Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = rewired metabolic activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 131
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

21 pages, 438 KiB  
Review
Molecular Mechanisms and Clinical Implications of Complex Prehabilitation in Colorectal Cancer Surgery: A Comprehensive Review
by Jakub Włodarczyk
Int. J. Mol. Sci. 2025, 26(15), 7242; https://doi.org/10.3390/ijms26157242 - 26 Jul 2025
Viewed by 431
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer morbidity and mortality worldwide, especially in older adults where frailty complicates treatment outcomes. Multimodal prehabilitation—comprising nutritional support, physical exercise, and psychological interventions—has emerged as a promising strategy to enhance patients’ resilience before CRC surgery. [...] Read more.
Colorectal cancer (CRC) remains a leading cause of cancer morbidity and mortality worldwide, especially in older adults where frailty complicates treatment outcomes. Multimodal prehabilitation—comprising nutritional support, physical exercise, and psychological interventions—has emerged as a promising strategy to enhance patients’ resilience before CRC surgery. Clinical studies demonstrate that prehabilitation significantly reduces postoperative complications, shortens hospital stays, and improves functional recovery. Nutritional interventions focus on counteracting malnutrition and sarcopenia through tailored dietary counseling, protein supplementation, and immunonutrients like arginine and glutamine. Physical exercise enhances cardiorespiratory fitness and muscle strength while modulating immune and metabolic pathways critical for surgical recovery. Psychological support reduces anxiety and depression, promoting mental resilience that correlates with better postoperative outcomes. Despite clear clinical benefits, the molecular mechanisms underlying prehabilitation’s effects—such as inflammation modulation, immune activation, and metabolic rewiring—remain poorly understood. This review addresses this knowledge gap by exploring potential biological pathways influenced by prehabilitation, aiming to guide more targeted, personalized approaches in CRC patient management. Advancing molecular insights may optimize prehabilitation protocols and improve survival and quality of life for CRC patients undergoing surgery. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

31 pages, 4367 KiB  
Article
Serine-Driven Metabolic Plasticity Drives Adaptive Resilience in Pancreatic Cancer Cells
by Marcella Bonanomi, Sara Mallia, Mariafrancesca Scalise, Tecla Aramini, Federica Baldassari, Elisa Brivio, Federica Conte, Alessia Lo Dico, Matteo Bonas, Danilo Porro, Cesare Indiveri, Christian M. Metallo and Daniela Gaglio
Antioxidants 2025, 14(7), 833; https://doi.org/10.3390/antiox14070833 - 7 Jul 2025
Viewed by 603
Abstract
Pancreatic cancer is one of the most lethal malignancies, in part due to its profound metabolic adaptability, which underlies drug resistance and therapeutic failure. This study explores the metabolic rewiring associated with resistance to treatment using a systems metabolomics approach. Exposure to the [...] Read more.
Pancreatic cancer is one of the most lethal malignancies, in part due to its profound metabolic adaptability, which underlies drug resistance and therapeutic failure. This study explores the metabolic rewiring associated with resistance to treatment using a systems metabolomics approach. Exposure to the redox-disrupting agent erastin revealed key metabolic vulnerabilities but failed to produce lasting growth suppression. Combinatorial treatments with methotrexate or alpelisib significantly impaired proliferation and triggered marked metabolic shifts. Systems-level analyses identified serine metabolism as a central adaptive pathway in resilient cells. Metabolic tracing and gene expression profiling showed increased de novo serine biosynthesis and uptake, supporting redox homeostasis, biosynthetic activity, and epigenetic regulation. Notably, cells that resumed growth after drug withdrawal exhibited transcriptional reprogramming involving serine-driven pathways, along with elevated expression of genes linked to survival, proliferation, and migration. These findings establish serine metabolism as a functional biomarker of metabolic plasticity and adaptive resilience in pancreatic cancer, suggesting that targeting this adaptive axis may enhance therapeutic efficacy. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

18 pages, 2012 KiB  
Article
ATP Supply from Cytosol to Mitochondria Is an Additional Role of Aerobic Glycolysis to Prevent Programmed Cell Death by Maintenance of Mitochondrial Membrane Potential
by Akane Sawai, Takeo Taniguchi, Kohsuke Noguchi, Taisuke Seike, Nobuyuki Okahashi, Masak Takaine and Fumio Matsuda
Metabolites 2025, 15(7), 461; https://doi.org/10.3390/metabo15070461 - 7 Jul 2025
Viewed by 634
Abstract
Eukaryotic cells generate ATP primarily via oxidative and substrate-level phosphorylation. Despite the superior efficiency of oxidative phosphorylation, eukaryotic cells often use both pathways as aerobic glycolysis, even in the presence of oxygen. However, its role in cell survival remains poorly understood. Objectives: In [...] Read more.
Eukaryotic cells generate ATP primarily via oxidative and substrate-level phosphorylation. Despite the superior efficiency of oxidative phosphorylation, eukaryotic cells often use both pathways as aerobic glycolysis, even in the presence of oxygen. However, its role in cell survival remains poorly understood. Objectives: In this study, aerobic glycolysis was compared between the Warburg effect in breast cancer cells (MCF7) and the Crabtree effect in a laboratory strain of Saccharomyces cerevisiae (S288C). Methods: The metabolic adaptations of MCF7 and S288C cells were compared following treatment with electron transport chain inhibitors, including FCCP, antimycin A, and oligomycin. Results: MCF7 and S288C cells exhibited strikingly similar metabolic rewiring toward substrate-level phosphorylation upon inhibitor treatment, suggesting that mitochondrial oxidative phosphorylation and cytosolic substrate-level phosphorylation communicate through a common mechanism. Measurement of mitochondrial membrane potential (MMP) and ATP concentrations further indicated that cytosolic ATP was transported into the mitochondria under conditions of reduced electron transport chain activity. This ATP was likely utilized in the reverse mode of H+/ATPase to maintain MMP, which contributed to the avoidance of programmed cell death. Conclusions: These results suggest that the ATP supply to mitochondria plays a conserved role in aerobic glycolysis in yeast and mammalian cancer cells. This mechanism likely contributes to cell survival under conditions of fluctuating oxygen availability. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

33 pages, 1219 KiB  
Review
Circadian Clock Deregulation and Metabolic Reprogramming: A System Biology Approach to Tissue-Specific Redox Signaling and Disease Development
by Rossitza Konakchieva, Mitko Mladenov, Marina Konaktchieva, Iliyana Sazdova, Hristo Gagov and Georgi Nikolaev
Int. J. Mol. Sci. 2025, 26(13), 6267; https://doi.org/10.3390/ijms26136267 - 28 Jun 2025
Viewed by 911
Abstract
Circadian rhythms govern cellular metabolism, redox balance, and endocrine signaling in numerous tissues. However, chronic disturbance of these biological rhythms, mediated by modern lifestyle factors including shift work, sleep irregularity, and prolonged light exposure, has been increasingly associated with oxidative stress, metabolic dysregulation, [...] Read more.
Circadian rhythms govern cellular metabolism, redox balance, and endocrine signaling in numerous tissues. However, chronic disturbance of these biological rhythms, mediated by modern lifestyle factors including shift work, sleep irregularity, and prolonged light exposure, has been increasingly associated with oxidative stress, metabolic dysregulation, and the pathogenesis of chronic diseases. This review discusses recent mechanistic advances that link circadian misalignment with tissue-specific metabolic reprogramming and impaired proteostasis, focusing on metabolic inflammation and associated pathologies. Emerging work reveals a close interdependence between the circadian clock and proteasome-mediated protein turnover and highlights this interplay’s importance in maintaining redox homeostasis. Furthermore, circadian modulation of the activity of the inflammasome complex is suggested to represent an important, but largely unexplored, risk factor in the pathobiology of both malignancy and metabolic syndrome. Recently, researchers have proposed them as novel endocrine regulators of systemic energy balance and inflammation, with a focus on their circadian regulation. In addition, the emerging domains of chrono-epigenetics and tissue-specific programming of the clock pathways may serve to usher in novel therapies through precision medicine. Moving ahead, circadian-based therapeutic approaches, including time-restricted feeding, chronopharmacology, and metabolic rewiring, have high potential for re-establishing physiological domain homeostasis linked to metabolic inflammation pathologies. Elucidating this reciprocal relationship between circadian biology and cellular stress pathways may one day facilitate the generation of precise interventions aiming to alleviate the health burden associated with circadian disruption. Full article
(This article belongs to the Special Issue Hormone Metabolism and Signaling in Human Health and Disease)
Show Figures

Figure 1

18 pages, 6168 KiB  
Article
Long Non-Coding RNA LOC401312 Induces Radiosensitivity Through Upregulation of CPS1 in Non-Small Cell Lung Cancer
by Zhengyue Cao, Tiantian Wang, Fumin Tai, Rui Zhai, Hujie Li, Jingjing Li, Shensi Xiang, Huiying Gao, Xiaofei Zheng and Changyan Li
Int. J. Mol. Sci. 2025, 26(12), 5865; https://doi.org/10.3390/ijms26125865 - 19 Jun 2025
Viewed by 513
Abstract
Long noncoding RNAs (lncRNAs), non-protein-coding transcripts exceeding 200 nucleotides, are critical regulators of gene expression through chromatin remodeling, transcriptional modulation, and post-transcriptional modifications. While ionizing radiation (IR) induces cellular damage through direct DNA breaks, reactive oxygen species (ROS)-mediated oxidative stress, and bystander effects, [...] Read more.
Long noncoding RNAs (lncRNAs), non-protein-coding transcripts exceeding 200 nucleotides, are critical regulators of gene expression through chromatin remodeling, transcriptional modulation, and post-transcriptional modifications. While ionizing radiation (IR) induces cellular damage through direct DNA breaks, reactive oxygen species (ROS)-mediated oxidative stress, and bystander effects, the functional involvement of lncRNAs in the radiation response remains incompletely characterized. Here, through genome-wide CRISPR activation (CRISPRa) screening in non-small cell lung cancer (NSCLC) cells, we identified LOC401312 as a novel radiosensitizing lncRNA, the stable overexpression of which significantly enhanced IR sensitivity. Transcriptomic profiling revealed that LOC401312 transcriptionally upregulates carbamoyl-phosphate synthase 1 (CPS1), a mitochondrial enzyme involved in pyrimidine biosynthesis. Notably, CPS1 overexpression recapitulated the radiosensitization phenotype observed with LOC401312 activation. Mechanistic investigations revealed that CPS1 suppresses the phosphorylation of ATM kinase (Ser1981) protein, which is a key mediator of DNA damage checkpoint activation. This study established the LOC401312–CPS1–ATM axis as a previously unrecognized regulatory network governing radiation sensitivity, highlighting the potential of lncRNA-directed metabolic rewiring to impair DNA repair fidelity. Our findings not only expand the functional landscape of lncRNAs in DNA damage response but also provide a therapeutic rationale for targeting the LOC401312–CPS1 axis to improve radiotherapy efficacy in NSCLC. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

64 pages, 2933 KiB  
Review
Molecular Targets in Alveolar Rhabdomyosarcoma: A Narrative Review of Progress and Pitfalls
by Barbara Ziemba and Klaudia Lukow
Int. J. Mol. Sci. 2025, 26(11), 5204; https://doi.org/10.3390/ijms26115204 - 28 May 2025
Viewed by 1349
Abstract
Alveolar rhabdomyosarcoma (ARMS) is a highly aggressive pediatric soft-tissue sarcoma driven by PAX3/7-FOXO1 fusion proteins. Despite intensive multimodal therapy, outcomes remain poor for patients with fusion-positive ARMS. This review integrates recent advances in the molecular pathogenesis of ARMS, highlighting key diagnostic and therapeutic [...] Read more.
Alveolar rhabdomyosarcoma (ARMS) is a highly aggressive pediatric soft-tissue sarcoma driven by PAX3/7-FOXO1 fusion proteins. Despite intensive multimodal therapy, outcomes remain poor for patients with fusion-positive ARMS. This review integrates recent advances in the molecular pathogenesis of ARMS, highlighting key diagnostic and therapeutic targets. We discuss the central role of fusion proteins in transcriptional reprogramming, impaired myogenic differentiation, and super-enhancer activation. Emerging biomarkers (YAP, TFAP2B, P-cadherin) and oncogenic kinases (Aurora A, CDK4, PLK1) are evaluated alongside receptor tyrosine kinases (FGFR, MET) and transcription factors involved in metabolic rewiring (FOXF1, ETS1). Additionally, we examine immunotherapeutic strategies, epigenetic modifiers, and noncoding RNAs as potential therapeutic avenues. Together, these insights provide a comprehensive framework for developing biomarker-guided, multi-targeted therapies to improve outcomes in ARMS. Full article
Show Figures

Figure 1

18 pages, 5617 KiB  
Article
Static Magnetic Field Increases Polyhydroxyalkanoates Biosynthesis in Haloferax mediterranei: Parameter Optimization and Mechanistic Insights from Metabolomics
by Ze-Liang Gao and You-Wei Cui
Polymers 2025, 17(9), 1190; https://doi.org/10.3390/polym17091190 - 27 Apr 2025
Viewed by 577
Abstract
Polyhydroxyalkanoates (PHAs), as biosynthetic and biodegradable polymers, serve as alternatives to petroleum-based plastics, yet face critical cost barriers in large-scale production. While magnetic field (MF) stimulation enhances microbial activity, the optimal MF parameters and metabolic mechanisms for PHA biosynthesis remain unexplored. This study [...] Read more.
Polyhydroxyalkanoates (PHAs), as biosynthetic and biodegradable polymers, serve as alternatives to petroleum-based plastics, yet face critical cost barriers in large-scale production. While magnetic field (MF) stimulation enhances microbial activity, the optimal MF parameters and metabolic mechanisms for PHA biosynthesis remain unexplored. This study optimized magnetic field parameters to increase PHA biosynthesis in Haloferax mediterranei. A custom-engineered electromagnetic system identified 110 mT of static magnetic field (SMF) as the optimal level for biosynthesis, reaching 77.97 mg/(L·h) PHA volumetric productivity. A pulsed magnetic field caused oxidative stress and impaired substrate uptake despite increasing PHA synthesis. Prolonged SMF exposure (72 h) maximized PHA productivity, while 48 h of exposure attained 90% efficiency. Metabolomics revealed that SMF-driven carbon flux redirection via regulated butanoate metabolism led to a 2.10-fold increase in (R)-3-hydroxybutanoyl-CoA), while downregulating acetoacetate (0.51-fold) and suppressing PHA degradation (0.15-fold). This study pioneers the first application of metabolomics in archaea to decode SMF-induced metabolic rewiring in Haloferax mediterranei. Our findings establish SMF as a scalable bioenhancement tool, offering sustainable solutions for the circular bioeconomy. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

19 pages, 1289 KiB  
Review
Molecular Alterations in Gastric Intestinal Metaplasia Shed Light on Alteration of Methionine Metabolism: Insight into New Diagnostic and Treatment Approaches
by Nigatu Tadesse Gebrehiwot, Ying Liu, Juan Li and Hong-Min Liu
Biomedicines 2025, 13(4), 964; https://doi.org/10.3390/biomedicines13040964 - 15 Apr 2025
Viewed by 1125
Abstract
Gastric intestinal metaplasia (GIM) is a precancerous lesion and the key risk factor in the development of gastric cancer (GC), but early detection and treatment remain challenging. The traditional endoscopic diagnosis of metaplastic lesions is complicated by an increased rate of inappropriateness and [...] Read more.
Gastric intestinal metaplasia (GIM) is a precancerous lesion and the key risk factor in the development of gastric cancer (GC), but early detection and treatment remain challenging. The traditional endoscopic diagnosis of metaplastic lesions is complicated by an increased rate of inappropriateness and false negativity. Although early interventions with H. pylori eradication, as well as endoscopic therapy results, were promising, there is still a significant unmet need to control GIM progression and recurrences. Molecular alterations, such as an increased DNA methylation index, have been identified as a crucial factor in the downregulation of tumor suppressor genes, such as the caudal-type homeobox (CDX2) gene, which regulates epithelial cell proliferation and GIM progression and is associated with treatment failure. CDX2 is downregulated by promoter hypermethylation in the colonic-type epithelium, in which the methylation was correlated with reduced intake of dietary folate sources. Tumor cells alter to dietary methionine sources in the biosynthesis of S-Adenosylmethionine, a universal methyl donor for transmethylation, under the conditions of limited folate and B12 availability. The gut microbiota also exhibited a shift in microbial composition, which could influence the host’s dietary methionine metabolism. Meanwhile, activated oncogenic signaling via the PI3K/Akt/mTORC1/c-MYC pathway could promotes rewiring dietary methionine and cellular proliferation. Tumor methionine dependence is a metabolic phenotype that could be helpful in predictive screening of tumorigenesis and as a target for preventive therapy to enhance precision oncology. This review aimed to discuss the molecular alterations in GIM to shed light on the alteration of methionine metabolism, with insight into new diagnostic and treatment approaches and future research directions. Full article
(This article belongs to the Special Issue Feature Reviews in Gastrointestinal Diseases)
Show Figures

Graphical abstract

34 pages, 3049 KiB  
Review
Post-Translational Modifications of Proteins Orchestrate All Hallmarks of Cancer
by Pathea Shawnae Bruno, Aneeta Arshad, Maria-Raluca Gogu, Natalie Waterman, Rylie Flack, Kimberly Dunn, Costel C. Darie and Anca-Narcisa Neagu
Life 2025, 15(1), 126; https://doi.org/10.3390/life15010126 - 18 Jan 2025
Cited by 3 | Viewed by 3272
Abstract
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they [...] Read more.
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins. In this review, we summarized and analyzed a wide spectrum of PTMs of proteins involved in all regulatory mechanisms that drive tumorigenesis, genetic instability, epigenetic reprogramming, all events of the metastatic cascade, cytoskeleton and extracellular matrix (ECM) remodeling, angiogenesis, immune response, tumor-associated microbiome, and metabolism rewiring as the most important hallmarks of cancer. All cancer hallmarks develop due to PTMs of proteins, which modulate gene transcription, intracellular and extracellular signaling, protein size, activity, stability and localization, trafficking, secretion, intracellular protein degradation or half-life, and protein–protein interactions (PPIs). PTMs associated with cancer can be exploited to better understand the underlying molecular mechanisms of this heterogeneous and chameleonic disease, find new biomarkers of cancer progression and prognosis, personalize oncotherapies, and discover new targets for drug development. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

17 pages, 2790 KiB  
Article
Effective Targeting of Glutamine Synthetase with Amino Acid Analogs as a Novel Therapeutic Approach in Breast Cancer
by Shimaa Abdelsattar, Hiba S. Al-Amodi, Hala F. Kamel, Ahood A. Al-Eidan, Marwa M. Mahfouz, Kareem El khashab, Amany M. Elshamy, Mohamed S. Basiouny, Mohamed A. Khalil, Khaled A. Elawdan, Shorouk Elsaka, Salwa E. Mohamed and Hany Khalil
Int. J. Mol. Sci. 2025, 26(1), 78; https://doi.org/10.3390/ijms26010078 - 25 Dec 2024
Cited by 2 | Viewed by 1738
Abstract
Cancer cells undergo metabolic rewiring to support rapid proliferation and survival in challenging environments. Glutamine is a preferred resource for cancer metabolism, as it provides both carbon and nitrogen for cellular biogenesis. Recent studies suggest the potential anticancer activity of amino acid analogs. [...] Read more.
Cancer cells undergo metabolic rewiring to support rapid proliferation and survival in challenging environments. Glutamine is a preferred resource for cancer metabolism, as it provides both carbon and nitrogen for cellular biogenesis. Recent studies suggest the potential anticancer activity of amino acid analogs. Some of these analogs disrupt cellular nucleotide synthesis, thereby inhibiting the formation of DNA and RNA in cancer cells. In the present study, we investigated the anticancer properties of Acivicin and Azaserine in the breast cancer MCF-7 cell line, comparing their effects to those on the non-tumorigenic MCF-10 epithelial cell line in vitro. Interestingly, at lower concentrations, both Acivicin and Azaserine showed potent inhibition of MCF-7 cell proliferation, as assessed by the MTT assay, without detectable toxicity to normal cells. In contrast, Sorafenib (Nexavar), a commonly used drug for solid tumors, showed harmful effects on normal cells, as indicated by increased lactate dehydrogenase (LDH) production in treated cells. Furthermore, unlike Sorafenib, treatment with Acivicin and Azaserine significantly affected apoptotic signaling in treated cells, indicating the role of both amino acid analogs in activating programmed cell death (PCD), as assessed by the Annexin-V assay, DAPI staining, and the relative expression of tumor suppressor genes PTEN and P53. ELISA analysis of MCF-7 cells revealed that both Acivicin and Azaserine treatments promoted the production of anti-inflammatory cytokines, including IL-4 and IL-10, while significantly reducing the production of tumor necrosis factor alpha (TNF-α). Mechanistically, both Acivicin and Azaserine treatment led to a significant reduction in the expression of glutamine synthetase (GS) at both the RNA and protein levels, resulting in a decrease in intracellular glutamine concentrations over time. Additionally, both treatments showed comparable effects on Raf-1 gene expression and protein phosphorylation when compared with Sorafenib, a Raf-1 inhibitor. Moreover, docking studies confirmed the strong binding affinity between Acivicin, Azaserine, and glutamine synthetase, as evidenced by their docking scores and binding interactions with the enzyme crystal. Collectively, these findings provide evidence for the anticancer activity of the two amino acid analogs Acivicin and Azaserine as antagonists of glutamine synthetase, offering novel insights into potential therapeutic strategies for breast cancer. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer: 3rd Edition)
Show Figures

Figure 1

14 pages, 1148 KiB  
Review
UCP2, a Member of the Mitochondrial Uncoupling Proteins: An Overview from Physiological to Pathological Roles
by Salvatore Nesci and Speranza Rubattu
Biomedicines 2024, 12(6), 1307; https://doi.org/10.3390/biomedicines12061307 - 13 Jun 2024
Cited by 18 | Viewed by 4143
Abstract
UCP2 is an uncoupling protein homolog to UCP1. Unlike UCP1, which participates in non-shivering thermogenesis by uncoupling oxidative phosphorylation (OXPHOS), UCP2 does not perform a canonical H+ leak, consuming the protonmotive force (Δp) through the inner mitochondrial membrane. The UCP2 [...] Read more.
UCP2 is an uncoupling protein homolog to UCP1. Unlike UCP1, which participates in non-shivering thermogenesis by uncoupling oxidative phosphorylation (OXPHOS), UCP2 does not perform a canonical H+ leak, consuming the protonmotive force (Δp) through the inner mitochondrial membrane. The UCP2 biological role is elusive. It can counteract oxidative stress, acting with a “mild uncoupling” process to reduce ROS production, and, in fact, UCP2 activities are related to inflammatory processes, triggering pathological conditions. However, the Δp dissipation by UCP2 activity reduces the mitochondrial ATP production and rewires the bioenergetic metabolism of the cells. In all likelihood, UCP2 works as a carrier of metabolites with four carbon atoms (C4), reversing the anaerobic glycolysis-dependent catabolism to OXPHOS. Indeed, UCP2 can perform catalysis in dual mode: mild uncoupling of OXPHOS and metabolite C4 exchange of mitochondria. In vivo, the UCP2 features in the biology of mitochondria promote healthy ageing, increased lifespan, and can assure cerebro- and cardiovascular protection. However, the pathological conditions responsible for insulin secretion suppression are dependent on UCP2 activity. On balance, the uncertain biochemical mechanisms dependent on UCP2 do not allow us to depict the protective role in mitochondrial bioenergetics. Full article
Show Figures

Figure 1

19 pages, 5579 KiB  
Article
Drug-Induced Reorganisation of Lipid Metabolism Limits the Therapeutic Efficacy of Ponatinib in Glioma Stem Cells
by Paula Aldaz, Ana Olias-Arjona, Irene Lasheras-Otero, Karina Ausin, Marta Redondo-Muñoz, Claudia Wellbrock, Enrique Santamaria, Joaquin Fernandez-Irigoyen and Imanol Arozarena
Pharmaceutics 2024, 16(6), 728; https://doi.org/10.3390/pharmaceutics16060728 - 29 May 2024
Cited by 1 | Viewed by 1543
Abstract
The standard of care for glioblastoma (GBM) involves surgery followed by adjuvant radio- and chemotherapy, but often within months, patients relapse, and this has been linked to glioma stem cells (GSCs), self-renewing cells with increased therapy resistance. The identification of the epidermal growth [...] Read more.
The standard of care for glioblastoma (GBM) involves surgery followed by adjuvant radio- and chemotherapy, but often within months, patients relapse, and this has been linked to glioma stem cells (GSCs), self-renewing cells with increased therapy resistance. The identification of the epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR) as key players in gliomagenesis inspired the development of inhibitors targeting these tyrosine kinases (TKIs). However, results from clinical trials testing TKIs have been disappointing, and while the role of GSCs in conventional therapy resistance has been extensively studied, less is known about resistance of GSCs to TKIs. In this study, we have used compartmentalised proteomics to analyse the adaptive response of GSCs to ponatinib, a TKI with activity against PDGFR. The analysis of differentially expressed proteins revealed that GSCs respond to ponatinib by broadly rewiring lipid metabolism, involving fatty acid beta-oxidation, cholesterol synthesis, and sphingolipid degradation. Inhibiting each of these metabolic pathways overcame ponatinib adaptation of GSCs, but interrogation of patient data revealed sphingolipid degradation as the most relevant pathway in GBM. Our data highlight that targeting lipid metabolism, and particularly sphingolipid degradation in combinatorial therapies, could improve the outcome of TKI therapies using ponatinib in GBM. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Glioblastoma)
Show Figures

Figure 1

25 pages, 8494 KiB  
Article
Ovarian Cancer Cell-Conditioning Medium Induces Cancer-Associated Fibroblast Phenoconversion through Glucose-Dependent Inhibition of Autophagy
by Alessandra Ferraresi, Carlo Girone, Chinmay Maheshwari, Letizia Vallino, Danny N. Dhanasekaran and Ciro Isidoro
Int. J. Mol. Sci. 2024, 25(11), 5691; https://doi.org/10.3390/ijms25115691 - 23 May 2024
Cited by 5 | Viewed by 2608
Abstract
One aspect of ovarian tumorigenesis which is still poorly understood is the tumor–stroma interaction, which plays a major role in chemoresistance and tumor progression. Cancer-associated fibroblasts (CAFs), the most abundant stromal cell type in the tumor microenvironment, influence tumor growth, metabolism, metastasis, and [...] Read more.
One aspect of ovarian tumorigenesis which is still poorly understood is the tumor–stroma interaction, which plays a major role in chemoresistance and tumor progression. Cancer-associated fibroblasts (CAFs), the most abundant stromal cell type in the tumor microenvironment, influence tumor growth, metabolism, metastasis, and response to therapy, making them attractive targets for anti-cancer treatment. Unraveling the mechanisms involved in CAFs activation and maintenance is therefore crucial for the improvement of therapy efficacy. Here, we report that CAFs phenoconversion relies on the glucose-dependent inhibition of autophagy. We show that ovarian cancer cell-conditioning medium induces a metabolic reprogramming towards the CAF-phenotype that requires the autophagy-dependent glycolytic shift. In fact, 2-deoxy-D-glucose (2DG) strongly hampers such phenoconversion and, most importantly, induces the phenoreversion of CAFs into quiescent fibroblasts. Moreover, pharmacological inhibition (by proline) or autophagy gene knockdown (by siBECN1 or siATG7) promotes, while autophagy induction (by either 2DG or rapamycin) counteracts, the metabolic rewiring induced by the ovarian cancer cell secretome. Notably, the nutraceutical resveratrol (RV), known to inhibit glucose metabolism and to induce autophagy, promotes the phenoreversion of CAFs into normal fibroblasts even in the presence of ovarian cancer cell-conditioning medium. Overall, our data support the view of testing autophagy inducers for targeting the tumor-promoting stroma as an adjuvant strategy to improve therapy success rates, especially for tumors with a highly desmoplastic stroma, like ovarian cancer. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

17 pages, 6497 KiB  
Article
Hypermethylated Colorectal Cancer Tumours Present a Myc-Driven Hypermetabolism with a One-Carbon Signature Associated with Worsen Prognosis
by Christophe Desterke, Fanny Jaulin and Emmanuel Dornier
Biomedicines 2024, 12(3), 590; https://doi.org/10.3390/biomedicines12030590 - 6 Mar 2024
Cited by 1 | Viewed by 2062
Abstract
Colorectal cancer (CRC) is the second cause of cancer-related death; the CpG-island methylation pathway (CIMP) is associated with KRAS/BRAF mutations, two oncogenes rewiring cell metabolism, worse prognosis, and resistance to classical chemotherapies. Despite this, the question of a possible metabolic rewiring in CIMPs [...] Read more.
Colorectal cancer (CRC) is the second cause of cancer-related death; the CpG-island methylation pathway (CIMP) is associated with KRAS/BRAF mutations, two oncogenes rewiring cell metabolism, worse prognosis, and resistance to classical chemotherapies. Despite this, the question of a possible metabolic rewiring in CIMPs has never been investigated. Here, we analyse whether metabolic dysregulations are associated with tumour methylation by evaluating the transcriptome of CRC tumours. CIMP-high patients were found to present a hypermetabolism, activating mainly carbohydrates, folates, sphingolipids, and arachidonic acid metabolic pathways. A third of these genes had epigenetic targets of Myc in their proximal promoter, activating carboxylic acid, tetrahydrofolate interconversion, nucleobase, and oxoacid metabolisms. In the Myc signature, the expression of GAPDH, TYMS, DHFR, and TK1 was enough to predict methylation levels, microsatellite instability (MSI), and mutations in the mismatch repair (MMR) machinery, which are strong indicators of responsiveness to immunotherapies. Finally, we discovered that CIMP tumours harboured an increase in genes involved in the one-carbon metabolism, a pathway critical to providing nucleotides for cancer growth and methyl donors for DNA methylation, which is associated with worse prognosis and tumour hypermethylation. Transcriptomics could hence become a tool to help clinicians stratify their patients better. Full article
(This article belongs to the Topic Advances in Colorectal Cancer Therapy)
Show Figures

Figure 1

Back to TopTop