Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (192)

Search Parameters:
Keywords = rheological properties of dough

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2208 KiB  
Article
Physical Characteristics of Durum Wheat Dough and Pasta with Different Carrot Pomace Varieties
by Marian Ilie Luca, Mădălina Ungureanu-Iuga, Ana Batariuc and Silvia Mironeasa
Gels 2025, 11(7), 481; https://doi.org/10.3390/gels11070481 - 22 Jun 2025
Viewed by 385
Abstract
Carrot pomace is a valuable, underutilized by-product suitable for obtaining novel foods. The durum wheat dough and pasta network structure is affected by fiber-rich ingredients like carrot pomace, leading to changes in rheological and texture parameters. In this context, this paper aimed to [...] Read more.
Carrot pomace is a valuable, underutilized by-product suitable for obtaining novel foods. The durum wheat dough and pasta network structure is affected by fiber-rich ingredients like carrot pomace, leading to changes in rheological and texture parameters. In this context, this paper aimed to evaluate the rheological, textural, and color properties of durum wheat dough and pasta as affected by different varieties and addition levels of carrot pomace. For this purpose, oscillatory dynamic rheological tests, compression mechanical texture evaluation, cooking behavior observation, and reflectance color measurements were made. The results indicated that carrot pomace has a strengthening effect on the durum wheat dough protein–starch matrix, while the maximum creep compliance decreased with the addition level increase. A delay in starch gelatinization was suggested by the evolution of visco-elastic moduli during heating. Dough hardness and gumminess increased (from 2849.74 for the control to 5080.67 g for 12% Baltimore, and from 1073.73 for the control to 1863.02 g for 12% Niagara, respectively), while springiness and resilience exhibited a reduction trend (from 100.11% for the control to 99.50% for 12% Sirkana, and from 1.23 for the 3% Niagara to 0.87 for 12% Belgrado respectively) as the amount of carrot pomace raised. An increasing tendency of pasta solids loss during cooking and fracturability was observed with carrot pomace addition level increase. Color properties changed significantly depending on carrot pomace variety and addition level, indicating a reduction in lightness from 71.71 for the control to 63.12 for 12% Niagara and intensification of red nuance (0.05 for the control vs. 2.85 for 12% Sirkana). Cooked pasta elasticity, chewiness, gumminess, hardness, and resilience increased, while adhesiveness and stickiness decreased as the level of carrot pomace was higher. These results can represent a starting point for further industrial development of pasta enriched with fiber-rich ingredients like carrot pomace. The study highlights the possibility of using a fiber-rich waste stream (carrot pomace) in a staple product like pasta, providing a basis for clean-label pasta formulations. In addition, the novelty of the study consists in highlighting how compositional differences of different carrot pomace varieties lead to distinct effects on dough rheology, texture, color, and cooking behavior. Full article
(This article belongs to the Special Issue Food Gels: Structures, Properties and Applications)
Show Figures

Figure 1

21 pages, 879 KiB  
Article
The Potential of Ancient Sicilian Tetraploid Wheat in High-Quality Pasta Production: Rheological, Technological, Biochemical, and Sensory Insights
by Rosalia Sanfilippo, Nicolina Timpanaro, Michele Canale, Salvatore Moscaritolo, Margherita Amenta, Maria Allegra, Martina Papa and Alfio Spina
Foods 2025, 14(12), 2050; https://doi.org/10.3390/foods14122050 - 11 Jun 2025
Viewed by 460
Abstract
This study evaluated the potential of three ancient Sicilian tetraploid wheat genotypes—‘Margherito’, ‘Perciasacchi’, and ‘Russello’—for organic pasta production, compared to the national variety ‘Cappelli’. Significant variations in particle size distribution were found, with ‘Russello’ exhibiting the highest proportion of fine particles and the [...] Read more.
This study evaluated the potential of three ancient Sicilian tetraploid wheat genotypes—‘Margherito’, ‘Perciasacchi’, and ‘Russello’—for organic pasta production, compared to the national variety ‘Cappelli’. Significant variations in particle size distribution were found, with ‘Russello’ exhibiting the highest proportion of fine particles and the greatest protein content (14.30% d.m.). ‘Perciasacchi’ displayed the highest gluten index (81.26%). ‘Margherito’ and ‘Cappelli’ had the highest antioxidant activity, with ‘Margherito’ showing elevated levels of lutein and total carotenoids. Rheological analysis revealed differences in dough properties. ‘Perciasacchi’ exhibited the highest dough stability and P/L ratio (6.57), whereas ‘Russello’ showed the lowest values for both. Additionally, ‘Russello’ had lower consistency (12 B.U.), reduced gel stability, and limited water retention in the visco-amylographic analysis. Pasta quality was evaluated based on cooking time, water absorption, and texture. Cooking time ranged from 10 to 12 min, with ‘Russello’ and ‘Margherito’ showing lower water absorption. Texture analysis indicated that ‘Margherito’ pasta was the least firm, while ‘Russello’ showed the greatest loss of consistency when overcooked. From a sensory perspective, ‘Russello’ had lower firmness, but a stronger semolina flavor and surface roughness. ‘Cappelli’ had the most intense cooked pasta odor, while ‘Perciasacchi’ was the hardest and least sticky, though less flavorful. The results support the use of ancient tetraploid wheat genotypes as valuable resources for sustainable, high-quality pasta production. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

21 pages, 1792 KiB  
Article
Fortification of Bread with Carob Extract: A Comprehensive Study on Dough Behavior and Product Quality
by Jana Zahorec, Dragana Šoronja-Simović, Jovana Petrović, Ivana Nikolić, Branimir Pavlić, Katarina Bijelić, Nemanja Bojanić and Aleksandar Fišteš
Foods 2025, 14(10), 1821; https://doi.org/10.3390/foods14101821 - 20 May 2025
Viewed by 530
Abstract
The integration of functional ingredients into staple foods like bread offers a promising strategy for improving public health. Carob (Ceratonia siliqua L.) flour, rich in bioactive compounds, has potential as a functional additive. However, its incorporation into bread negatively affects dough behavior [...] Read more.
The integration of functional ingredients into staple foods like bread offers a promising strategy for improving public health. Carob (Ceratonia siliqua L.) flour, rich in bioactive compounds, has potential as a functional additive. However, its incorporation into bread negatively affects dough behavior and product quality due to high levels of insoluble dietary fibers. This study investigates the use of carob extract (PCE) as a functional additive to enhance the nutritional and bioactive profile of bread while preserving its rheological behavior and sensory quality. PCE was obtained via microwave-assisted extraction and spray drying, and incorporated into bread formulations at 1%, 3%, and 5%. The addition of PCE reduced water absorption by 1.5% and increased dough stability three times. Dough resistance increased by 15%, while extensibility decreased by 5%. The viscoelastic properties of dough were preserved, as the storage modulus increased and Tan δ values remained stable. Changes in specific volume, crumb texture, crumb porosity, and bread color of produced bread with PCE were minimal; however, aroma, taste, and overall sensory quality were improved. Additionally, the incorporation of PCE resulted in a significant increase in total phenolic content and antioxidant activity, indicating an enhancement of the bread’s functional properties. These improvements were achieved without negatively affecting the dough rheology or bread quality parameters. Overall, the findings suggest that PCE can be a promising functional ingredient in bread formulations, contributing to both nutritional value and technological performance. Full article
(This article belongs to the Special Issue Encapsulation-Based Technologies for Bioactive Compounds in Foods)
Show Figures

Figure 1

21 pages, 9368 KiB  
Article
Wild Hops in Breadmaking Among Bulgarians: From History to Modern Perspectives and Future Potentials
by Anely Nedelcheva, Dauro Mattia Zocchi, Naji Sulaiman, Renata Sõukand, Andrea Pieroni and Antonella Pasqualone
Foods 2025, 14(10), 1767; https://doi.org/10.3390/foods14101767 - 16 May 2025
Viewed by 764
Abstract
Humulus lupulus L. (common hop) is a herbaceous plant whose female inflorescences, commonly called hop “cones”, are traditionally used in Bulgaria to prepare sourdough starters or “kvass”. Drawing from a review of historical and linguistic sources and ethnographic information collected by [...] Read more.
Humulus lupulus L. (common hop) is a herbaceous plant whose female inflorescences, commonly called hop “cones”, are traditionally used in Bulgaria to prepare sourdough starters or “kvass”. Drawing from a review of historical and linguistic sources and ethnographic information collected by the authors, this study aims to define the traditional preparation of bread with hop sourdough, starting from the preparation of the hop cone decoction. Archival materials and early cookbooks attest to a rich tradition where hop-infused bread was valued for its distinctive flavor and preservative qualities. Fieldwork conducted in Bulgaria and among Bulgarian diasporas in Moldova provided insights into the continuity of these practices, underscoring the persistence of these traditional preparations despite modern industrial pressures. Ethnographic interviews and participant observations highlighted the ritualistic preparation of hop kvass and its role in community identity. The effect of hops on dough’s rheological properties and the quality features of bread were also reviewed. An increase in dough stability and resistance to elongation were generally reported, with a reduction in bread volume and porosity, especially with hop sourdough levels above 30%, but the incorporation of bioactive molecules was responsible for antioxidant, antimicrobial, and flavoring properties. Possible prospects for using hops in the food industry, based on the biological properties of this resource-rich plant, are outlined with a multidisciplinary approach. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

21 pages, 1763 KiB  
Article
Gluten-Free Sourdough Based on Quinoa and Sorghum: Characterization and Applications in Breadmaking
by Anca Lupu, Iuliana Banu, Leontina Grigore-Gurgu, Ina Vasilean and Iuliana Aprodu
Appl. Sci. 2025, 15(10), 5468; https://doi.org/10.3390/app15105468 - 13 May 2025
Viewed by 676
Abstract
Gluten-free flour blends, consisting of quinoa and sorghum flours, were used in the present study to prepare sourdough samples, which were characterized in terms of physical–chemical properties, the thermo-mechanical behavior of dough and bread making performance. The quinoa–sorghum flour blends (100:0, 75:25, 50:50) [...] Read more.
Gluten-free flour blends, consisting of quinoa and sorghum flours, were used in the present study to prepare sourdough samples, which were characterized in terms of physical–chemical properties, the thermo-mechanical behavior of dough and bread making performance. The quinoa–sorghum flour blends (100:0, 75:25, 50:50) were fermented using two different starter cultures, consisting of Lacticaseibacillus rhamnosus, Levilactobacillus brevis and Lactiplantibacillus plantarum (SC1), and Lactobacillus acidophilus, Bifidobacterium lactis and Streptococcus thermophilus (SC2). After 20 h of fermentation at 30 °C, the acidity of the sourdoughs prepared with SC1 and SC2 was significantly higher in respect to the corresponding spontaneously fermented sample. The use of the starter culture for sourdough fermentation resulted in sourdoughs with higher glycerol and lactic acid contents, and lower ethanol and acetic acid. The empirical rheological measurements indicated that the behavior of the proteins and starch within the complex dough matrix, during mixing and heating, is influenced by both sorghum level and starter culture type. The use of the sourdough allowed the preparation of gluten-free breads with good texture and high contents of bioactive compounds. In conclusion, sourdough fermentation can be successfully used for boosting the quality of the gluten-free bread products. Full article
Show Figures

Figure 1

13 pages, 892 KiB  
Article
Optimized Water Management Strategies: Evaluating Limited-Irrigation Effects on Spring Wheat Productivity and Grain Nutritional Composition in Arid Agroecosystems
by Zhiwei Zhao, Qi Li, Fan Xia, Peng Zhang, Shuiyuan Hao, Shijun Sun, Chao Cui and Yongping Zhang
Agriculture 2025, 15(10), 1038; https://doi.org/10.3390/agriculture15101038 - 11 May 2025
Viewed by 530
Abstract
The Hetao Plain Irrigation District of Inner Mongolia faces critical agricultural sustainability challenges due to its arid climate, exacerbated by tightening Yellow River water allocations and pervasive water inefficiencies in the current wheat cultivation practices. This study addresses water scarcity by evaluating the [...] Read more.
The Hetao Plain Irrigation District of Inner Mongolia faces critical agricultural sustainability challenges due to its arid climate, exacerbated by tightening Yellow River water allocations and pervasive water inefficiencies in the current wheat cultivation practices. This study addresses water scarcity by evaluating the impact of regulated deficit irrigation strategies on spring wheat production, with the dual objectives of enhancing water conservation and optimizing yield–quality synergies. Through a two-year field experiment (2020~2021), four irrigation regimes were implemented: rain-fed control (W0), single irrigation at the tillering–jointing stage (W1), dual irrigation at the tillering–jointing and heading–flowering stages (W2), and triple irrigation incorporating the grain-filling stage (W3). A comprehensive analysis revealed that an incremental irrigation frequency progressively enhanced plant morphological traits (height, upper three-leaf area), population dynamics (leaf area index, dry matter accumulation), and physiological performance (flag leaf SPAD, net photosynthetic rate), all peaking under the W2 and W3 treatments. While yield components and total water consumption exhibited linear increases with irrigation inputs, grain yield demonstrated a parabolic response, reaching maxima under W2 (29.3% increase over W0) and W3 (29.1%), whereas water use efficiency (WUE) displayed a distinct inverse trend, with W2 achieving the optimal balance (4.6% reduction vs. W0). The grain quality parameters exhibited divergent responses: the starch content increased proportionally with irrigation, while protein-associated indices (wet gluten, sedimentation value) and dough rheological properties (stability time, extensibility) peaked under W2. Notably, protein content and its subcomponents followed a unimodal pattern, with the W0, W1, and W2 treatments surpassing W3 by 3.4, 11.6, and 11.3%, respectively. Strong correlations emerged between protein composition and processing quality, while regression modeling identified an optimal water consumption threshold (3250~3500 m3 ha−1) that concurrently maximized grain yield, protein output, and WUE. The W2 regime achieved the synchronization of water conservation, yield preservation, and quality enhancement through strategic irrigation timing during critical growth phases. These findings establish a scientifically validated framework for sustainable, intensive wheat production in arid irrigation districts, resolving the tripartite challenge of water scarcity mitigation, food security assurance, and processing quality optimization through precision water management. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

16 pages, 2711 KiB  
Article
Functionalities of Octenyl Succinic Anhydride Wheat Starch and Its Effect on the Quality of Model Dough and Noodles
by Hongxue Ma, Liai Yang, Dunhe Zhang, Huijing Chen and Jianquan Kan
Foods 2025, 14(10), 1688; https://doi.org/10.3390/foods14101688 - 10 May 2025
Viewed by 583
Abstract
Chemically modified starch is a widely used food additive for tailoring the quality of wheat flour products. However, the effects of octenyl succinic anhydride (OSA)-modified wheat starch with varying degrees of substitution on the quality of dough and noodles remain unclear. In this [...] Read more.
Chemically modified starch is a widely used food additive for tailoring the quality of wheat flour products. However, the effects of octenyl succinic anhydride (OSA)-modified wheat starch with varying degrees of substitution on the quality of dough and noodles remain unclear. In this study, we prepared two types of OSA-modified wheat starch with different degrees of substitution and incorporated them as additives into a wheat starch–gluten protein model flour system to evaluate their impact on dough processing characteristics. Fourier transform infrared (FTIR) spectroscopy results revealed the introduction of ester carbonyl (C=O) and carboxylate (RCOO−) functional groups into the starch structure. X-ray diffraction (XRD) analysis demonstrated that OSA modification reduced the relative crystallinity of starch and disrupted the long-range structural order of the native starch. Scanning electron microscopy (SEM) observations indicated that the surface of OSA-modified wheat starch granules became rougher. OSA modification enhanced the solubility, water absorption capacity, and apparent viscosity but lowered the gelatinization temperature of starch, making starch more prone to gelatinization. Furthermore, the incorporation of OSA-modified wheat starch significantly altered the gelatinization behavior and dynamic rheological properties of wheat dough, whilst the noodle with the addition of OSA-modified starch (DS = 0.019) reduced the cooking time by 29.0% compared to the control group noodle and improved its water absorption rate. This study provides a theoretical foundation for the application of OSA-modified wheat starch as a food additive in wheat-based foods. Full article
Show Figures

Figure 1

21 pages, 10740 KiB  
Article
Influence of Onion Peel Extract on the Dough Characteristics of High-Gluten Wheat Flour and the Quality of Bread
by Cuntang Wang, Yuqing Wang, Ning Wang and Jian Ren
Foods 2025, 14(9), 1618; https://doi.org/10.3390/foods14091618 - 3 May 2025
Cited by 1 | Viewed by 600
Abstract
In this study, we evaluated the effect of onion peel extract (OPE), which is rich in phenolics and flavonoids, on the performance of high-gluten wheat flour and bread quality to meet consumer demand for functional bakery products. The addition levels of OPE were [...] Read more.
In this study, we evaluated the effect of onion peel extract (OPE), which is rich in phenolics and flavonoids, on the performance of high-gluten wheat flour and bread quality to meet consumer demand for functional bakery products. The addition levels of OPE were set at 0%, 0.25%, 0.5%, 0.75% and 1% (w/w), respectively, to analyze their effects on water/oil absorption capacity, falling number, and rheological properties (farinographic properties, tensile properties, dynamic rheological properties and gelatinization characteristics) of dough, as well as bread quality (antioxidant activity, texture, microstructure, specific volume and sensory evaluation). When the OPE addition level was 0.25% and 0.5%, the dough’s oil absorption capacity, farinographic properties, tensile properties, dynamic rheological properties, and gelatinization characteristics were all improved. Correspondingly, a more compact and ordered microstructure was observed in the dough. It was found that total phenolic content, total flavonoid content, and antioxidant capacity of bread significantly increased with the increase in the OPE addition level (p < 0.05). The texture analysis of the bread showed that the addition of OPE reduces the hardness and chewiness of bread, indicating that the texture of bread was easily accepted by consumers. In the sensory evaluation, when the addition level of OPE was 0.5%, the color and flavor of bread were improved, and the overall acceptability was relatively high. In conclusion, OPE has improved the texture characteristics and nutritional value of bread. It is recommended that the addition level of OPE in high-gluten wheat flour dough and bread be below 0.5%. Full article
Show Figures

Figure 1

23 pages, 3885 KiB  
Article
The Influence of Fusarium culmorum on the Technological Value of Winter Wheat Cultivars
by Edyta Aleksandrowicz, Krzysztof Dziedzic, Anna Szafrańska and Grażyna Podolska
Agriculture 2025, 15(6), 666; https://doi.org/10.3390/agriculture15060666 - 20 Mar 2025
Viewed by 497
Abstract
The research hypothesis assumes that Fusarium culmorum infection affects the baking value of wheat. The aim of the research was to determine the effect of the cultivar on the rheological properties of wheat dough in response to Fusarium culmorum infection of wheat. A two-factor [...] Read more.
The research hypothesis assumes that Fusarium culmorum infection affects the baking value of wheat. The aim of the research was to determine the effect of the cultivar on the rheological properties of wheat dough in response to Fusarium culmorum infection of wheat. A two-factor experiment conducted during the 2018–2020 growing seasons in Osiny, Poland, was set up using the completely randomized block design with three replications. The first factor was winter wheat cultivars (six cultivars), while the second factor was inoculation (two levels—Fusarium culmorum and distilled water—control). The immunoenzymatic ELISA method was used to determine the content of deoxynivalenol (DON) in grain. The DON content in the grain varied between cultivars. Fusarium culmorum inoculation resulted in an increase in protein, ash content, and flour water absorption, changes in dough rheological properties, and a decrease in the sedimentation index. Inoculation also caused negative changes in starch properties. The observed interaction between Fusarium culmorum inoculation and cultivars in shaping the qualitative parameters and rheological properties of the dough indicates that there are wheat cultivars less susceptible to Fusarium infection, which do not show any significant changes as a result of infection. Full article
Show Figures

Figure 1

24 pages, 2256 KiB  
Article
Technological Challenges of Spirulina Powder as the Functional Ingredient in Gluten-Free Rice Crackers
by Ivana Nikolić, Ivana Lončarević, Slađana Rakita, Ivana Čabarkapa, Jelena Vulić, Aleksandar Takači and Jovana Petrović
Processes 2025, 13(3), 908; https://doi.org/10.3390/pr13030908 - 19 Mar 2025
Viewed by 1049
Abstract
Technological issues with the production of gluten-free rice crackers with spirulina powder were examined in this work through their rheological, textural, color, sensory, and nutritional aspects. A part of gluten-free whole-grain rice flour was replaced with 5, 10, and 15% spirulina powder in [...] Read more.
Technological issues with the production of gluten-free rice crackers with spirulina powder were examined in this work through their rheological, textural, color, sensory, and nutritional aspects. A part of gluten-free whole-grain rice flour was replaced with 5, 10, and 15% spirulina powder in an appropriate recipe for crackers. The rheological analysis presented obtained dough samples as viscoelastic systems with dominant elastic components (G′ > G″ and Tan δ = G″/G′ is less than 0). The addition of spirulina contributed to a softer dough consistency according to a statistically significant (p < 0.5) decrease of Newtonian viscosity during the creep phase for a maximum of 43.37%, compared to the control dough. The 10 and 15% quantities of spirulina powder led to a statistically significant (p < 0.5) increase in the viscoelastic parameter Jmax, which indicated a greater dough adaptability to stress. The textural determination of the dough pointed statistically significantly (p < 0.05) to decreased dough hardness and improved dough extensibility and confirmed all rheological measurements with high correlation coefficients, indicating good physical dough properties during processing. Spirulina certainly affected the change in the color of the dough from a yellow-white to intense green, which also had a significant impact on the sensory quality of the baked crackers. Many sensory properties of the crackers were improved by the addition of and increasing amounts of spirulina (appearance, brittleness, hardness, graininess, and stickiness). The results for the dough and for the final crackers pointed to very good technological aspects for the development of a gluten-free bakery product with high nutritional value, such as increased polyphenolic content (with the majority of catechins), protein, total dietary fibers, and mineral content compared to the control sample. Full article
(This article belongs to the Special Issue Rheological Properties of Food Products)
Show Figures

Graphical abstract

25 pages, 2303 KiB  
Article
Using Bran of Ancient and Old Grains for Wheat Bread Production
by Oumayma Toumi, Costantino Fadda, Alessandra Del Caro and Paola Conte
Foods 2025, 14(5), 860; https://doi.org/10.3390/foods14050860 - 3 Mar 2025
Cited by 1 | Viewed by 867
Abstract
In the current era of heightened awareness regarding the impact of food choices, there has been a noticeable shift towards revisiting traditional ingredients. Following the growing interest in ancient grains, this study evaluated their potential use for enriching modern wheat dough and bread. [...] Read more.
In the current era of heightened awareness regarding the impact of food choices, there has been a noticeable shift towards revisiting traditional ingredients. Following the growing interest in ancient grains, this study evaluated their potential use for enriching modern wheat dough and bread. The effects of substituting 20% of wheat flour with the bran of seven ancient grains on dough’s rheological properties and bread quality were assessed. The bran-enriched doughs maintained high stability (ST) values and showed an enhanced elastic behavior compared to the control. Nonetheless, a reduction in dough extensibility (E) was also noted. In terms of bread measurements, all bran-enriched breads exhibited a lower specific volume and a darker crust and crumb compared to the control bread. However, not all of the bran breads showed a harder and chewier loaf texture. The composite breads also exhibited enhanced total dietary fiber (TDF) and polyphenol content. A sensory evaluation revealed that Garfagnana (GAR) and Norberto (NOR) bran-breads received the highest overall liking scores. In conclusion, the incorporation of ancient grain brans presents a promising approach to enhancing modern wheat doughs and breads, offering nutritional benefits without significantly compromising their sensory and textural properties. Full article
Show Figures

Figure 1

25 pages, 2096 KiB  
Article
Cucurbita maxima Plomo Peel as a Valuable Ingredient for Bread-Making
by Durim Alija, Remigiusz Olędzki, Daniela Nikolovska Nedelkoska, Ewa Pejcz, Agata Wojciechowicz-Budzisz, Viktorija Stamatovska and Joanna Harasym
Foods 2025, 14(4), 597; https://doi.org/10.3390/foods14040597 - 11 Feb 2025
Viewed by 1943
Abstract
The utilization of food industry by-products represents a significant opportunity for developing functional foods. This study investigated the incorporation of Cucurbita maxima Plomo peel powder (PS) into wheat bread formulations to assess its potential as a valuable ingredient for bread-making. PS was incorporated [...] Read more.
The utilization of food industry by-products represents a significant opportunity for developing functional foods. This study investigated the incorporation of Cucurbita maxima Plomo peel powder (PS) into wheat bread formulations to assess its potential as a valuable ingredient for bread-making. PS was incorporated into wheat flour at 1%, 10%, and 20% levels. The dough’s rheological properties were analyzed using Mixolab. Bread samples were evaluated for physical characteristics (volume, texture, colour), antioxidant properties (DPPH, ABTS, FRAP), and reducing sugar content. Analyses were performed on day 0 and after 7 days of storage. PS incorporation significantly modified dough rheology, with increased development time and enhanced protein stability. Bread volume decreased progressively with PS addition (from 195.5 cm3 to 109.8 cm3 at 20% PS). However, antioxidant activity increased substantially, particularly in the crust, with ABTS values rising from 2.37 to 10.08 TE μM/g DM in water extracts. Total phenolic content and reducing sugars showed significant increases across all PS concentrations. Storage studies revealed stable antioxidant properties but progressive textural changes, with hardness increasing from 6.83 N to 108.8 N at 20% PS after 7 days. While PS incorporation affects bread’s physical properties, the significant enhancement in antioxidant activity and phenolic content suggests its potential as a functional ingredient. The optimal incorporation level should balance technological properties with nutritional benefits. Full article
Show Figures

Figure 1

15 pages, 905 KiB  
Article
Analysis of the Correlation of Microstructure, Instrumental Texture, and Consumer Acceptance of Shortbread Biscuits with Selected Sweeteners and Fibre
by Agata Marzec, Alicja Stępień, Agnieszka Goclik, Hanna Kowalska, Jolanta Kowalska and Agnieszka Salamon
Appl. Sci. 2025, 15(3), 1137; https://doi.org/10.3390/app15031137 - 23 Jan 2025
Cited by 1 | Viewed by 1214
Abstract
Biscuits are characterized by their popular sweet taste, but they have a poor nutritional profile due to their high sugar and saturated fat content, along with low fibre levels. Their sweetness primarily comes from sucrose, which not only determines the flavour but also [...] Read more.
Biscuits are characterized by their popular sweet taste, but they have a poor nutritional profile due to their high sugar and saturated fat content, along with low fibre levels. Their sweetness primarily comes from sucrose, which not only determines the flavour but also performs several technological functions, making it difficult to replace in pastry products. Commercial sweeteners and soluble fibres designed for pastry products are available. Therefore, it is necessary to test the feasibility of using these ingredients in biscuit formulations and assess their impact on biscuit quality. Concurrently, the correlation analysis of dough rheological parameters, structure, and instrumental texture parameters with sensory characteristics will help identify which parameters are strongly correlated and can be used to predict biscuit quality. The purpose of this study was to investigate the dough rheological properties, structure, texture, and sensory characteristics of biscuits in which sucrose was replaced by the commercial sweeteners Tagatesse, maltitol, and erythritol–stevia, with the addition of soluble fibres Nutriose® FB (wheat fibre) and PromOat 35 (oat fibre). At the same time, a correlation analysis was conducted between dough rheological parameters (stickiness, work of adhesion, dough strength) and biscuit quality parameters, such as water activity, water content, colour, texture (pore area, pore shape, pore elongation), and instrumental texture properties (hardness, brittleness, number of acoustic emission (AE) events, AE event energy), with sensory discrimination evaluated through a consumer test. The use of wheat and oat fibres in combination with sucrose resulted in biscuits with lower apparent density, increased porosity, and weaker texture (fracturability, hardness, number of AE events), yet they had better sensory properties compared to biscuits containing sucrose alone. Replacing sucrose with sweeteners combined with fibres led to a deterioration in the sensory quality of the biscuits and a significant change in the dough’s rheological properties. Regardless of the type of sweetener, biscuits with wheat fibre were rated better than those with oat fibre. Of the tested sweeteners, only maltitol combined with wheat fibre resulted in a sensory quality similar to that of sucrose biscuits. Correlation analysis of all measured biscuit quality parameters showed that only the number of AE events had a strong positive correlation with all tested sensory attributes. Porosity was only correlated with sensory crispness, and fracturability was correlated with sweetness, taste, and overall acceptability. Therefore, it appears that the number of AE events recorded at the time of breaking may be a reliable parameter for predicting biscuit quality. Full article
Show Figures

Figure 1

14 pages, 5192 KiB  
Article
Effects of Glycerol Monooleate on Improving Quality Characteristics and Baking Performance of Frozen Dough Breads
by Haocheng Liu, Jiguo Yang, Yujuan Xu, Jing Wen, Jinfeng Zhou, Zhijie Xu, Jian Li, Xueke Sun and Weili Si
Foods 2025, 14(2), 326; https://doi.org/10.3390/foods14020326 - 20 Jan 2025
Viewed by 1031
Abstract
This study investigated the impact of glycerol monooleate (MO) at varying levels (0.3%, 0.6%, 0.9%, and 1.2%) on the quality and baking properties of frozen dough. Low-field NMR and MRI were used to analyze the moisture distribution, water migration, and structural changes during [...] Read more.
This study investigated the impact of glycerol monooleate (MO) at varying levels (0.3%, 0.6%, 0.9%, and 1.2%) on the quality and baking properties of frozen dough. Low-field NMR and MRI were used to analyze the moisture distribution, water migration, and structural changes during frozen storage. The results indicated that MO reduced the content of free water, leading to a decrease in the spin–spin relaxation time of free water (T23). At the same time, the increase in the content of bound water resulted in an increase in the spin–spin relaxation time of bound water (T21). Rheological and SEM analyses revealed that MO preserved the dough’s microstructure and improved its rheological properties, reducing mechanical damage and inhibiting free water crystallization. This study found that by 8 weeks of frozen storage, the frozen dough containing 0.6% MO exhibited the best fermentation performance, with a larger fermentation volume and specific volume, and lower bread hardness, measuring 80 mL, 3.48 mL/g, and 1.10 N, respectively. These findings highlight MO’s potential in terms of enhancing frozen dough quality by maintaining the moisture balance and structural integrity during storage, offering a practical approach to improving bakery product quality. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

27 pages, 8245 KiB  
Article
Composite Flours Based on Black Lentil Seeds and Sprouts with Nutritional, Phytochemical and Rheological Impact on Bakery/Pastry Products
by Christine (Neagu) Dragomir, Sylvestre Dossa, Călin Jianu, Ileana Cocan, Isidora Radulov, Adina Berbecea, Florina Radu and Ersilia Alexa
Foods 2025, 14(2), 319; https://doi.org/10.3390/foods14020319 - 18 Jan 2025
Cited by 2 | Viewed by 1616
Abstract
This paper aimed to study the nutritional, phytochemical and rheological properties of some composite flours based on wheat flour (WF) mixed with non-germinated (LF) and sprouted lentil flour (SLF), in order to fortify the wheat flour and to obtain functional bakery/pastry products. The [...] Read more.
This paper aimed to study the nutritional, phytochemical and rheological properties of some composite flours based on wheat flour (WF) mixed with non-germinated (LF) and sprouted lentil flour (SLF), in order to fortify the wheat flour and to obtain functional bakery/pastry products. The composite flours based on wheat flour and bean lentil flour (BLWF) and sprouted lentil flour (SLWF) were analyzed from the point of view of proximate composition (proteins, lipids, total carbohydrates, and minerals), content of individual and total polyphenols (TPC), as well as the contents of macro and microelements. For use in baking/pastries, the composite flours were tested from the point of view of rheological behavior using the MIXOLAB system, and the profiles obtained were compared with those of bread and biscuit. The results indicated that fortifying wheat flour with lentil flour, both in non-germinated and sprouted forms, increased the protein by 0.6–35.2% and mineral content of the samples and decreased the lipids by 8.3–43.2% and the carbohydrates by 2.8–9.4%. The total polyphenol content (TPC) increased by fortifying the wheat flour with non-germinated and sprouted lentil flour, the increase being between 39.2–131.4%. Regarding individual polyphenols, nine polyphenols were determined, of which epicatechin (46.979 mg/kg) and quercetin (45.95 mg/kg) were identified in the highest concentration in the composite flours. The increase in micronutrient intake by fortifying wheat flour with black lentil flour in both germinated and ungerminated form is more significant compared to the increases recorded in the case of the main macronutrients (Ca, Na, Mg, and K). The micronutrients increased in the composite flours in the order: Cu < Zn < Fe < Mn. The MIXOLAB profile highlighted that black lentil flour, although having a higher absorption index than that recommended for biscuit production, would improve the stability of the dough. Full article
Show Figures

Figure 1

Back to TopTop