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Abstract: Understanding the responses of stream ecosystems to environmental disturbances
is essential for maintaining and restoring healthy ecosystems. In this study, we analyzed
the associations between benthic macroinvertebrate communities and environmental
factors using machine learning approaches to identify key stressors potentially influencing
stream ecosystem health. Various machine learning models were evaluated, with random
forest (RF) and gradient boosting machine (GBM) identified as the optimal models for
predicting tolerant species (TS) and Ephemeroptera, Plecoptera, and Trichoptera (EPT)
species densities. SHAP analysis revealed that watershed variables, such as elevation, flow
velocity, and slope, significantly influenced EPT and TS populations. EPT population
density increased with elevation and flow velocity but decreased significantly with
higher levels of biochemical oxygen demand (BOD), total nitrogen (TN), and agricultural
land-use proportions, with negative effects becoming evident beyond threshold levels.
Conversely, TS population density showed a positive response to elevated BOD, TN, and
agricultural land-use proportions, stabilizing at the threshold levels of BOD and TN, but
continuing to increase with greater agricultural land use. Through machine learning, this
study provides critical insights into how environmental variables are associated with
the distribution of benthic macroinvertebrate communities. By identifying threshold
levels of key stressors, this approach offers actionable guidance for managing agricultural
runoff, enhancing riparian buffers, and implementing sustainable land-use practices. These
findings contribute to the development of integrated watershed management strategies
that promote the long-term sustainability of stream ecosystems.

Keywords: EPT species; tolerant species; physical habitat quality; sustainable watershed
management; SHAP analysis

1. Introduction

Stream ecosystems are complex systems in which natural processes and human activi-
ties interact and are shaped by the close relationship between watershed characteristics and
stream conditions [1,2]. Human activities such as urbanization, industrialization, agricul-
ture, and logging significantly impact stream ecosystems by altering hydrological regimes
and modifying habitat structures. These changes typically lead to reduced biodiversity,
increased pollution, and compromised ecosystem functions, threatening the sustainability
of these vital systems. Therefore, effective stream management and restoration require
integrated assessments that consider both physicochemical water quality and biological
health. For example, Serpa [3] combined physicochemical, biological, and ecotoxicological
approaches to assess river water quality, highlighting the importance of a comprehensive
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evaluation to understand the impacts of anthropogenic activities on aquatic ecosystems.
Such integrated approaches are essential for promoting sustainable stream management
and restoration practices that balance ecological integrity with human needs.

Understanding the associations among aquatic communities, watershed environ-
mental changes, physicochemical variations in streams, and their responses to external
stressors is critical. This has driven the development of various biological indicators for
monitoring the health and biodiversity of aquatic ecosystems [4]. Periphytons, benthic
macroinvertebrates, and fish are widely used in the biological assessment of aquatic ecosys-
tems. These groups serve as ecological health indicators and offer valuable insights into
the quality of aquatic habitats [4,5]. Benthic macroinvertebrates are particularly effec-
tive indicators for biological assessment. They play a key role in secondary production
in stream ecosystems and occupy diverse habitats that reflect water quality and habitat
structure and function [6,7]. Their community composition and structure are sensitive to
varying intensities of disturbance, making them valuable tools for assessing ecological
changes [8]. The advantages of using benthic macroinvertebrates as indicators include their
ease of sampling, relatively short life cycles that allow consistent monitoring, and high
species diversity with varying sensitivities to anthropogenic pollution [6,9]. For example,
the dominance of pollution-sensitive taxa typically indicates good water quality, whereas
pollution-tolerant taxa are prevalent in degraded systems [10]. Identifying these differences
is crucial for assessing anthropogenic stressors and understanding causal relationships in
aquatic ecosystems.

Certain benthic macroinvertebrate taxa, such as Ephemeroptera, Plecoptera, and
Trichoptera (EPT), are highly sensitive to organic pollution and changes in physical habitat
conditions, such as temperature fluctuations and alterations in riparian vegetation [11,12].
This sensitivity makes the EPT species particularly valuable for detecting changes in the
health of stream ecosystems. In Korea, 749 EPT species have been reported, including
95 endemic species [13]. Their composition varies regionally, reflecting the differences in
environmental and habitat conditions [14,15]. Conversely, taxa such as Chironomidae and
Oligochaeta are more tolerant of pollution and habitat degradation, with their dominance
typically signifies stream impairment. For example, saprobic values based on biochemical
oxygen demand (BOD) concentrations were established for 190 taxa in Korea to classify
pollution-tolerant species [16]. Comparative studies of sensitive and tolerant taxa can
provide valuable insights into the specific effects of pollutants on stream ecosystems.
Factors influencing benthic macroinvertebrate communities differed between the impaired
and reference streams. In impaired streams, factors such as nutrient loading, sedimentation,
and habitat destruction favor pollution-tolerant species that thrive under high nutrient and
low oxygen conditions with elevated sedimentation [17]. In contrast, reference streams
with better water quality, higher habitat complexity, and stable hydrological conditions
support sensitive species such as EPT species, which require high oxygen levels and cooler,
less disturbed environments [18].

Recent advances in machine learning (ML) have facilitated evaluations and predic-
tions of the relationships between aquatic organisms and environmental factors in stream
ecosystems [19-21]. ML tools are increasingly applied to model and predict the interactions
among water quality, biological communities, and environmental factors, incorporating
a wide range of physical, chemical, hydrological, and geomorphological variables [22].
These tools offer new insights and perspectives for river restoration and management,
particularly in the context of Korean rivers, where understanding ecosystem-environment
relationships remains a significant research priority [23]. Various ML models have been
employed in ecological studies, including the random forest (RF), support vector machine
(SVM), gradient boosting machine (GBM), and extreme gradient boosting (XGBoost). Each
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model has strengths and limitations, and selecting the most suitable model for a given
problem typically requires a comparative approach [20,23]. Application of multiple models
allows researchers to derive optimal results while addressing complex ecological issues.

This study aimed to analyze the relationships between benthic macroinvertebrate
communities and environmental factors in the Han River watershed. Specifically, we
investigated the effects of environmental variables on EPT and TS, identifying the critical
thresholds for these impacts. Additionally, this study compared the associations between
these variables in impaired and reference streams, highlighting the differences in environ-
mental patterns between the two stream types. We hypothesized that (1) environmental
factors significantly influence the distribution of EPT and TS taxa across various stream
conditions; (2) ML models effectively predict the relationships between environmental
factors and benthic macroinvertebrate communities; and (3) the critical thresholds of envi-
ronmental factors influencing the population densities of EPT and TS taxa differ, reflecting
their contrasting ecological responses. These findings offer insights into the relationships
between environmental stressors and benthic macroinvertebrate communities, providing
a foundation for effective management and restoration strategies. By identifying critical
ecological thresholds, this study contributes to the sustainable management of watersheds
and the resilience of aquatic ecosystems.

2. Materials and Methods
2.1. Study Area

This study focuses on the upstream region of the Paldang Dam, located in the Han
River Basin, which is in the center of the Korean Peninsula and is the largest watershed
in South Korea (Figure 1). The upstream basin of the Paldang Dam covers an area of
23,800 km?, and the dam, constructed in 1973, plays a vital role in supplying drinking
water, generating electricity, and regulating water flow. As a key source of drinking water
for Seoul and its metropolitan area, the dam is 29 m high, has a total storage capacity
of 244 million tons, and provides 2.6 million tons of water per day [24]. The upstream
watershed of Paldang Dam is characterized by diverse land-use types. Forests dominate the
landscape, covering approximately 75.69% of the area, primarily at higher elevations. Agri-
cultural land accounts for 16%, mainly located in the lowland regions and along riverbanks,
while urban and industrial areas represent 3.1%, primarily concentrated near major roads
and settlements. These land-use patterns significantly influence the water quality and eco-
logical health of the streams, with agricultural runoff contributing to nutrient loading and
urbanization, leading to increased impervious surfaces and altered hydrological flows. The
streams in the study area exhibit distinct physical characteristics. Stream widths range from
6.5 to 200 m, with an average of 42.4 m, while wetted widths range from 1.5 to 118.35 m,
with an averaging 12.57 m. The average water velocity is approximately 21.24 cm/ss, reflect-
ing relatively low to moderate flow rates typical of the region. The streams are generally
shallow, with substrates primarily composed of gravel and sand, with occasional cobbles
in higher-gradient sections and silt accumulation in lowland areas. These physical charac-
teristics, coupled with the surrounding land use, play a critical role in shaping the benthic
macroinvertebrate communities and influencing the ecological health of the watershed.
Because the Paldang Dam is used as a source of drinking water, there are ongoing efforts
to manage pollutants from the watershed. The upstream watershed, including the two
main rivers that flow into the dam, the Bukhan and Namhan Rivers, is protected by various
laws and regulations implemented by both central and local governments. These areas
are designated as “water protection zones”, “riparian vegetation zones”, and “watershed
protection zones”, where land-use types and densities are regulated, and continuous efforts
are made to manage water quality and reduce pollution. However, despite these efforts,



Sustainability 2025, 17, 1252

4 of 20

large-scale construction projects, increased road density, altered hydrological patterns, and
the expansion of impervious surfaces have contributed to the degradation of streams within
the watershed. As a result, there is a growing need for scientifically based management
strategies in the upstream region of the Paldang Dam to better address the challenges posed
by watershed and climate change.
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Figure 1. Location of the study areas and impaired and reference streams identified within the study
areas streams.

2.2. Sampling Sites and Datasets
2.2.1. Sampling Sites

This study utilized data from 218 impaired stream sites and 148 reference stream sites
collected between 2020 and 2022. The Korean Ministry of Environment comprehensively
evaluates (MOE) streams and evaluates the biological health of streams through the Na-
tional Aquatic Ecosystem Management Program (NAEMP) led by the National Institute of
Environmental Research (NIER) [25]. Streams are classified into five grades: excellent (A),
good (B), fair (C), poor (D), and very poor (E), with reference streams categorized as A
or B and impaired streams as D or E [26]. Some of the impaired streams undergo field
investigations through a project called “Cause Diagnosis of Stream Impairment”, which
aims to identify the causes of impairment prior to restoration planning. The causes of
stream impairment in the study area were found to be diverse, including excessive nutrient
loads from agricultural runoff, habitat destruction due to urbanization, urban non-point
source pollution, and livestock-related pollution. The sampling sites were distributed
across the study area at an average interval of approximately 1.8 km. The data from this
project were used in this study. Reference streams are essential for comparing the extent
of degradation of impaired streams and setting future goals for stream restoration and
management [27]. For the analysis, we excluded streams that showed lower health from the
reference stream list and used only those that met the reference criteria listed by the MOE
in the Water Environment Information System. Biological, water quality, and hydrological
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data, excluding watershed variables, were collected in spring (April-May) and autumn
(September—October).

2.2.2. Stream Datasets

Stream variables included water quality, physical habitat quality, and hydrological
factors. Water quality was analyzed according to the Ministry of Environment’s ‘Framework
Act on Environmental Policy’. In the NAEMP, water quality was evaluated by measuring
the biochemical oxygen demand (BOD), ammonia nitrogen (NH3-N), nitrate (NO3-N),
total nitrogen (TN), total phosphorus (IP), phosphate (PO4-P), suspended solids (SS), and
chlorophyll-a. This study particularly focused on variables related to organic pollutants
and nutrients, which are sensitive to land use and aquatic organisms and are widely used
in river management [28,29]. Additionally, dissolved oxygen (DO) and water temperature
were selected because of their close relationships with organic pollution and nutrient
impacts. Organic pollution is frequently associated with degraded river conditions, and
BOD is a key indicator in water quality management policies in Korea [30]. The N and
P concentrations in agricultural runoff play significant roles in river eutrophication and
water quality degradation [31]. BOD is closely linked to DO, and temperature variations
significantly influence both organic pollution and nutrient levels [32].

Physical habitat quality was assessed based on ten evaluation points: stream sandbars,
naturalness, flow velocity, stream width, stream revetment, levee, substrate, cross-structure,
and inland and riverside areas. However, after conducting a correlation analysis with the
dependent variable (benthic macroinvertebrates), only four significant variables (stream
width, substrate, riverside area, and inland) were selected for further analysis. Stream
width (SW) measures the buffer zone and vegetation along the shoreline, with higher
ratios indicating better habitats for aquatic plants. The stream substrate (SSE) focuses on
evaluating the dominant substrate type in the streambed, such as round rocks, silt, or
artificial materials such as concrete. Riverside area refers to the degree of artificiality in the
dominant land use of exclusion areas, with the presence of parking lots and impermeable
artificial structures indicating a high level of artificial elements. Inland represents the
impact of land use within inland areas on stream ecosystems.

Water width and flow rate were selected as the hydrological variables in this study
because of their substantial impact on benthic macroinvertebrate communities. These
factors influence habitat availability and substrate diversity, which are key determinants
of species distribution and abundance. Wider streams generally offer more diverse micro-
habitats, whereas the flow rate is associated with oxygenation, sediment transport, and
food availability for macroinvertebrates. Variations in these variables can lead to shifts in
the community structure, favoring either sensitive or more tolerant taxa depending on the
conditions [33,34].

2.2.3. Watershed Datasets

Watershed variables included physiographic factors (elevation and slope) and land-
use proportions. Watersheds were delineated based on sampling sites using the US EPA
basins program. Using ArcGIS Pro, we calculated the average elevation and slope of each
sub-watershed. The percentage of land-use types within the sub-watersheds was analyzed
using the most recent high-resolution (5 m) land use and land cover (LULC) data provided
by the Environmental Geographic Information Service. The LULC data were originally
classified into seven categories: urban areas (including residential, industrial, commercial,
transportation, and public facilities), agricultural areas (paddy fields, farms, orchards, etc.),
forest areas, grassy areas, wetlands, bare soils, and water bodies. However, in this study,
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the sampling sites were selected based on the predominant land-use types, focusing on
urban, agricultural, and forest areas.

2.2.4. Population Density Ratio of Benthic Macroinvertebrates

This study utilized data from the NAEMP and the Impairment Cause Diagnosis
Project conducted by MOE and NIER. Reference stream data were obtained from the
Water Environment Information System (WEIS) for surveys conducted between 2018 and
2022. Impaired stream data were derived from the results of the cause diagnosis of stream
impairment project conducted during the same period [35]. Both datasets were collected in
accordance with the Biological Monitoring Survey Guidelines [36].

Benthic macroinvertebrate data were collected using a Surber net with a mesh size
of 1.0 mm and a frame of 3 x 3 cm?. Counts were converted to density per unit area
(individuals/m?) for the quantitative assessment of survey results. Specimens were pre-
served in 80% ethanol solution, and species lists were prepared in accordance with the
National Species List of Korea (National Institute of Biological Resources, 2018). Sam-
pling was conducted at the most representative substrate within the survey site to ensure
standardization. Whenever possible, samples were collected from riffle sections with
coarse substrates; in the absence of riffles, runs and pools were sampled sequentially as
alternatives. To minimize habitat disturbance, a minimum of three points were sampled,
progressing upstream from downstream. Each sampling reach was approximately 100 m in
length, encompassing the variability of habitats within the site. Sampling included both
margins and the center of the stream channel to ensure habitat heterogeneity.

Benthic macroinvertebrate taxa belonging to the orders EPT were identified, and the
EPT population density ratio was calculated. Tolerant populations were classified based
on the environmental quality scores of 1 and 2 from the benthic macroinvertebrate en-
vironmental quality score list, and their densities were calculated accordingly [37]. The
environmental quality score is a value that calculates the saprobic valency of each wastewa-
ter biota by distinguishing the saprobic of the sample unit and using the relative frequency
of benthic macroinvertebrate taxa according to each saprobic (Supplementary Table S1).

2.3. Model Development
2.3.1. Spatial Autocorrelation Analysis

Before applying machine learning models, spatial autocorrelation analysis was con-
ducted to assess the potential spatial patterns within the data. Moran’s I was utilized
to examine the global spatial autocorrelation, while local Moran’s 1 was employed to
identify localized spatial patterns in the data. The global Moran’s I quantifies the degree
of spatial clustering or dispersion across the dataset, whereas local Moran’s I identifies
significant clusters or outliers at specific locations. These analyses were conducted to
ensure that the spatial structure of the data did not bias the results of the machine learning
models. The spatial weights matrix was constructed using the k-nearest neighbors (k = 5)
method, and the statistical significance of Moran’s I was determined using Z-scores and
p-values. Both global and local Moran’s I analyses were performed using the pysal and
esda Python libraries.

2.3.2. Machine Learning Models

Random forest (RF; [38]), gradient boosting machine (GBM; [39]), extreme gradient
boosting (XGB; [40]), and support vector machine (SVM; [41]) models were used to in-
vestigate the relationship between EPT, TS, and environmental factors (Figure 2). The RF
model is a bagging-based ensemble technique that generates bootstrap sampling using a
decision-tree-based algorithm [38]. RF model has been widely applied in ecological studies
involving nonlinear and complex interactions between variables [42]. The RF model creates
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many subsets (bootstrap sampling) from the training data and trains the same algorithm
multiple times. Each predictor was estimated to determine how well it separated the two
different nodes. Tree-based methods reduce trees to a size that is less likely to overfit the
data, which is typically achieved through cross-validation [43]. GBM and XGB models
are tree-based, similar to RF, and are ensemble techniques that sequentially combine mul-
tiple weak predictive models and weight the data incorrectly predicted to improve the
error and create a strong predictive model [39,43]. The GBM model strengthens a weak
model by updating the weights using gradient descent [44]. XGB is an algorithm that
improves the performance of the GBM model and adds a regularization formula to the
GBM model that can be overfitted. It is faster than the GBM model, suitable for complex
nonlinear relationships, and has excellent parallel processing capabilities; therefore, it can
solve overfitting problems that can occur in machine learning models [43]. SVM models
are supervised learning algorithms based on statistical learning theory and are designed
to minimize classification error rates and maximize margins [41,45]. SVMs are based on
kernel functions that can solve nonlinear problems and are performed to find the decision
boundary that best classifies a high-dimensional space defined by predictor variables. To
determine the optimal decision boundary, a hyperplane with the maximum margin is
constructed to determine the category to which a sample belongs, thereby indicating the
prediction result [20,44].

Dataset
Impaired streams Reference streams ‘
|
Training set Test set
(70%) (30%)

Training ML models

RF - GBM XGB | SVM

Model evaluation

‘ MSE MAE H RMSE ‘ R?

|

assessing variable importance at global and local levels

Figure 2. Modeling procedure.

Hyperparameter optimization was performed on each ML model to select the best-
performing model. ML models were developed using a training set to which 70% of the
samples in the dataset were randomly assigned. The remaining 30% of samples were
designated as test sets. RF, GBM, and SVM algorithms were implemented using ‘scikit-
learn” and the XGB algorithm was implemented using ‘XGBoost’; all were performed in
Google Colab.

2.3.3. Model Evaluation

Appropriate evaluation metrics are important for the development of various machine
learning (ML) models because they can assess the reliability and accuracy of a model.
The coefficient of determination (R?), mean absolute error (MAE), root mean square error
(RMSE), and mean square error (MSE) are commonly used as evaluation metrics in regres-
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sion models [46]. R2 is a statistical indicator that quantifies the proportion of the observed
variance in the dependent variable that can be explained by the independent variables
included in the model. The metric ranges from 0 to 1, with a higher value indicating
greater agreement between the model and observed data. The MAE is the average of the
absolute values of the differences between the predicted and observed values and serves as
an indicator of the accuracy of the model when predicting variables. In contrast, RMSE
calculates the square root of the average of the absolute values between the predicted and
observed values. Finally, the MSE calculates the average of the absolute values of the
differences between the predicted and observed values. Decreases in MAE, RMSE, and
MSE indicate a higher level of model fit to the dataset. The evaluation measures selected
for the ML models in this study included R2, MAE, RMSE, and MSE [47,48].

2.3.4. SHapley Additive exPlanations (SHAP) Implementation

SHAP is an interpretable machine learning method based on the Shapley value concept
of the cooperative game theory [49]. The combination of machine learning and SHAP is
an effective tool for identifying important features and exploring the functional form of
relationships in data [50], and has been widely applied in various fields [51]. The SHAP
value is the contribution of a feature to the difference between the actual prediction and the
average prediction when considering other variables in the model [52]. SHAP is useful in
explaining various supervised learning models and assigns an importance value to each
input variable for a specific prediction [53]. Unlike traditional features of importance in
machine learning models, SHAP can identify whether the contribution of each input feature
is positive or negative. In addition, each observation can be used to obtain SHAP value.
Therefore, SHAP can help interpret models both locally and globally [53]. SHAP values
can be approximated in various ways, such as kernel, Deep SHAP, and tree SHAP. Among
these methods, Tree SHAP, a SHAP version of tree-based machine learning models (e.g.,
decision trees, RF, and gradient boosting trees (GBM, XGB)), was used in this study. SHAP
was implemented using the SHAP 0.46.0 library.

3. Results
3.1. Descriptive Statistics

The descriptive statistics of the variables used in the analysis are listed (Table 1).
The study’s average BOD concentration was 2.4 mg/L, with TN and TP concentrations
averaging 3.878 mg/L and 0.104 mg/L, respectively; these are classified as “slightly good”
according to Korea’s Environmental Policy Act. The stream width and substrate received
low scores (5.17 and 13.54), indicating poor habitat conditions. The hydrological variables
showed an average width of 12.9 m and a flow rate of 17.52 cm/s. Watershed analysis
showed that urban and agricultural land accounted for 9.51% and 25.29%, respectively,
whereas forest areas accounted for 57.90%, highlighting the significant human influence.
The average EPT population density was 45.07% and the TS population density was 39.41%,
suggesting relatively healthy stream ecosystems.

3.2. Spatial Autocorrelation Analysis Results

The results of the spatial autocorrelation analysis, summarized in Table 2, indicate that
the global Moran'’s I for the residuals was calculated as —0.0327, with a Z-score of —0.284
and a p-value of 0.776, demonstrating that the spatial pattern of the data does not exhibit
statistically significant spatial clustering or dispersion across the dataset. Similarly, the
local Moran’s I analysis revealed that most locations did not exhibit significant clustering or
spatial outliers, with a few localized patterns (e.g., High-Low clusters) identified, though
these were not statistically significant (LISA_Significance = False) (Table 3). This lack of
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significant spatial autocorrelation suggests that the dataset is suitable for machine learning
models without requiring additional spatial adjustments, and the spatial patterns are not
expected to influence model performance.

Table 1. Descriptive statistics of predictor variables.

Category Variable (Unit) Abbreviation = Range (Mean) S.D.
Stream variables
Biochemical oxygen demand (mg/L) BOD 0.4-10.9 (1.84) 1.36
Total nitrogen (mg/L) TN 0.167-12.90 (3.23) 2.15
Water quality Total phosphorus (mg/L) TP 0.006-0.501 (0.067) 0.082
Dissolved oxygen (mg/L) DO 4.74-16.31 (9.66) 2.65
Temperature (°C) Tem. 9.40-30.72 (18.31) 3.55
Stream width SW 0-25 (5.17) 3.97
Physical habitat Stream substrates SSE 0-30 (13.54) 6.74
quality Riverside area - 0-10 (7.46) 3.72
Inland - 0-10 (4.26) 3.29
Hvdrological variables Average water width (m) W_Width 0.50-92.15 (12.59) 12.23
ydarolog Average velocity (cm/s) Velocity 0.033-116.850 (17.52) 22.95
Watershed variables
Urban area (%) - 0.00-68.58 (9.51) 11.94
Land use Agricultural area (%) - 0.00-86.07 (25.29) 19.23
Forest area (%) - 0.00-99.32 (57.90) 25.35
Phvsioeraphic Average elevation (m) - 43.30-924.20 (267.98) 198.64
ystograp Average slope (degree) - 1.02-20.58 (10.51) 4.72

Biological indicators

Population density

Populati _
dgr}:‘sdit%; t)Ofn ratio of EPT species (%) EPT 0.00-97.58 (45.07) 25.36
benthic macroinvertebrates ~ © opulation density TS 0.00-99.42 (39.61) 28.35
ratio of tolerant species (%)
Notes: n = 366. S.D., standard deviation.
Table 2. Global Moran’s I results.
Metric Value
Moran’s I —0.0327
Expected Index —0.0139
Variance 0.00437
Z-score —0.284
p-Value 0.776

Table 3. Local Moran’s I example results.

ID LISA Cluster LISA Significance LISA Moran’s I
1 High-Low False 0.5541

13 Low-Low False —0.1169

20 High-Low False 0.0420

21 High-High False 0.0412

34 High-Low False 0.0359

3.3. Model Structure Validation and Performance Evaluation

The performances of machine learning models, including RF, GBM, XGB, and SVM,
were evaluated for EPT and TS predictions (Table 4). For EPT predictions, the RF
model achieved the best performance, with the lowest MSE (254.40), RMSE (15.95), and
MAE (12.74), and the highest R? (0.62). This highlights RF’s ability to effectively model non-
linear relationships and complex interactions. The GBM model followed with competitive
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results (MSE = 271.59, R? = 0.59), demonstrating strong predictive capabilities. XGB and
SVM models exhibited moderate performance with higher errors (MSE = 338.04 for XGB
and 307.84 for SVM) and lower R? values (0.49 and 0.54, respectively). For TS predictions,
the GBM model outperformed the others, achieving the lowest MSE (324.48) and RMSE
(18.01) and the highest R? (0.61). The RF model performed slightly lower but remained
effective (MSE = 365.92, R? = 0.56). XGB and SVM models showed relatively weaker results,
with MSE values of 349.89 and 429.61, respectively, and lower R? values. Overall, the
RF model excelled in EPT predictions, while the GBM model was more effective for TS,
reflecting their strengths in modeling different ecological conditions. These findings em-
phasize the utility of ensemble-based models like RF and GBM for robust stream ecosystem
predictions, outperforming XGB and SVM in accuracy and reliability.

Table 4. Evaluation of ML model performance.

EPT TS
Model MSE RMSE MAE R? MSE RMSE MAE R?
RF 254.40 15.95 12.74 0.62 365.92 19.13 15.19 0.56
GBM 271.59 16.48 13.02 0.59 324.48 18.01 13.88 0.61
XGB 338.04 18.39 14.95 0.49 349.89 18.71 14.85 0.58
SVM 307.84 17.55 13.53 0.54 429.61 20.73 16.15 0.48
3.4. Variable Importance at Global and Local Levels
In the SHAP summary plot, each point represents a SHAP value that measures the
contribution of an environmental variable to an individual prediction at a site, whereas a
cluster of points represents the magnitude, commonality, and direction of the global effect
of the variable. The average SHAP value across all sites represented a measure of global
importance (Figure 3). The predictors are listed from top to bottom in descending order of
global importance.
(a) High (b) High
Elevation o tmeliO eov e ’ o confireie o cal Elevation -
Velocity -» ‘ L = BOD
Slope -*‘-*‘ﬂ'--- oot N
BOD - I bom Agricultural
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Figure 3. SHAP summary plot for (a) EPT (RF model) and (b) TS (GBM model).

The top five variables influencing the EPT population density ratio were elevation,
velocity, slope, BOD, and TN, while for the TS population density ratio, the most influential
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variables were elevation, BOD, TN, agricultural land use, and temperature. Common
variables for both the EPT and TS included elevation, BOD, and TN. The EPT population
density increased with elevation but decreased with higher BOD and TN concentrations,
whereas TS showed the opposite trend. Velocity and slope also positively affected EPT
population density, whereas the agricultural ratio and temperature had greater effects on
TS population density. Habitat variables were less significant.

The SHAP force plots for high EPT in impaired streams, EPT in reference streams,
and TS population density in the dataset are shown in Figure 4. Values in bold indicate
the predictions generated during model training. These values describe how individual
environmental variables contribute to EPT and TS population densities and interact with
each other to influence the results at a particular data point. Overall, watershed variables
such as elevation, flow velocity, and slope had the greatest impact on both EPT and TS
population densities. Lower elevations negatively affected EPT population density, whereas
higher elevations had a negative impact on TS population density. In the reference streams,
the agricultural ratio and physical habitat quality (SW and SSE) positively influenced the
EPT population density, whereas flow velocity was a key positive factor in the impaired
streams. In contrast, TS population density was positively influenced by the urban ratio
and water quality (BOD). In impaired streams, land use and physical habitat quality (SW,
inland) played a significant role in increasing TS population density. These plots provide
a regional description of individual samples, illustrate the varying effects of variables on
predicting EPT and TS population densities, and reveal the complex relationships between
environmental factors and benthic macroinvertebrates.

(a) Reference stream site with EPT density ratio
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Figure 4. Force plots on a particular example: (a,b) EPT and TS population densities in the same
reference stream, (c,d) EPT and TS population densities in the same impaired stream. The magnitude
and direction of the SHAP values for the predictor variables are indicated by arrows (red arrows
indicate a positive effect, blue arrows indicate a negative effect) to indicate their contribution (black
bold values) to the final prediction.

3.5. Interpretation of Partial Effects of Environmental Parameters

The threshold values of the predictors that could change the density ratios of EPT
and TS were identified using SHAP dependence plots (Figure 5). For the EPT population
density ratio, negative SHAP values were observed when BOD concentrations were ap-
proximately 1.6 mg/L, TN concentrations were approximately 3 mg/L, and the proportion
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of agricultural area exceeded 35%. The EPT population density ratio stabilized when the
BOD was approximately 3 mg/L, TN was approximately 5 mg/L, and the agricultural area
proportion was approximately 40%. For the TS population density ratio, positive SHAP val-
ues were observed when BOD was approximately 2 mg/L, TN was approximately 2 mg/L,
and the proportion of agricultural area exceeded 15%. The TS population density ratio
stabilized at a BOD concentration of 5 mg/L and TN concentration of 6 mg/L, with the TS
population density continuing to increase as the proportion of agricultural area increased.

(a) SHAP dependence plot for EPT
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Figure 5. SHAP dependence plot for EPT. Each data point in the scatter plot represents an example of
the dataset. In the SHAP summary plot, the top five significant variables are shown on the x-axis,
and the SHAP values associated with those variables are shown on the y-axis. The plot shows the
contribution of the feature to the model prediction as the value increases. Positive SHAP values
indicate that the feature contributes to increasing the prediction, while negative SHAP values indicate
that the feature reduces the prediction. Red arrows indicate threshold points in the SHAP value,
highlighting critical values where the impact on the prediction shifts significantly.

4. Discussion

This study found that benthic macroinvertebrate communities are affected by envi-
ronmental factors such as water quality, habitat, geomorphology, and land use. The two
major biological groups of benthic macroinvertebrates (EPT and TS) responded differently
to these factors.

4.1. Relationship Between Physiographic Factors and Benthic Macroinvertebrate Communities in
Stream Ecosystems

This study found that altitude was a significant factor affecting EPT and TS. Altitude
is significantly associated with the distribution of aquatic organisms living in streams [54].
This is consistent with previous studies showing that EPT abundance is higher in forest
streams, which are generally characterized by high elevations [55]. Elevation is related to
slope and geology and is inversely related to retention time, with fast-flowing watersheds
tending to be higher and steeper. In particular, elevation is a major determinant of other
environmental factors, such as its influence on climatic variables, including water tempera-
ture, sunlight, and air pressure, and on land use and stream conditions through its influence
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on geology, soil, and vegetation [56]. Slope is a key environmental variable influencing
the distribution of benthic macroinvertebrates through its effects on hydrology, sediment
dynamics, and physical habitat characteristics. Steeper slopes are generally associated
with higher flow velocities, which create fast-flowing habitats that favor taxa adapted to
such conditions, such as certain EPT species. These species often rely on coarse substrates,
such as cobbles and gravels, that are more prevalent in high-gradient streams where fine
sediment deposition is minimized [57]. In contrast, lower slopes are often characterized
by slower flow velocities, increased sedimentation, and finer substrates, which can lead to
habitat conditions favoring tolerant taxa, such as Chironomidae and Oligochaeta. These
taxa are better adapted to environments with higher organic matter deposition and reduced
oxygen levels, which are often associated with degraded stream conditions [58]. Moreover,
slopes indirectly affect macroinvertebrate distributions by influencing riparian vegetation
and land use. Steeper slopes are less likely to be developed for agriculture or urbanization,
often maintaining more intact riparian buffers that contribute to improved water quality
and habitat structure [59]. Conversely, flatter slopes are more susceptible to anthropogenic
impacts, such as sediment and nutrient runoff, which further shape the composition of
benthic communities [12]. These ecological interpretations help explain the observed rela-
tionships between slope and macroinvertebrate distributions in this study, emphasizing
the importance of slope as both a direct and indirect determinant of stream health.

The correlation analysis supported these findings, showing significant positive cor-
relations between EPT population density and elevation (r = 0.62) and slope (r = 0.54).
Conversely, TS population density was negatively correlated with elevation (r = —0.50) and
slope (r = —0.45) (Supplementary Table S2). These results align with the observed ecological
patterns, where higher elevations and steeper slopes support conditions favorable for EPT
species while limiting TS taxa.

4.2. Relationship Between Water Quality and Benthic Macroinvertebrate Communities in
Stream Ecosystems

BOD and TN exhibited strong associations with EPT and TS, similar to previous
studies [55,60], demonstrating how nutrients and organic pollution directly affect benthic
macroinvertebrate communities. BOD serves as a key indicator of organic pollution by
measuring the amount of dissolved oxygen required by aerobic organisms to break down
organic matter in water. Elevated BOD levels are typically associated with increased organic
matter, typically from sources such as sewage discharge, agricultural runoff, and industrial
waste [61]. As BOD increases, microbial activity intensifies, consuming dissolved oxygen
(DO) and potentially leading to oxygen depletion or even an anoxic state, significantly
affecting aquatic life, including benthic macroinvertebrates [62]. However, in flowing
water systems, the relationship between BOD and DO is influenced by additional factors.
Turbulence and reaeration in streams can enhance oxygen diffusion from the atmosphere,
partially offsetting the effects of increased microbial oxygen consumption [63]. Similarly,
flow velocity can play a critical role in maintaining DO levels by facilitating mixing and
reducing stagnant zones where oxygen depletion is more likely [64]. Consequently, while
elevated BOD poses a risk of DO depletion, its impact may vary depending on the hydro-
dynamic characteristics of the stream. Such conditions favor TS, such as Chironomidae
and Tubificidae, whereas sensitive taxa, such as EPT, are typically excluded. The influ-
ence of BOD on the ecosystem may vary depending on other factors, such as nutrient
concentrations. In streams with high TN levels, nutrients interact with organic pollutants
to exacerbate DO depletion. For example, increased nutrient loads can accelerate eutrophi-
cation, leading to algal blooms that deplete oxygen as they decompose, further reducing
the DO levels [65]. High levels of TN were particularly influential, consistent with previous
research showing that increased nitrogen concentrations are associated with a reduction in
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sensitive EPT species and a corresponding increase in tolerant species such as Tubificidae
and Chironomidae [66]. This indicated that nutrient enrichment and organic pollution
play pivotal roles in shaping benthic macroinvertebrate communities. BOD, although
important, may act in conjunction with other factors, such as TN and flow dynamics, to
influence the overall ecological health of streams. In this study, although BOD was strongly
associated with both EPT and TS, the relative importance of DO was low. This may be
explained by the fact that while DO is critical for the survival of aquatic organisms and
plays a fundamental role in shaping the structure and function of benthic communities [67],
its influence can be mitigated by other environmental factors. For example, higher flow
velocities in certain stream sections can promote oxygenation by increasing turbulence and
aeration, which may buffer the negative effects of high BOD levels [68]. Therefore, while
BOD is a critical measure of organic pollution and is strongly associated with changes
in benthic macroinvertebrate communities, its role must be considered alongside other
variables, such as flow velocity and nutrient levels, which can influence DO and overall
stream conditions. These combined factors contribute to the complex dynamics governing
the distribution of EPT and TS taxa in freshwater ecosystems.

The importance of these elevations supports the findings of previous studies that
highlight their important role in shaping macroinvertebrate distribution [69]. EPT generally
depends on low water temperatures and high oxygen levels in streams at high elevations
and gradients [69]. In contrast, TS, such as Chironomidae and Oligochaeta, are typically
better adapted to a wider range of environmental conditions but may be reduced in streams
with high gradients and velocities [70]. Therefore, the observed importance of slope and
elevation in shaping the community structure supports the understanding that these factors
are critical for maintaining habitat conditions suitable for EPT. In these environments, the
EPT is better adapted to clinging to or sheltering within the substrate, minimizing the risk
of displacement by the current [71]. In contrast, tolerant species such as Chironomidae
are typically more abundant in low-velocity streams, where fine sediments and organic
material accumulate, providing ample resources for these species [70].

Water temperature is an environmental factor associated with the metabolic rates of
aquatic organisms, particularly macroinvertebrates [72]. It is a critical determinant of the
distribution, survival, and reproductive success of these organisms [72]. However, the
results of this study show a different pattern from those of previous studies [73]. The
density of pollution-tolerant species decreased when the water temperature exceeded
approximately 18 °C, contrary to the expectation that these species would thrive under
warmer conditions. Piggott et al. [74] found that water temperature had various effects
on benthic macroinvertebrates and that the overall richness of benthic macroinvertebrates
decreased with increasing temperature, but species abundance showed a positive trend.
However, the local response to temperature changes can vary significantly depending
on additional factors, including dissolved oxygen and land-use patterns, as suggested
by Verberk et al. [75]. This indicates that other factors, such as dissolved oxygen levels,
habitat structure, or even localized land use, may interact with temperature to influence
species distribution.

Benthic macroinvertebrates are sensitive to habitat conditions and are commonly used
as indicators of environmental changes [76]. However, in the present study, habitat vari-
ables were relatively less important in explaining the distribution of EPT and TS. Typically,
habitat factors such as substratum, riverside land, and stream width directly influence
the richness and abundance of benthic invertebrates [11,77] and are typically reported to
have a greater impact than other environmental variables [78]. For example, Rico et al. [79]
found that chemical water quality variables had a relatively lower influence on benthic
invertebrate community changes than habitat characteristics in the Danube River. The
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correlation analysis revealed that BOD was negatively correlated with EPT population
density (r = —0.62) and positively correlated with TS population density (r = 0.73). TN also
showed similar trends, with a negative correlation with EPT population density (r = —0.46)
and a positive correlation with TS population density (r = 0.65) (Supplementary Table S2).
These findings highlight the detrimental effects of organic pollution and nutrient enrich-
ment on sensitive taxa such as EPT, while favoring tolerant taxa such as Chironomidae.
However, some studies have reported that water quality explains the variation in benthic
invertebrate communities better than habitat variables such as physical conditions and
sediment characteristics [80]. These findings suggest that although habitat variables are
important environmental factors for benthic invertebrates, attention must be paid to the
combined effects of different variables. Habitat characteristics and physicochemical pa-
rameters simultaneously influence the health of benthic invertebrate communities, and the
complexity of ecosystems can be reflected in the combined effects of these factors on their
structural and functional aspects [81].

4.3. Environmental Influences on EPT and TS in Impaired and Reference Streams

In stream ecosystems, a comparison of impaired and reference streams revealed signif-
icant differences in the influence of environmental factors on the distribution of EPT species
and TS. This highlights the crucial roles of local environmental conditions, land use, and
nutrient levels in shaping macroinvertebrate communities in different stream environments.

In the reference streams, the EPT and TS were strongly influenced by physical char-
acteristics, such as high elevation, steep slopes, and fast flow velocity. These streams
typically experience minimal human disturbance, high forest cover, low agricultural ac-
tivity, and limited urban impact [82]. These factors create an ideal habitat for EPT, which
relies on well-oxygenated velocity-flowing water and complex substrate structures for
survival and reproduction. In contrast, TS was less abundant in these pristine conditions
as it tended to thrive in more nutrient-rich, slow-flowing waters typically associated with
human-altered landscapes [83]. In impaired streams, especially those at low elevations,
agriculture-dominated areas, land use, and nutrient enrichment were the dominant factors
influencing the benthic macroinvertebrate community structure. Agricultural runoff, partic-
ularly nitrogen, significantly increased TS abundance owing to elevated nutrient levels and
altered flow conditions, which created a more favorable environment for tolerant species.

In the reference streams, relatively undisturbed land use, including high forest cover
and limited urban and agricultural activities, led to healthier macroinvertebrate commu-
nities dominated by EPT species. These streams typically have minimal nutrient inputs,
leading to low TN concentrations and supporting the EPT populations. However, in
agricultural regions located at higher elevations, such as high-altitude farming areas, the in-
tensification of land use contributes to elevated nutrient levels, particularly nitrogen, which
increases the abundance. In impaired streams, land-use patterns across the watershed,
riverside land, and inland areas had a significant impact on benthic macroinvertebrate
communities. Low agricultural and riverside land use and inland land-use intensity were
correlated with decreased EPT population density. In contrast, impaired streams in agri-
cultural regions exhibit higher nutrient loads and lower habitat complexities, resulting in
increased TS abundance. This suggests that the EPT is positively affected by undisturbed
high-altitude and steep-slope stream environments; however, its distribution is negatively
affected by changes in watershed land use, such as agriculture or urban development.

4.4. Limitations of Current Indicators and Future Directions

While EPT and TS indicators provide valuable insights into the health of stream
ecosystems, they may not fully capture the complexity and functional diversity of benthic
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macroinvertebrate communities. However, these indicators may overlook key aspects of
ecosystem function, such as energy flow, nutrient cycling, and functional diversity, which
are critical for understanding ecosystem resilience and processes. In future research, the
inclusion of complementary ecological metrics, such as functional community analysis,
diversity indices, or trait-based approaches, could enhance the assessment of ecosystem
health. Functional community analysis, for example, evaluates the roles and interactions
of species within ecosystems, providing insights into their ecological roles and resilience
to environmental changes. Such integrative approaches could offer a broader perspec-
tive, helping to better capture the multifaceted impacts of environmental stressors on
stream ecosystems.

5. Conclusions

In conclusion, the distribution of EPT and TS was strongly associated with key envi-
ronmental factors, land use, and nutrient dynamics in both reference and degraded streams.
Due to their sensitivity, EPT serves as an early warning indicator of ecological stress, while
TS reflects prolonged exposure to pollution or habitat degradation. Based on the findings
of this study, restoration projects aimed at increasing EPT populations should prioritize
reducing nutrient inputs; maintaining TN levels below 5 mg/L is recommended to support
the recovery of EPT populations. Enhancing habitat complexity through reforestation or
the establishment of riparian buffer zones is also essential for providing the structural and
hydrological conditions required by EPT species. In addition, for managing TS populations
and mitigating the impacts of nutrient enrichment, controlling agricultural runoff is cru-
cial. The results suggest that TS densities increased significantly when the proportion of
agricultural land use exceeded 15% and stabilized at approximately 40%. Targeting these
thresholds through sustainable agricultural practices, such as cover cropping, precision
fertilization, and the creation of riparian buffers, can effectively reduce nutrient loading
and improve stream health. These findings provide actionable guidance for watershed
management, emphasizing the importance of maintaining nutrient levels within ecolog-
ical thresholds and adopting land-use practices that promote sustainable and resilient
stream ecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su17031252/s1. Table S1: Environmental quality score of benthic
macroinvertebrates, including information on tolerant taxa; Table S2: Full correlation matrix of
environmental variables and macroinvertebrate metrics.
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The following abbreviations are used in this manuscript:

TS Tolerant Species

EPT Ephemeroptera, Plecoptera, and Trichoptera

RF Random Forest

SHAP SHapley Additive exPlanations

MOE The Korean Ministry of Environment

NAEMP  The streams through the National Aquatic Ecosystem Management Program
NIER The National Institute of Environmental Research
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