers in 15 watersheds, which was relatively comparable to historical tree cover (ratios of 0.6 to 1.5). Results generally were similar for combined tree and shrub cover modeled for the entire Great Plains. Variability, even at landscape scales of large watersheds, was the normal condition for tree cover in grasslands and riparian ecosystems of the Great Plains. In answer to the question about tree cover in historical grassland ecosystems in the eastern Great Plains, tree cover typically was about three-fold greater near rivers than tree cover throughout grasslands. Combined tree and shrub cover near rivers was more than two-fold greater than tree and shrub cover throughout the Great Plains. Riparian forest restoration, as a management practice to reduce streambank erosion, overall has been effective, as indicated by current tree cover (38% near rivers in the eastern Great Plains) comparable to historical tree cover (43% near rivers in the eastern Great Plains), albeit as measured at coarse landscape scales with dynamics in vegetation and river locations. As a next step, restoration of grassland vegetation and non-riparian wetlands likely will help reestablish infiltrative watersheds, augmenting riparian forest restoration. Full article
Show Figures

Figure 1

15 pages, 2959 KiB  
Article
How Land Use and Hydrological Characteristics Impact Stream Conditions in Impaired Ecosystems
by Se-Rin Park, Yujin Park, Jong-Won Lee, Hyunji Kim, Kyung-A You and Sang-Woo Lee
Land 2025, 14(4), 829; https://doi.org/10.3390/land14040829 - 10 Apr 2025
Viewed by 492
Abstract
Anthropogenic influence has altered watershed environments and hydrological processes, leading to increased occurrences of impaired streams and negative impacts on benthic invertebrates. While individual environmental factors affecting benthic macroinvertebrates have been studied, the cascading effects of land use change and hydrological alterations remain [...] Read more.
Anthropogenic influence has altered watershed environments and hydrological processes, leading to increased occurrences of impaired streams and negative impacts on benthic invertebrates. While individual environmental factors affecting benthic macroinvertebrates have been studied, the cascading effects of land use change and hydrological alterations remain unclear. This study employed structural equation modeling (SEM) to analyze the interactions among land use proportion, hydrological characteristics, substrate composition, and water quality and their influence on benthic macroinvertebrate communities in impaired streams upstream of the Paldang Dam in the Han River Basin, South Korea. Analysis of data from 24 streams surveyed between 2018 and 2022—3 or 6 streams per year—under the Impaired Stream Diagnosis Program indicated that urban and agricultural land cover, low substrate diversity, high pollutant concentrations, and altered flow conditions (low velocity and discharge) were associated with decreased pollution-sensitive Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa and increased pollution-tolerant and collector–gatherer taxa. These findings highlight the role of land use-driven hydrological changes in stream ecosystem degradation and underscore the need for targeted restoration strategies, such as riparian buffer zones, substrate enhancement, and hydrological flow restoration, to mitigate these impacts and improve benthic macroinvertebrate habitats. Full article
Show Figures

Figure 1

22 pages, 4535 KiB  
Article
Groundwater Nitrate-Nitrite Modeling in a Grazed Hillslope with Agroforestry and Grass Buffers
by Miguel Salceda-Gonzalez, Ranjith P. Udawatta and Martin S. Appold
Water 2025, 17(5), 608; https://doi.org/10.3390/w17050608 - 20 Feb 2025
Viewed by 688
Abstract
Groundwater pollution negatively impacts aquatic ecosystems and human health. On the other hand, conservation practices can help reduce groundwater and surface water pollution. Baseflow from agricultural fields can be an important source of nitrate-nitrite (NN) loads in lakes and other surface water bodies. [...] Read more.
Groundwater pollution negatively impacts aquatic ecosystems and human health. On the other hand, conservation practices can help reduce groundwater and surface water pollution. Baseflow from agricultural fields can be an important source of nitrate-nitrite (NN) loads in lakes and other surface water bodies. Riparian agroforestry buffers can be an effective barrier between groundwater NN and surface water bodies. The study aimed to determine the effects of agroforestry buffers and widths on groundwater nitrate-nitrite (NN) exports from an agricultural grazing area into a farm lake using flow and solute transport models. The flow and solute models were calibrated and validated for the weather and land use (grazing) conditions observed during the monitoring period, and these conditions were repeated throughout the 10-year projection. The calibration and validation of the flow and solute transport models were satisfactory, yielding determination coefficients R2 > 0.95 and Nash-Sutcliffe coefficients > 0.94. The area of study was modeled under four scenarios: tree-only buffers [cottonwood (Populus deltoides Bortr. ex Marsh.)]; grass-only buffers ([Tall fescue Schedonorus phoenix (Scop.) Holub, Red clover (Trifolium pretense L.), and Lespedeza (Lespedeza Michx)]); tree + grass buffers (a combination of the same tree and grass species of the other two scenarios; and a no-buffer scenario. The tree-only, grass-only, and tree + grass buffers reduced the total mass of NN discharged from the study unit to the lake by 98%, 97%, and 99%, respectively, compared to the no-buffer scenario. Doubling the buffer width from 15 m to 30 m decreased the NN discharge to the lake by 16-fold. Moreover, 7.5 m wide buffers had up to nine times greater NN discharge than 15 m buffers. Results show that agroforestry buffers with trees and grasses in riparian areas significantly remove NN exports in groundwater from agricultural fields, protecting the environment and human health. Full article
Show Figures

Figure 1

20 pages, 2618 KiB  
Article
Impact of Environmental Factors of Stream Ecosystems on Aquatic Invertebrate Communities
by Jong-Won Lee, Sang-Woo Lee, Heera Lee and Se-Rin Park
Sustainability 2025, 17(3), 1252; https://doi.org/10.3390/su17031252 - 4 Feb 2025
Viewed by 1502
Abstract
Understanding the responses of stream ecosystems to environmental disturbances is essential for maintaining and restoring healthy ecosystems. In this study, we analyzed the associations between benthic macroinvertebrate communities and environmental factors using machine learning approaches to identify key stressors potentially influencing stream ecosystem [...] Read more.
Understanding the responses of stream ecosystems to environmental disturbances is essential for maintaining and restoring healthy ecosystems. In this study, we analyzed the associations between benthic macroinvertebrate communities and environmental factors using machine learning approaches to identify key stressors potentially influencing stream ecosystem health. Various machine learning models were evaluated, with random forest (RF) and gradient boosting machine (GBM) identified as the optimal models for predicting tolerant species (TS) and Ephemeroptera, Plecoptera, and Trichoptera (EPT) species densities. SHAP analysis revealed that watershed variables, such as elevation, flow velocity, and slope, significantly influenced EPT and TS populations. EPT population density increased with elevation and flow velocity but decreased significantly with higher levels of biochemical oxygen demand (BOD), total nitrogen (TN), and agricultural land-use proportions, with negative effects becoming evident beyond threshold levels. Conversely, TS population density showed a positive response to elevated BOD, TN, and agricultural land-use proportions, stabilizing at the threshold levels of BOD and TN, but continuing to increase with greater agricultural land use. Through machine learning, this study provides critical insights into how environmental variables are associated with the distribution of benthic macroinvertebrate communities. By identifying threshold levels of key stressors, this approach offers actionable guidance for managing agricultural runoff, enhancing riparian buffers, and implementing sustainable land-use practices. These findings contribute to the development of integrated watershed management strategies that promote the long-term sustainability of stream ecosystems. Full article
Show Figures

Figure 1

18 pages, 1414 KiB  
Article
Characterizing Stream Condition with Benthic Macroinvertebrates in Southeastern Minnesota, USA: Agriculture, Channelization, and Karst Geology Impact Lotic Habitats and Communities
by Neal D. Mundahl
Insects 2025, 16(1), 59; https://doi.org/10.3390/insects16010059 - 10 Jan 2025
Viewed by 1770
Abstract
Prior to implementing watershed-wide projects to reduce the impacts of agriculture on regional streams and rivers, stream habitats and benthic aquatic macroinvertebrate communities were assessed at 15 sites on the South Branch Root River and its major tributaries in southeastern Minnesota, USA. Triplicate [...] Read more.
Prior to implementing watershed-wide projects to reduce the impacts of agriculture on regional streams and rivers, stream habitats and benthic aquatic macroinvertebrate communities were assessed at 15 sites on the South Branch Root River and its major tributaries in southeastern Minnesota, USA. Triplicate kick-net samples were collected from each site during three time periods (1998, 1999, 2006/2008) and stream habitats were inventoried within 150 m long sections at each site. In total, 26,760 invertebrates representing 84 taxa were collected and used to rate stream sites using a regional multi-metric benthic index of biotic integrity (BIBI). BIBI scores were significantly correlated with total invertebrate taxa richness. BIBI ratings improved from poor and very poor at headwater sites in channelized stream sections draining agricultural lands to fair to good to excellent in downstream sections flowing through natural channels in largely forested lands. Fifty percent of samples rated stream sites as poor or very poor. Over 85% of stream habitat assessments indicated the presence of fair to good habitats, although stream sites were relatively wide and shallow and dominated by fine sediments that also embedded coarser substrates. BIBI metrics and scores were strongly positively correlated with pool area, riffle spacing-to-stream width ratios, and silt-free substrate, and negatively correlated with width-to-depth ratios. Most stream sites had few Ephemeroptera, Plecoptera, Trichoptera, and Diptera taxa and too few intolerant taxa. It is expected that benthic invertebrate communities should improve as more riparian buffers are added along all streams. However, on-going channel maintenance activities in headwater stream sections, mandated to encourage drainage of adjacent agricultural fields, will continue to negatively impact headwater habitats and biotic communities. Full article
(This article belongs to the Special Issue Aquatic Insects: Diversity, Ecology and Evolution)
Show Figures

Figure 1

15 pages, 20094 KiB  
Article
Assessing Land-Cover Change and Urbanization Impact on Riparian Zones in South Carolina: A Decade of Transition
by Sanjeev Sharma and Puskar Khanal
Land 2024, 13(12), 2232; https://doi.org/10.3390/land13122232 - 20 Dec 2024
Cited by 3 | Viewed by 1421
Abstract
This study investigates land-cover changes along riparian zones in South Carolina, focusing on intermittent and perennial streams to assess the impact of urbanization, forest loss, and impervious surface expansion on sensitive ecosystems. South Carolina’s diverse geography, ranging from coastal marshes to the Blue [...] Read more.
This study investigates land-cover changes along riparian zones in South Carolina, focusing on intermittent and perennial streams to assess the impact of urbanization, forest loss, and impervious surface expansion on sensitive ecosystems. South Carolina’s diverse geography, ranging from coastal marshes to the Blue Ridge Mountains, and subtropical humid climate, offers a rich context for understanding environmental changes. The research utilizes various geospatial datasets, including the National Land Cover Database (NLCD), National Hydrography Dataset (NHD), and National Agricultural Imagery Program (NAIP) imagery, to evaluate changes in forest cover, urbanization, and impervious surfaces from 2011 to 2021 as a decade of transition. The study areas were divided into buffer zones around intermittent and perennial streams, following South Carolina’s riparian management guidelines. The results indicate significant land-cover transitions, including a total of 3184.56 hectares of non-urban areas converting to forest within the 100 m buffer around intermittent streams. In contrast, 137.43 hectares of forest transitioned to urban land in the same buffer zones, with Spartanburg and Greenville leading the change. Intermittent stream buffers exhibited higher imperviousness (4.6–5.5%) compared to perennial stream buffers (3.3–4.5%), highlighting the increased urban pressure on these sensitive areas. Furthermore, tree canopy loss was significant, with counties such as Greenwood and Chesterfield experiencing substantial reductions in canopy cover. The use of high-resolution NAIP imagery validated the land-cover classifications, ensuring accuracy in the results. The findings emphasize the need for effective land-use management, particularly in the riparian zones, to mitigate the adverse impacts of urban expansion and to safeguard water quality and biodiversity in South Carolina’s streams. Full article
Show Figures

Figure 1

21 pages, 10674 KiB  
Article
Multi-Scale Effect of Land Use Landscape on Basin Streamflow Impacts in Loess Hilly and Gully Region of Loess Plateau: Insights from the Sanchuan River Basin, China
by Zexin Lei, Shifang Zhang, Wenzheng Zhang, Xuqiang Zhao and Jing Gao
Sustainability 2024, 16(23), 10781; https://doi.org/10.3390/su162310781 - 9 Dec 2024
Viewed by 1124
Abstract
The gullies and valleys of the Loess Plateau, as key ecological zones for soil erosion control, play a critical role in the region’s sustainable development under increasing urbanization. This study employed the Soil and Water Assessment Tool (SWAT) to analyze the impacts of [...] Read more.
The gullies and valleys of the Loess Plateau, as key ecological zones for soil erosion control, play a critical role in the region’s sustainable development under increasing urbanization. This study employed the Soil and Water Assessment Tool (SWAT) to analyze the impacts of land use/cover changes (LUCC) on runoff at multiple spatial scales and locations within the Sanchuan River Basin (SRB) in the loess hilly and gully region. The methodology integrates SWAT modeling with LUCC scenario analysis, focusing on spatial and scale effects of land use changes on hydrological processes. The results revealed distinct spatial differences, with diminishing LUCC impacts on streamflow from the upper to lower reaches of the basin, regardless of land use type. Scale effects were also evident: grassland effectively controlled runoff within 300 m of riparian zones, while forest land was most effective beyond 750 m. A relatively insensitive range for runoff changes was observed between 300 and 750 m. These findings highlight the critical role of LUCC in influencing runoff patterns and underscore the importance of region-specific and scale-sensitive land use management strategies. This research provides valuable guidance for sustainable land planning, particularly in riparian zones, to enhance runoff control and optimize ecological benefits. Full article
Show Figures

Figure 1

16 pages, 12239 KiB  
Article
Biodiversity and Soil Reinforcement Effect of Vegetation Buffer Zones: A Case Study of the Tongnan Section of the Fujiang River Basin
by Xinhao Wang, Dongsheng Liu, Zhihui Chang, Jiang Tang, Yunqi Wang, Yanlei Wang, Sheng Huang, Tong Li, Zihan Qi and Yue Hu
Water 2024, 16(19), 2847; https://doi.org/10.3390/w16192847 - 7 Oct 2024
Viewed by 1285
Abstract
The riparian vegetation buffer zone is an important component of riverbank ecosystems, playing a crucial role in soil consolidation and slope protection. In this study, the riparian vegetation buffer zones in the Tongnan section of the Fujiang River Basin were selected as the [...] Read more.
The riparian vegetation buffer zone is an important component of riverbank ecosystems, playing a crucial role in soil consolidation and slope protection. In this study, the riparian vegetation buffer zones in the Tongnan section of the Fujiang River Basin were selected as the research object. Surveys and experiments were conducted to assess the species composition and the soil and water conservation effectiveness of the riparian vegetation buffer zone. There are a total of 35 species, mainly comprising angiosperms and ferns. The dominant species include Cynodon dactylon, Setaria viridis, Phragmites australis, Erigeron canadensis, and Melilotus officinalis. The Patrick richness index (R) and Shannon–Wiener diversity index (H) are more significantly influenced by the types of land use in the surrounding area, whereas the impact on the Simpson diversity index (D) and Pielou uniformity index (E) is comparatively less pronounced. When the root diameter is less than 0.2 mm, the tensile strength of Cynodon dactylon roots is the highest. For root diameters larger than 0.2 mm, Melilotus officinalis roots exhibit the highest tensile strength. The presence of plant root systems significantly reduces erosion, delaying the time to reach maximum erosion depth by 1–4 min, decreasing erosion depth by 9–38 mm, and reducing the total amount of erosion by 20.17–58.90%. The anti-scouribility effect of Cynodon dactylon is significantly better than that of Setaria viridis. The root system notably enhances soil shear strength, delaying the shear peak by 0.26–4.8 cm, increasing the shear peak by 4.76–11.37 kPa, and raising energy consumption by 23.76–46.11%. Phragmites australis has the best resistance to shear, followed by Erigeron canadensis, with Melilotus officinalis being the least resistant. Therefore, to balance the anti-scouribility effect and shear resistance of plant roots, it is recommended to use a combination of Cynodon dactylon and Phragmites australis for shallow-rooted and deep-rooted planting. This approach enhances the water and soil conservation capacity of riverbanks. Full article
Show Figures

Figure 1

20 pages, 5040 KiB  
Article
The Relationship between Erosion and Precipitation and the Effects of Different Riparian Practices on Soil and Total-P Losses via Streambank Erosion in Small Streams in Iowa, USA
by Mustafa Tufekcioglu, George N. Zaimes, Aydın Kahriman and Richard C. Schultz
Sustainability 2024, 16(19), 8329; https://doi.org/10.3390/su16198329 - 25 Sep 2024
Cited by 1 | Viewed by 1600
Abstract
Streambank erosion in agricultural landscapes contributes high amounts of sediment and total-P to surface water, resulting in the degradation of stream habitats and reduction in ecological services. Moreover, the implication of future climate change on bank erosion is also a growing concern. Streambank [...] Read more.
Streambank erosion in agricultural landscapes contributes high amounts of sediment and total-P to surface water, resulting in the degradation of stream habitats and reduction in ecological services. Moreover, the implication of future climate change on bank erosion is also a growing concern. Streambank erosion rates from riparian forest buffers (RFo), grass filters (GFi), row-crops (RCr) and pastures, including fenced pastures (FPa), rotationally grazed pastures (RPa), intensive rotationally grazed pastures (IPa), and continuously grazed pastures (CPa), in three landform regions of Iowa, were measured over seven years. Bank erosion pins were measured seasonally (spring, summer and fall) in the first five years (2002–2006) and yearly for two more years (2007–2008). It was found that summer and spring seasons are the important ones since the relationships between erosion and precipitation were significantly “strong” in almost all the riparian practices, and precipitation was found to be the main factor driving streambank erosion. Streambank mean soil losses and soil total-P losses from RFo (23.3 tons km−1 yr−1 and 9.8 kg km−1 yr−1, respectively), GFi (31.1 and 9.9) and FPa (44.0 and 23.7) practices were all significantly lower than the grazing pasture practices, including RPa (142.3 and 58), CPa (255 and 105.1), IPa (234.6 and 122.7) and RCr fields (352.9 and 118.9). Also, RPa had significantly lower total-P loss than CPa, IPa and RCr practices (RFo, GFi, FPa < RPa < CPa, IPa, RCr). RCr practices had the highest streambank soil losses among all other riparian practices (RFo, GFi, FPa < RPa < IPa, CPa < RCr). The study showed that riparian conservation practices (RFo, GFi and FPa) showcased significant benefits in mitigating streambank soil loss and associated soil total-P load to streams. However, their effectiveness is highly sensitive to changing climatic conditions and the extent of spatiotemporal variations. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

16 pages, 4415 KiB  
Article
Impact of Land Use Change on Water-Related Ecosystem Services under Multiple Ecological Restoration Scenarios in the Ganjiang River Basin, China
by Yiming Wang, Zengxin Zhang and Xi Chen
Forests 2024, 15(7), 1225; https://doi.org/10.3390/f15071225 - 15 Jul 2024
Cited by 1 | Viewed by 1558
Abstract
Ecological restoration programs (ERPs) can lead to dramatic land use change, thereby affecting ecosystem services and their interaction. Determining the optimal ERPs is a crucial issue for ecological restoration in ecologically fragile regions. This study analyzed the impacts of land use change on [...] Read more.
Ecological restoration programs (ERPs) can lead to dramatic land use change, thereby affecting ecosystem services and their interaction. Determining the optimal ERPs is a crucial issue for ecological restoration in ecologically fragile regions. This study analyzed the impacts of land use change on four water-related ecosystem services (WESs), namely water yield, soil retention, water purification, and food production in the Ganjiang River basin, China during the past two decades. Then, trade-off and synergy between WESs were detected based on correlation analysis. Finally, to quantify the effect of ERPs on WESs, we comprehensively considered the types and intensity of ERPs and designed four categories of scenarios: returning farmland to forest (RFF) scenarios; planting forest (PF) scenarios; riparian forestland buffer (RFB) scenarios; and riparian grassland buffer (RGB) scenarios. Each category contains five scenarios of different intensities. The results showed that water yield, soil retention, and food production increased while water purification decreased from 2000 to 2020. The deterioration of water quality was mainly due to transitions from forestland to farmland and built-up land. Trade-offs only occurred between regulating services and provisioning services. Among all ecological restoration scenarios, only the RFF scenarios can significantly improve soil retention and water purification at the same time, although food production will decrease. Considering food security, returning farmland with a slope greater than 10 degrees to forestland was the optimal scenario in the study area. This study highlighted that both the type and intensity of ERPs should be considered in ecological restoration. This study can contribute to ecological restoration in the Ganjiang River basin and other subtropical mountainous regions. Full article
Show Figures

Figure 1

16 pages, 10543 KiB  
Article
Land Cover Dynamics and Environmental Implications in Türkiye’s Riparian Zones: A Comprehensive Seven-Year Study
by Emre Akturk, Kerim Guney, Mirac Aydin, Faruk Yildiz and Ozkan Kaya
Forests 2024, 15(7), 1177; https://doi.org/10.3390/f15071177 - 6 Jul 2024
Cited by 3 | Viewed by 1883
Abstract
This study examines the Riparian Buffer Zones (RBZs) in Türkiye, analyzing land cover changes from 2017 to 2023 to assess their effectiveness in ecological conservation and water resource management. The research employs Esri-Sentinel land cover data, Shuttle Radar Topography Mission digital elevation models, [...] Read more.
This study examines the Riparian Buffer Zones (RBZs) in Türkiye, analyzing land cover changes from 2017 to 2023 to assess their effectiveness in ecological conservation and water resource management. The research employs Esri-Sentinel land cover data, Shuttle Radar Topography Mission digital elevation models, and RiverATLAS data to identify and delineate RBZs, classify land cover types, and evaluate trends and changes over seven years. The findings indicate that 44.8% of RBZs are covered by ‘Rangelands’, 32.2% by ‘Crops’, and 16.1% by ‘Trees’ classes. The study notes a considerable increase in built areas and agricultural fields, which may indicate ongoing urban expansion and its potential impact on the effectiveness of RBZs. Despite regulatory efforts, the substantial presence of agriculture within RBZs indicates a need for more robust environmental protection policies. The results indicate a pressing need for a policy reassessment to enhance forest cover within RBZs and reduce agricultural encroachment. This would improve water quality and facilitate the achievement of sustainability goals numbered 2, 3, 6, 11, 14 and 15. The findings thus call for a strategic enhancement of RBZ management to better protect water resources against the adverse effects of agricultural and urban activities. Full article
Show Figures

Figure 1

Back to TopTop