Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (462)

Search Parameters:
Keywords = reverse osmosis (RO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5177 KiB  
Article
Pilot-Scale Polysulfone Ultrafiltration Patterned Membranes: Phase-Inversion Parametric Optimization on a Roll-to-Roll Casting System
by Ayesha Ilyas and Ivo F. J. Vankelecom
Membranes 2025, 15(8), 228; https://doi.org/10.3390/membranes15080228 - 31 Jul 2025
Viewed by 428
Abstract
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already [...] Read more.
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already been studied extensively at lab-scale to prepare patterned membranes for various applications including membrane bioreactors (MBR), reverse osmosis (RO) and forward osmosis (FO). Although studied at the lab scale, membranes prepared at a larger scale can significantly differ in performance; therefore, phase inversion parameters, including polymer concentration, molecular weight, and additive type (i.e., polyethylene glycol (PEG) or polyvinylpyrolidine (PVP)) and concentration, were systematically varied when casting on a roll-to-roll, 12″ wide pilot line to identify optimal conditions for achieving defect-free, high-performance, patterned PSf membranes. The membranes were characterized for their pure water permeance, BSA rejection, casting solution viscosities, and resulting morphology. s-NIPS patterned membranes exhibit 150–350% increase in water flux as compared to their reference flat membrane, thanks to very high pattern heights up to 825 µm and formation of finger-like macrovoids. This work bridges the gap between lab-scale and pilot-scale membrane preparation, while proposing an upscaled membrane with great potential for use in water treatment. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

23 pages, 3520 KiB  
Article
Intrinsic Performances of Reverse Osmosis and Nanofiltration Membranes for the Recovery and Concentration of Multicomponent Mixtures of Volatile Fatty Acids: A Semi-Pilot Study
by Omar Atiq, Gonzalo Agustin Martinez, Lorenzo Bertin and Serena Bandini
Membranes 2025, 15(8), 221; https://doi.org/10.3390/membranes15080221 - 23 Jul 2025
Viewed by 374
Abstract
This study presents data from Reverse Osmosis (RO) and Nanofiltration (NF) spiral-wound polyamide modules tested in a semi-pilot plant with multicomponent mixtures of Volatile Fatty Acids (VFAs) comprising acetic, propionic, butyric, valeric, and hexanoic acids. A robust method combining film theory and dissociation [...] Read more.
This study presents data from Reverse Osmosis (RO) and Nanofiltration (NF) spiral-wound polyamide modules tested in a semi-pilot plant with multicomponent mixtures of Volatile Fatty Acids (VFAs) comprising acetic, propionic, butyric, valeric, and hexanoic acids. A robust method combining film theory and dissociation equilibria was developed to estimate interfacial concentrations, enabling accurate analysis of concentration polarization, real rejection, and effective transmembrane driving force. Concentration polarization strongly affects NF membranes, resulting in real rejections up to 20% higher than apparent values, while its effect is negligible for RO membranes. NF rejections show marked sensitivity to pH and VFA feed concentration: at 20 g/L and highest flux, acetic acid real rejection increases from 80% to 91% as pH rises from 6 to 9. At pH 7, rejections decline with feed concentration, with acetic acid dropping from 55% at 20 g/L to 32% at 63 g/L, at the same flux. These changes correlate with the molecular weight of the acids. Conversely, RO rejections are marginally affected by pH and not influenced by concentration due to dominant steric exclusion. Membrane permeabilities remain unaffected by VFAs and align with pure water values. The data analysis framework is effective and applicable across a wide range of conditions and membranes. Full article
Show Figures

Figure 1

14 pages, 405 KiB  
Review
A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes
by Anissa Somrani, Kholoud Abohelal and Maxime Pontié
Membranes 2025, 15(7), 217; https://doi.org/10.3390/membranes15070217 - 21 Jul 2025
Viewed by 479
Abstract
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the [...] Read more.
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the disposal of End-of-Life (EoL) RO membranes, which are made of non-biodegradable polymers. The reuse of EoL membranes as a sustainable approach for waste saving and resource efficiency has recently attracted considerable attention. The present work provides a comprehensive overview of the strategies for reusing EoL RO membranes as sustainable alternatives to conventional disposal methods. Furthermore, the fundamental principles of RO technology, the primary types and impacts of membrane fouling, and advanced cleaning and regeneration techniques are discussed. The conversion of EoL membranes into nanofiltration (NF), ultrafiltration (UF), and forward osmosis (FO) membranes is also covered in this review, as well as their uses in brackish water desalination, dye/salt separation, groundwater treatment, and household wastewater reuse. Environmental and economic benefits, as well as technical, social, and regulatory challenges, are also discussed. Finally, the review highlights innovative approaches and future directions for incorporating EoL membrane reuse into circular economy models, outlining its potential to improve sustainability and reduce operational costs in water treatment systems. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

17 pages, 2890 KiB  
Review
Catalytic Ozonation for Reverse Osmosis Concentrated Water Treatment: Recent Advances in Different Industries
by Siqi Chen, Yun Gao, Wenquan Sun, Jun Zhou and Yongjun Sun
Catalysts 2025, 15(7), 692; https://doi.org/10.3390/catal15070692 - 20 Jul 2025
Viewed by 405
Abstract
Reverse osmosis (RO) concentrated water can be effectively treated with catalytic ozone oxidation technology, an effective advanced oxidation process. In order to provide a thorough reference for the safe treatment and reuse of RO concentrated water, this paper examines the properties of RO [...] Read more.
Reverse osmosis (RO) concentrated water can be effectively treated with catalytic ozone oxidation technology, an effective advanced oxidation process. In order to provide a thorough reference for the safe treatment and reuse of RO concentrated water, this paper examines the properties of RO concentrated water, such as its high salt content, high levels of organic pollutants, and low biochemistry. It also examines the mechanism of its role in treating RO concentrated water and combs through its applications in municipal, petrochemical, coal chemical, industrial parks, and other industries. The study demonstrates that ozone oxidation technology can efficiently eliminate the organic matter that is difficult to break down in RO concentrated water and lower treatment energy consumption; however, issues with free radical inhibitor interference, catalyst recovery, and stability still affect its use. Future research into multi-technology synergistic processes, the development of stable and effective non-homogeneous catalysts, and the promotion of their use at the “zero discharge” scale for industrial wastewater are all imperative. Full article
(This article belongs to the Special Issue State-of-the-Art of Heterostructured Photocatalysts)
Show Figures

Graphical abstract

18 pages, 1422 KiB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 590
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

20 pages, 8459 KiB  
Article
Membrane Processes for Remediating Water from Sugar Production By-Product Stream
by Amal El Gohary Ahmed, Christian Jordan, Eva Walcher, Selma Kuloglija, Reinhard Turetschek, Antonie Lozar, Daniela Tomasetig and Michael Harasek
Membranes 2025, 15(7), 207; https://doi.org/10.3390/membranes15070207 - 12 Jul 2025
Viewed by 552
Abstract
Sugar production generates wastewater rich in dissolved solids and organic matter, and improper disposal poses severe environmental risks, exacerbates water scarcity, and creates regulatory challenges. Conventional treatment methods, such as evaporation and chemical precipitation, are energy-intensive and often ineffective at removing fine particulates [...] Read more.
Sugar production generates wastewater rich in dissolved solids and organic matter, and improper disposal poses severe environmental risks, exacerbates water scarcity, and creates regulatory challenges. Conventional treatment methods, such as evaporation and chemical precipitation, are energy-intensive and often ineffective at removing fine particulates and dissolved impurities. This study evaluates membrane-based separation as a sustainable alternative for water reclamation and sugar recovery from sugar industry effluents, focusing on replacing evaporation with membrane processes, ensuring high permeate quality, and mitigating membrane fouling. Cross-flow filtration experiments were conducted on a lab-scale membrane system at 70 °C to suppress microbial growth, comparing direct reverse osmosis (RO) of the raw effluent to an integrated ultrafiltration (UF)–RO process. Direct RO resulted in rapid membrane fouling. A tight UF (5 kDa) pre-treatment before RO significantly mitigated fouling and improved performance, enabling 28% water recovery and 79% sugar recovery, maintaining permeate conductivity below 0.5 mS/cm, sustaining stable flux, and reducing membrane blocking. Additionally, the UF and RO membranes were tested via SEM, EDS, and FTIR to elucidate the fouling mechanisms. Full article
(This article belongs to the Special Issue Emerging Superwetting Membranes: New Advances in Water Treatment)
Show Figures

Figure 1

19 pages, 1240 KiB  
Article
Extending the Recovery Ratio of Brackish Water Desalination to Zero Liquid Discharge (>95%) Through Combination of Nanofiltration, 2-Stage Reverse-Osmosis, Silica Precipitation, and Mechanical Vapor Recompression
by Paz Nativ, Raz Ben-Asher, Yaron Aviezer and Ori Lahav
ChemEngineering 2025, 9(4), 70; https://doi.org/10.3390/chemengineering9040070 - 3 Jul 2025
Viewed by 455
Abstract
Extending the recovery ratio (RR) of brackish water reverse osmosis (RO) plants to zero liquid discharge (ZLD, i.e., ≥95%) is vital, particularly inland, where the cost of safe retentate disposal is substantial. Various suggestions appear in the literature; however, many of these are [...] Read more.
Extending the recovery ratio (RR) of brackish water reverse osmosis (RO) plants to zero liquid discharge (ZLD, i.e., ≥95%) is vital, particularly inland, where the cost of safe retentate disposal is substantial. Various suggestions appear in the literature; however, many of these are impractical in the real world. Often, the limiting parameter that determines the maximal recovery is the SiO2 concentration that develops in the RO retentate and the need to further desalinate the high osmotic pressure retentates produced in the process. This work combines well-proven treatment schemes to attain RR ≥ 95% at a realistic cost. The raw brackish water undergoes first a 94% recovery nanofiltration (NF) step, whose permeate undergoes a further 88-RR RO step. To increase the overall RR, the retentate of the 1st RO step undergoes SiO2 removal performed via iron electro-dissolution and then a 2nd, 43% recovery, RO pass. The retentate of this step is combined with the NF retentate, and the mix is treated with mechanical vapor recompression (MVR) (RR = 62.7%). The results show that >95% recovery can be attained by the suggested process at an overall cost of ~USD 0.70/m3. This is ~60% higher than the USD 0.44/m3 calculated for the baseline operation (RR = 82.7%), making the concept feasible when either the increase in the plant’s capacity is regulatorily requested, or when the available retentate discharge method is very costly. The cost assessment accuracy was approximated at >80%. Full article
Show Figures

Figure 1

28 pages, 3292 KiB  
Article
Optimization of the Quality of Reclaimed Water from Urban Wastewater Treatment in Arid Region: A Zero Liquid Discharge Pilot Study Using Membrane and Thermal Technologies
by Maria Avramidi, Constantinos Loizou, Maria Kyriazi, Dimitris Malamis, Katerina Kalli, Angelos Hadjicharalambous and Constantina Kollia
Membranes 2025, 15(7), 199; https://doi.org/10.3390/membranes15070199 - 1 Jul 2025
Viewed by 772
Abstract
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs [...] Read more.
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs membrane (nanofiltration and reverse osmosis) and thermal technologies (multi-effect distillation evaporator and vacuum crystallizer), has been installed and operated in Cyprus at Larnaca’s WWTP, for the desalination of the tertiary treated water, producing high-quality reclaimed water. The nanofiltration (NF) unit at the plant operated with an inflow concentration ranging from 2500 to 3000 ppm. The performance of the installed NF90-4040 membranes was evaluated based on permeability and flux. Among two NF operation series, the second—operating at 75–85% recovery and 2500 mg/L TDS—showed improved membrane performance, with stable permeability (7.32 × 10−10 to 7.77 × 10−10 m·s−1·Pa−1) and flux (6.34 × 10−4 to 6.67 × 10−4 m/s). The optimal NF operating rate was 75% recovery, which achieved high divalent ion rejection (more than 99.5%). The reverse osmosis (RO) unit operated in a two-pass configuration, achieving water recoveries of 90–94% in the first pass and 76–84% in the second. This setup resulted in high rejection rates of approximately 99.99% for all major ions (Cl, Na+, Ca2+, and Mg2+), reducing the permeate total dissolved solids (TDS) to below 35 mg/L. The installed multi-effect distillation (MED) unit operated under vacuum and under various inflow and steady-state conditions, achieving over 60% water recovery and producing high-quality distillate water (TDS < 12 mg/L). The vacuum crystallizer (VC) further concentrated the MED concentrate stream (MEDC) and the NF concentrate stream (NFC) flows, resulting in distilled water and recovered salts. The MEDC process produced salts with a purity of up to 81% NaCl., while the NFC stream produced mixed salts containing approximately 46% calcium salts (mainly as sulfates and chlorides), 13% magnesium salts (mainly as sulfates and chlorides), and 38% sodium salts. Overall, the ZLD system consumed 12 kWh/m3, with thermal units accounting for around 86% of this usage. The RO unit proved to be the most energy-efficient component, contributing 71% of the total water recovery. Full article
(This article belongs to the Special Issue Applications of Membrane Distillation in Water Treatment and Reuse)
Show Figures

Figure 1

25 pages, 3103 KiB  
Article
Artificial Intelligence-Based Optimization of Renewable-Powered RO Desalination for Reduced Grid Dependence
by Mohammadreza Najaftomaraei, Mahdis Osouli, Hasan Erbay, Mohammad Hassan Shahverdian, Ali Sohani, Kasra Mazarei Saadabadi and Hoseyn Sayyaadi
Water 2025, 17(13), 1981; https://doi.org/10.3390/w17131981 - 1 Jul 2025
Viewed by 446
Abstract
Water scarcity and the growing demand for sustainable energy solutions have driven the need for renewable-powered desalination. This study evaluates three scenarios for reverse osmosis (RO) desalination powered by photovoltaic (PV), wind turbine (WT), and hybrid PV–WT systems, aiming to minimize the levelized [...] Read more.
Water scarcity and the growing demand for sustainable energy solutions have driven the need for renewable-powered desalination. This study evaluates three scenarios for reverse osmosis (RO) desalination powered by photovoltaic (PV), wind turbine (WT), and hybrid PV–WT systems, aiming to minimize the levelized costs of electricity (LCOE) and water (LCOW) while reducing grid dependence. The city studied is Zahedan, Iran, which has high potential in renewable energy. A multi-objective optimization approach using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), a popular evolutionary algorithm, is employed to determine the optimal number of PV panels and wind turbines. The results show that the hybrid system outperforms single-source configurations, supplying 34.79 MWh of electricity and 34.19 m3 of desalinated water, while achieving the lowest LCOE (2.73 cent/kWh−1) and LCOW (35.33 cent/m−3). The hybrid scenario covers 65.49% of the electricity demand and 58.54% of the water demand, significantly reducing reliance on the grid compared to the PV and WT scenarios. Additionally, it ensures greater energy stability by leveraging the complementary nature of PV and WT. These findings highlight the techno-economic feasibility of hybrid renewable-powered desalination as a cost-effective and sustainable solution. Future research should focus on integrating energy storage to further enhance efficiency and minimize grid dependency. Full article
Show Figures

Figure 1

14 pages, 1267 KiB  
Article
Shower Biofilms and the Role of Plumbing Materials in Reverse Osmosis Water Networks
by Ratna E. Putri, Johannes Vrouwenvelder and Nadia Farhat
Water 2025, 17(13), 1870; https://doi.org/10.3390/w17131870 - 23 Jun 2025
Viewed by 658
Abstract
Domestic showers are critical points of human exposure to microbial biofilms, which may harbor opportunistic pathogens such as Legionella spp. and nontuberculous Mycobacterium. However, biofilm development in reverse osmosis (RO)-treated drinking water systems remains poorly understood. We tested whether shower plumbing material [...] Read more.
Domestic showers are critical points of human exposure to microbial biofilms, which may harbor opportunistic pathogens such as Legionella spp. and nontuberculous Mycobacterium. However, biofilm development in reverse osmosis (RO)-treated drinking water systems remains poorly understood. We tested whether shower plumbing material (flexible polymer hose versus showerhead with inline polyethersulfone filter) and seasonal water variations influence biofilm community assembly. In a controlled field study, commercial shower systems were deployed in households supplied with RO-treated tap water from the KAUST Seawater Desalination Plant; biofilm samples were collected from hoses and filters over 3–17 months. Flow cytometry and 16S rRNA gene amplicon sequencing characterized microbial abundance, diversity, and taxonomic composition. We found that alpha diversity, measured by observed OTUs, was uniformly low, reflecting ultra-low biomass in RO-treated tap water. Beta diversity analyses revealed clear clustering by material type, with hoses exhibiting greater richness and evenness than filters. Core taxa—Pelomonas, Blastomonas, and Porphyrobacter—dominated both biofilm types, suggesting adaptation to low-nutrient, chlorinated conditions. Overall, our results demonstrate that ultra-low-nutrient RO tap water still supports the formation of material-driven, low-diversity biofilms dominated by oligotrophic taxa, underscoring plumbing-material choice as a critical factor for safeguarding shower water quality. These findings advance our understanding of biofilm ecology in RO-treated systems, informing strategies to mitigate potential health risks in shower water. Full article
(This article belongs to the Section Water and One Health)
Show Figures

Figure 1

20 pages, 2096 KiB  
Article
Study of Total Ammoniacal Nitrogen Recovery Using Polymeric Thin-Film Composite Membranes for Continuous Operation of a Hybrid Membrane System
by Shirin Shahgodari, Joan Llorens and Jordi Labanda
Polymers 2025, 17(12), 1696; https://doi.org/10.3390/polym17121696 - 18 Jun 2025
Viewed by 324
Abstract
This study examined total ammoniacal nitrogen (TAN) rejection by two reverse osmosis (RO) and two nanofiltration (NF) membranes as a function of pH for three ammonium salts to optimize conditions for a hybrid membrane system that can produce high-purity TAN streams suitable for [...] Read more.
This study examined total ammoniacal nitrogen (TAN) rejection by two reverse osmosis (RO) and two nanofiltration (NF) membranes as a function of pH for three ammonium salts to optimize conditions for a hybrid membrane system that can produce high-purity TAN streams suitable for reuse. The results showed that TAN rejection was significantly influenced by membrane type, feed pH, and the ammonium salt used. This study represents the first attempt to simulate real manure wastewater conditions typically found in pig manure. TAN rejection for (NH4)2SO4 and NH4HCO3 reached up to 95% at pH values below 7, with the SW30 membrane showing the highest performance (99.5%), attributed to effective size exclusion and electrostatic repulsion of SO42− and HCO3 ions. In contrast, lower rejection was observed for NH4Cl, particularly with the MPF-34 membrane, due to its higher molecular weight cut-off (MWCO), which diminishes both exclusion mechanisms. TAN rejection decreased markedly with increasing pH across the BW30, NF90, and MPF-34 membranes as the proportion of uncharged NH3 increased. The lowest rejection rates (<15%) were recorded at pH 11.5 for both NF membranes. These results reveal a notable shift in separation behavior, where NH3 permeation under alkaline conditions becomes dominant over the commonly reported NH4+ retention at low pH. This novel insight offers a new perspective for optimizing membrane-based ammonia recovery in systems simulating realistic manure wastewater conditions. TAN recovery was evaluated using a hybrid membrane system, where NF membranes operated at high pH promoted NH3 permeation, and the SW30 membrane at pH 6.5 enabled TAN rejection as (NH4)2SO4. This hybrid system insight offers a new perspective for optimizing membrane-based ammonia recovery in systems simulating realistic manure wastewater conditions. Based on NH3 permeation and membrane characteristics, the NF90 membrane was operated at pH 9.5, achieving a TAN recovery of 48.3%, with a TAN concentration of 11.7 g/L, corresponding to 0.9% nitrogen. In contrast, the MPF-34 membrane was operated at pH 11.5. The NF90–SW30 system also achieved a TAN recovery of 48.3%, yielding 11.7 g/L of TAN with a nitrogen content of 1.22%. These nitrogen concentrations indicate that both retentate streams are suitable for use as liquid fertilizers in the form of (NH4)2SO4. A preliminary economic assessment estimated the chemical consumption cost at 0.586 EUR/kg and 0.729 EUR/kg of (NH4)2SO4 produced for the NF90–SW30 and MPF-34–SW30 systems, respectively. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials, 2nd Edition)
Show Figures

Figure 1

15 pages, 1776 KiB  
Article
Selection of Optimal Nanofiltration/Reverse Osmosis (NF/RO) Membranes for the Removal of Organic Micropollutants from Drinking Water
by E. Busra Tasdemir, Marie Pardon, Sareh Rezaei Hosseinabadi, Laurens A. J. Rutgeerts, Deirdre Cabooter and Ivo F. J. Vankelecom
Membranes 2025, 15(6), 183; https://doi.org/10.3390/membranes15060183 - 17 Jun 2025
Viewed by 659
Abstract
The growing presence of organic micropollutants (OMPs) in water sources is a major health concern. Successful removal of OMPs from water sources and ensuring the cleanliness of drinking water has become an important topic in recent years. In this study, 15 nanofiltration (NF) [...] Read more.
The growing presence of organic micropollutants (OMPs) in water sources is a major health concern. Successful removal of OMPs from water sources and ensuring the cleanliness of drinking water has become an important topic in recent years. In this study, 15 nanofiltration (NF) and reverse osmosis (RO) commercial membranes were selected and their potential to remove 10 frequently encountered OMPs in drinking water, with systematically different chemical characteristics, was evaluated. To quickly identify the most promising membranes, high throughput dead-end filtrations were initially conducted. Subsequently, the 4 best performing membranes were used in a more relevant high-throughput cross-flow filtration. Membrane performance was evaluated by analyzing OMP concentrations in the feed and retentates of the different membranes using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). This study identified NF 90 (Dow), NF 270 (Dow), NFX (Synder) and TS80 (Trisep) as membranes with superior performance, with a permeance between 3 and 7 L.m2.h−1.bar−1 and retentions that were generally around 90%, except for NFX which showed slightly lower retentions. Full article
(This article belongs to the Special Issue Membrane Processes for Water Recovery in Food Processing Industries)
Show Figures

Figure 1

20 pages, 9522 KiB  
Article
Preparation of Low-Salt-Rejection Membrane by Sodium Hypochlorite Chlorination for Concentration of Low-Concentration Magnesium Chloride Solution
by Zhengyang Wu, Zongyu Feng, Longsheng Zhao, Zheng Li, Meng Wang and Chao Xia
Materials 2025, 18(12), 2824; https://doi.org/10.3390/ma18122824 - 16 Jun 2025
Viewed by 370
Abstract
The precipitation process of rare earth from a rare earth chloride solution using magnesium bicarbonate yields a dilute magnesium chloride (MgCl2) solution. The dilute MgCl2 solution can only be concentrated to a maximum concentration of about 70 g/L by conventional [...] Read more.
The precipitation process of rare earth from a rare earth chloride solution using magnesium bicarbonate yields a dilute magnesium chloride (MgCl2) solution. The dilute MgCl2 solution can only be concentrated to a maximum concentration of about 70 g/L by conventional reverse osmosis (RO), which is insufficient for recycling. Low-salt-rejection reverse osmosis (LSRRO) allows for a higher concentration of brine while operating at moderate pressures. However, research on LSRRO for the concentration of MgCl2 solution is still at an initial stage. In this study, polyamide RO membranes were treated with sodium hypochlorite (NaClO) to prepare low-salt-rejection membranes. The effects of NaClO concentration, pH, and chlorination time on the membrane properties were investigated. Under alkaline chlorination conditions, the membrane’s salt rejection decreased, and water flux increased with increasing NaClO concentration and chlorination time. This can be explained by the hydrolysis of polyamide in the alkaline solution to form carboxylic acids and amines, resulting in a decrease in the crosslinking degree of polyamide. The low-salt-rejection membrane was prepared by exposing it to a NaClO solution at a concentration of 15 g/L and a pH of 11 for 3 h, and the salt rejection of MgCl2 was 50.7%. The MgCl2 solution with a concentration of 20 g/L was concentrated using multi-stage LSRRO at the pressure of 5 MPa. The concentration of the concentrated brine reached 120 g/L, which is 87% higher than the theoretical maximum concentration of 64 g/L for conventional RO at the pressure of 5 MPa. The specific energy consumption (SEC) was 4.17 kWh/m3, which decreased by about 80% compared to that of mechanical vapor recompression (MVR). This provides an alternative route for the efficient concentration of a diluted MgCl2 solution with lower energy consumption. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

16 pages, 3991 KiB  
Article
Application of Industrial NF and RO Membranes in Separation of Post-Fermentation Solutions: Preliminary Study
by Wirginia Tomczak, Marek Gryta, Sławomir Żak and Monika Daniluk
Materials 2025, 18(12), 2779; https://doi.org/10.3390/ma18122779 - 12 Jun 2025
Viewed by 356
Abstract
The focus of this work was to perform a preliminary study on the suitability of commercially available nanofiltration (NF) and reverse osmosis (RO) membranes for the separation of 1,3-propanediol (1,3-PD) post-fermentation solutions. The experiments were conducted with the use of AFC30 and AFC99 [...] Read more.
The focus of this work was to perform a preliminary study on the suitability of commercially available nanofiltration (NF) and reverse osmosis (RO) membranes for the separation of 1,3-propanediol (1,3-PD) post-fermentation solutions. The experiments were conducted with the use of AFC30 and AFC99 (PCI Membrane System Inc., Milford, OH, USA) as well as BW30 membranes (Dow FilmTec Co., Midland, MI, USA) and various feed solutions: selected compounds of fermentation broths, and synthetic and real fermentation broths. Firstly, it was found that for pure water, the AFC30 membrane was characterized by the highest performance. It clearly indicated that the membrane is the most open membrane and is characterized by a more porous structure. In turn, the lowest flux was noted for the AFC99 membrane. Studies performed with the use of synthetic broth found that for the BW30 membrane, the order in which the rejection coefficient (R) was obtained was glycerol~lactic acid > 1,3-propanediol > acetic acid. It clearly confirmed that the R increased with the molecular weight (MW) of the solution compounds. With regard to ions, it was found that SO42− and PO43− is characterized by higher R than Cl and NO3 ions. Multivalent ions are characterized by higher charge density, hydrated radius, hydration energy and MW. Finally, experiments performed with the use of the AFC30 membrane and real broths showed that the membrane ensured almost complete separation of 1,3-PD. With regard to organic acid, the separation performance was as follows: succinic acid > lactic acid > butyric acid > acetic acid > formic acid. It has been documented that the AFC30 membrane can be successfully used to concentrate the following ions: SO42−, PO43−, NO3 and Na+. Hence, most of the medium used for the fermentation process was retained by the membrane and may be reused, which is crucial for the scaling up of the process and reducing the total technology cost. With regard to the obtained permeate, it can be subsequently purified by other methods, such as distillation or ion exchange. For further development of the tested process, determining the retention degree for 1,3-PD and other solutes during long-term separation of real broth is necessary. Full article
Show Figures

Figure 1

20 pages, 2757 KiB  
Article
Multi-Criteria Decision Making: Sustainable Water Desalination
by Daniel Li, Mohamed Galal Hassan-Sayed, Nuno Bimbo, Clara Bartram and Ihab M. T. Shigidi
Water 2025, 17(12), 1729; https://doi.org/10.3390/w17121729 - 7 Jun 2025
Viewed by 673
Abstract
With an increasingly more urbanised global population, surface water and groundwater resources are being/have become outpaced by growing demand. The oceans could address this pertinent scarcity issue, once their high-salinity content is removed. Water desalination could thus be a crucial pathway towards addressing [...] Read more.
With an increasingly more urbanised global population, surface water and groundwater resources are being/have become outpaced by growing demand. The oceans could address this pertinent scarcity issue, once their high-salinity content is removed. Water desalination could thus be a crucial pathway towards addressing global water scarcity. However, conventional desalination is known to be highly energy-intensive, with limited scalability and potentially significant negative environmental impacts. Multi-criteria Decision Making (MCDM) presents a novel approach towards sustainable water desalination based on sustainability-related criteria. The Fuzzy Analytical Hierarchy Process (FAHP) was implemented to determine the most optimal small-scale, modularised, and remote reverse osmosis (RO) desalination plant configurations. Twelve configurations were assessed, based on four plant capacities (50, 100, 150, and 200 m3/day) and three diesel-to-solar photovoltaic energy configurations (100–0%, 75–25%, and 60–40%). The hybridised diesel-to-solar configurations were generally ranked higher, particularly when less reliant on diesel, and at small(er) capacities, in terms of the criteria: sustainability, overall efficiency, and standalone potential while maintaining competitive costs. This can likely be attributed to their relatively lower fuel and energy consumption and associated costs. Further research should aim to consider additional criteria, such as battery cost, as well as life cycle assessments that include transportation-related costs/emissions. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

Back to TopTop