Selection of Optimal Nanofiltration/Reverse Osmosis (NF/RO) Membranes for the Removal of Organic Micropollutants from Drinking Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. OMP Selection
2.2. Selection of Commercial NF and RO Membranes
2.3. Filtration Experiments
2.4. Permeate Analysis
2.4.1. Instrumentation
2.4.2. Analytical Methods
3. Results and Discussion
3.1. OMP Retention Mechanism
3.2. Membrane Selection and Overall Performance Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D.; Añel, J.A. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Flores, F.; Moneo, M. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour. Manag. 2007, 21, 775–788. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.S.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.V.; Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- European Parliament P9_TA(2024)0358 Surface Water and Groundwater Pollutants European Parliament Legislative Resolution of 24 April 2024 on the Proposal for a Directive of the European Parliament and of the Council Amending Directive 2000/60/EC Establishing a Framework for Community Action in the Field of Water Policy (COM(2022)0540—C9-0361/2022—2022/0344(COD)). 2019. Available online: http://data.europa.eu/eli/C/2024/1777/oj (accessed on 24 April 2024).
- Council of the European Union. Proposal for a Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment (Recast). Available online: https://oeil.secure.europarl.europa.eu/oeil/it/procedure-file?reference=2022/0345(COD) (accessed on 1 March 2024).
- Council of the EU. Council of the EU PRESS EN Industrial Emissions. 2024. Available online: https://www.consilium.europa.eu/press (accessed on 12 April 2024).
- Barbosa, M.O.; Moreira, N.F.F.; Ribeiro, A.R.; Pereira, M.F.R.; Silva, A.M.T. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Res. 2016, 94, 257–279. [Google Scholar] [CrossRef] [PubMed]
- Houtman, C.J. Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. J. Integr. Environ. Sci. 2010, 7, 271–295. [Google Scholar] [CrossRef]
- Li, Z.; Sobek, A.; Radke, M. Fate of Pharmaceuticals and Their Transformation Products in Four Small European Rivers Receiving Treated Wastewater. Environ. Sci. Technol. 2016, 50, 5614–5621. [Google Scholar] [CrossRef]
- Eggen, R.I.L.; Hollender, J.; Joss, A.; Schärer, M.; Stamm, C. Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants. Environ. Sci. Technol. 2014, 48, 7683–7689. [Google Scholar] [CrossRef]
- Guillossou, R.; Le Roux, J.; Mailler, R.; Vulliet, E.; Morlay, C.; Nauleau, F.; Gasperi, J.; Rocher, V. Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere 2019, 218, 1050–1060. [Google Scholar] [CrossRef]
- Benner, J.; Helbling, D.E.; Kohler, H.-P.E.; Wittebol, J.; Kaiser, E.; Prasse, C.; Ternes, T.A.; Albers, C.N.; Aamand, J.; Horemans, B.; et al. Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Res. 2013, 47, 5955–5976. [Google Scholar] [CrossRef]
- Sudhakaran, S.; Maeng, S.K.; Amy, G. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: New concepts in multi-barrier treatment. Chemosphere 2013, 92, 731–737. [Google Scholar] [CrossRef]
- Poerio, T.; Piacentini, E.; Mazzei, R. Membrane processes for microplastic removal. Molecules 2019, 24, 4148. [Google Scholar] [CrossRef]
- Sahar, E.; David, I.; Gelman, Y.; Chikurel, H.; Aharoni, A.; Messalem, R.; Brenner, A. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 2011, 273, 142–147. [Google Scholar] [CrossRef]
- Röhricht, M.; Krisam, J.; Weise, U.; Kraus, U.R.; Düring, R.A. Elimination of carbamazepine, diclofenac and naproxen from treated wastewater by nanofiltration. Clean 2009, 37, 638–641. [Google Scholar] [CrossRef]
- Osorio, S.C.; Biesheuvel, P.M.; Spruijt, E.; Dykstra, J.; van der Wal, A. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: Considerations and challenges. Water Res. 2022, 225, 119130. [Google Scholar] [CrossRef]
- Yangali-Quintanilla, V.; Maeng, S.K.; Fujioka, T.; Kennedy, M.; Li, Z.; Amy, G. Desalination and Water Treatment Nanofiltration vs. Reverse Osmosis for the Removal of Emerging Organic Contaminants in Water Reuse. 2011. Available online: https://www.deswater.com (accessed on 27 October 2024).
- Tang, C.Y.; Fu, Q.S.; Criddle, C.S.; Leckie, J.O. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ. Sci. Technol. 2007, 41, 2008–2014. [Google Scholar] [CrossRef]
- Franke, V.; McCleaf, P.; Lindegren, K.; Ahrens, L. Efficient removal of per- And polyfluoroalkyl substances (PFASs) in drinking water treatment: Nanofiltration combined with active carbon or anion exchange. Environ. Sci. 2019, 5, 1836–1843. [Google Scholar] [CrossRef]
- Zhi, Y.; Zhao, X.; Qian, S.; Faria, A.F.; Lu, X.; Wang, X.; Li, W.; Han, L.; Tao, Z.; He, Q.; et al. Removing emerging perfluoroalkyl ether acids and fluorotelomer sulfonates from water by nanofiltration membranes: Insights into performance and underlying mechanisms. Sep. Purif. Technol. 2022, 298, 121648. [Google Scholar] [CrossRef]
- Alonso, E.; Sanchez-Huerta, C.; Ali, Z.; Wang, Y.; Fortunato, L.; Pinnau, I. Evaluation of nanofiltration and reverse osmosis membranes for efficient rejection of organic micropollutants. J. Membr. Sci. 2024, 693, 122357. [Google Scholar] [CrossRef]
- Rychlewska, K.; Wodzisławska-Pasich, K. Selection of membrane for production of drinking water from surface and groundwater by nanofiltration. Desalination Water Treat. 2024, 318, 100355. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Hawkes, S. Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): Mechanisms and role of membrane pore size. Sep. Purif. Technol. 2007, 57, 176–184. [Google Scholar] [CrossRef]
- Braeken, L.; Ramaekers, R.; Zhang, Y.; Maes, G.; Van Der Bruggen, B.; Vandecasteele, C. Influence of hydrophobicity on retention in nanofiltration of aqueous solutions containing organic compounds. J. Membr. Sci. 2005, 252, 195–203. [Google Scholar] [CrossRef]
- Agenson, K.O.; Oh, J.I.; Urase, T. Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: Controlling parameters of process. J. Membr. Sci. 2003, 225, 91–103. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Y.; Feng, Z.; Rui, X.; Zhang, T.; Zhang, Z. A review on reverse osmosis and nanofiltration membranes for water purification. Polymers 2019, 11, 1252. [Google Scholar] [CrossRef]
- Hurwitz, G.; Guillen, G.R.; Hoek, E.M.V. Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements. J. Membr. Sci. 2010, 349, 349–357. [Google Scholar] [CrossRef]
- Agboola, O.; Mokrani, T.; Sadiku, E.R.; Kolesnikov, A.; Olukunle, O.I.; Maree, J.P. Characterization of Two Nanofiltration Membranes for the Separation of Ions from Acid Mine Water. Mine Water Environ. 2017, 36, 401–408. [Google Scholar] [CrossRef]
- UNISOL Membrane Technology. UNISOL_Flat sheet_A-3012_Datasheet. Available online: https://www.unisol-global.com/public/document/UNISOL_AMS%20Flat%20sheet_A-3012_Datasheet.pdf (accessed on 25 November 2024).
- Yangali-Quintanilla, V.; Sadmani, A.; McConville, M.; Kennedy, M.; Amy, G. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes. Water Res. 2009, 43, 2349–2362. [Google Scholar] [CrossRef]
- Product Data Sheet Nanofiltration Membranes FilmTecTM NF90 Element Nanofiltration Elements for Commercial Systems. 2024. Available online: https://www.dupont.com/content/dam/water/amer/us/en/water/public/documents/en/NF-FilmTec-NF90-PDS-45-D01520-en.pdf (accessed on 7 November 2024).
- Morgante, C.; Lopez, J.; Cortina, J.; Tamburini, A. New generation of commercial nanofiltration membranes for seawater/brine mining: Experimental evaluation and modelling of membrane selectivity for major and trace elements. Sep. Purif. Technol. 2024, 340, 126758. [Google Scholar] [CrossRef]
- Boussu, K.; De Baerdemaeker, J.; Dauwe, C.; Weber, M.; Lynn, K.G.; Depla, D.; Aldea, S.; Vankelecom, I.F.J.; Vandecasteele, C.; Van der Bruggen, B. Physico-chemical characterization of nanofiltration membranes. Chemphyschem 2007, 8, 370–379. [Google Scholar] [CrossRef]
- Gao, L.; Wang, H.; Zhang, Y.; Wang, M. Nanofiltration membrane characterization and application: Extracting lithium in lepidolite leaching solution. Membranes 2020, 10, 178. [Google Scholar] [CrossRef]
- Bargeman, G.; Westerink, J.B.; Manuhutu, C.F.H.; ten Kate, A. The effect of membrane characteristics on nanofiltration membrane performance during processing of practically saturated salt solutions. J. Membr. Sci. 2015, 485, 112–122. [Google Scholar] [CrossRef]
- Peng, D.; Saravia, F.; Bock, K.; Pelikan, M.; Abbt-Braun, G.; Horn, H. The rejection of trihalomethanes by nanofiltration membranes: Influences of adsorption and NOM fouling. Desalination Water Treat. 2017, 84, 19–30. [Google Scholar] [CrossRef]
- DOW Filmtec Membranes—Complete Water Solutions. Available online: https://dowmembranes.com/ (accessed on 13 June 2025).
- Gautam, A.K.; Menkhaus, T.J. Performance evaluation and fouling analysis for reverse osmosis and nanofiltration membranes during processing of lignocellulosic biomass hydrolysate. J. Membr. Sci. 2014, 451, 252–265. [Google Scholar] [CrossRef]
- Ang, W.L.; Nordin, D.; Mohammad, A.W.; Benamor, A.; Hilal, N. Effect of membrane performance including fouling on cost optimization in brackish water desalination process. Chem. Eng. Res. Des. 2017, 117, 401–413. [Google Scholar] [CrossRef]
- TRISEP SB90. Product Specification—TRISEP SB90 Flat Sheet Membrane. Available online: https://water-membrane-solutions.mann-hummel.com/content/dam/water-membrane-solutions/download/technical-data-sheets/trisep/trisep-sb50-flat-sheet-membrane-data-sheet.pdf/_jcr_content/renditions/original./trisep-sb50-flat-sheet-membrane-data-sheet.pdf (accessed on 7 January 2021).
- Cairone, S.; Naddeo, V.; Belgiorno, V.; Taherzadeh, M.J.; Mahboubi, A. Evaluating the impact of membrane properties and feed pH on concentration and fractionation of volatile fatty acid using nanofiltration. J. Water Process Eng. 2024, 65, 105793. [Google Scholar] [CrossRef]
- Harfoush, M. The Impact of Operational Conditions on Commercial Membranes using in Removing Nitrate from Drinking Water. Aquademia 2020, 4, ep20014. [Google Scholar] [CrossRef] [PubMed]
- Richards, L.A.; Vuachère, M.; Schäfer, A.I. Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination 2010, 261, 331–337. [Google Scholar] [CrossRef]
- de Souza Marotta Alfaia, R.G.; de Almeida, R.; Soares do Nascimento, K.; Carbonelli Campos, J. Landfill leachate pretreatment effects on nanofiltration and reverse osmosis membrane performance. Process Saf. Environ. Prot. 2023, 172, 273–281. [Google Scholar] [CrossRef]
- Yang, L.; She, Q.; Wan, M.P.; Wang, R.; Chang, V.W.-C.; Tang, C.Y. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration. Water Res. 2017, 116, 116–125. [Google Scholar] [CrossRef]
- Morović, S.; Fluksi, A.V.; Babić, S.; Košutić, K. Impact of Polymer Chain Rearrangements in the PA Structure of RO Membranes on Water Permeability and N-Nitrosamine Rejection. Molecules 2023, 28, 6124. [Google Scholar] [CrossRef]
- Vandezande, P.; Gevers, L.E.M.; Vankelecom, I.F.J. Solvent resistant nanofiltration: Separating on a molecular level. Chem. Soc. Rev. 2008, 37, 365–405. [Google Scholar] [CrossRef]
- Van den Mooter, P.R.; De Grave, K.; Vankelecom, I.F.J. Preparation of cellulose tri-acetate membranes for high-alcohol beverages via genetic algorithms and high throughput experimentation. Sep. Purif. Technol. 2023, 311, 123226. [Google Scholar] [CrossRef]
- Boussu, K.; Vandecasteele, C.; Van der Bruggen, B. Relation between membrane characteristics and performance in nanofiltration. J. Membr. Sci. 2008, 310, 51–65. [Google Scholar] [CrossRef]
- Van Der Bruggen, B.; Schaep, J.; Wilms, D.; Vandecasteele, C. Infuence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Membr. Sci. 1998, 156, 29–41. [Google Scholar] [CrossRef]
- Ozaki, H.; Li, H. Rejection of organic compounds by ultra-low pressure reverse osmosis membrane. Water Res. 2001, 36, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, R.; Nulens, I.; Thijs, M.; Lenaerts, M.; Bastin, M.; Van Goethem, C.; Koeckelberghs, G.; Vankelecom, I.F. Solutes in solvent resistant and solvent tolerant nanofiltration: How molecular interactions impact membrane rejection. J. Membr. Sci. 2023, 677, 121595. [Google Scholar] [CrossRef]
- Wang, X.-M.; Li, B.; Zhang, T.; Li, X.-Y. Performance of nanofiltration membrane in rejecting trace organic compounds: Experiment and model prediction. Desalination 2015, 370, 7–16. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
Group | Compound | log Kow | log D * | pKa | Molecular Formula | MW (g/mol) | Structure |
---|---|---|---|---|---|---|---|
1 | Iopromide | −0.4 | −0.44 | 11.1 | C18H24I3N3O8 | 791 | |
2 | PFOA | 5.1 | 1.58 | 0.3 | C8HF15O2 | 414 | |
4 | Sertraline | 5.1 | 2.67 | - | C17H17Cl2N | 306 | |
4 | Diclofenac | 4.2 | 1.37 | 4.0 | C14H11Cl2NO2 | 296 | |
6 | Carbamazepine | 2.7 | 2.77 | 15.9 | C15H12N2O | 236 | |
3 | Ibuprofen | 3.8 | 1.71 | 4.8 | C13H18O2 | 206 | |
5 | Caffeine | −0.5 | −0.55 | - | C8H10N4O2 | 194 | |
8 | Gabapentine | 0.9 | −1.27 | 4.6 | C9H17NO2 | 171 | |
7 | Acetaminophen (Paracetamol) | 0.9 | 0.91 | 9.4 | C8H9NO2 | 151 | |
5 | Metformin | −0.9 | −5.69 | - | C4H11N5 | 129 |
No | Membrane | Membrane Type | Selective Layer ** | MWCO (Da) | Contact Angle (°) | Water Permeability ) | Roughness (nm) | Zeta Potential (mV) * | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | NanoPro A-3012 (Unisol) | NF | Composite material | 200 | - | 2.12 | 58 | −14 | [30,31] |
2 | NF90 (Dow) | NF | Polyamide-TFC | 200 | 58 | 8.67 | 63.9 | −48 | [32,33,34] |
3 | NF270 (Dow) | NF | Polyamide | 170 | 27 | 8.5 | 28 µm | −19 | [35] |
4 | Duracid NF (GE Osmonics) | NF | Polyamide-TFC | 146 | 35 | 1.8 | 7.7 | −80 | [36] |
5 | HYDRACoRe 7470 pHT (Nitto Hydranautics) | NF | Sulfonated polyethersulfone | 200–250 | 62 | 4.3 | - | - | [37,38,39] |
6 | NFX Membrane (Synder) | NF | Polyamide-TFC | 150–300 | 17 | 4.21 | - | −25 | [34] |
7 | TS80 (Trisep) | NF | Polyamide-TFC | 150 | 29.8 | 6.5 | 79.4 | −32 (at pH = 9) | [40,41] |
8 | SB90 (Trisep) | NF | Cellulose Acetate | 150 | 59 | 2.8 | 9.8 | - | [24,38,42] |
9 | TS40 (Trisep) | NF | Polypiperazine-amide | 200–300 | 30 | 6.1 | 11 | −52 | [43] |
10 | Filmtec (DOW) | RO | Polypiperazine-amide TFC | 200 | 55 | - | - | −30 | [39] |
11 | Filmtec BW30 (DOW) | RO | Polyamide | ~100 | 90.3 | 5 | 68.3 | −10 (at pH = 9) | [41,44] |
12 | ESPA4 (Nitto Hydranautics) | RO | Composite Polyamide | - | - | 6.48 | - | - | [45] |
13 | X201 (Trisep) | RO | Polyamide-urea-TFC | - | 106.8 | 3.33 | 69.5 | - | [46] |
14 | SB50 (Trisep) | RO | Cellulose Acetate | 152 | - | 2.18 | - | −13 | [47] |
15 | UTC-73AC (Toray) | RO | Polyamide-TFC | - | 40.3 | 3.4 | 37.3 | - | [48] |
Compound | Linear Range (µg/L) | R2 | RSD (%) | LOD (µg/L) | LLOQ (µg/L) |
---|---|---|---|---|---|
Iopromide | 31.3–25000 | 0.9995 | 2.4 | 7.8 | 31.3 |
PFOA | 0.6–500 | 0.9981 | 2.5 | 0.2 | 0.6 |
Ibuprofen | 7.8–6250 | 1.0000 | 1.6 | 2.0 | 7.8 |
Diclofenac | 8.1–6250 | 0.9998 | 3.7 | 2.0 | 7.8 |
Sertraline | 1.6–1250 | 0.9897 | 1.6 | 0.8 | 1.6 |
Gabapentine | 6.3–5000 | 0.9998 | 1.4 | 1.6 | 6.3 |
Metformin | 0.8–625 | 0.9999 | 2.8 | 0.4 | 0.8 |
Carbamazepine | 12.5–10000 | 0.9986 | 1.1 | 6.3 | 12.5 |
Caffeine | 50–40000 | 1.000 | 0.5 | 12.5 | 50 |
Paracetamol | 12.5–10000 | 0.9997 | 3.7 | 3.1 | 12.5 |
Retention % | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NF | RO | ||||||||||||||||
OMP | Mw (g mol−1) | Feed (µg/L) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Iopromide | 791 | 3120 | 61 | 87 | 94 | 39 | 77 | 73 | 95 | 98 | 99 | 66 | 96 | 58 | 77 | 67 | 68 |
PFOA | 414 | 60 | 62 | 90 | 96 | 35 | 89 | 82 | 99 | ≥99 | ≥99 | 59 | ≥99 | 56 | 80 | 71 | 64 |
Sertraline | 306 | 150 | ≥97 | ≥97 | ≥97 | ≥97 | ≥97 | ≥97 | ≥97 | ≥97 | ≥97 | ≥97 | ≥97 | ≥97 | ≥97 | ≥97 | ≥97 |
Diclofenac | 296 | 780 | 69 | 90 | 94 | 51 | 79 | 78 | 95 | ≥99 | 98 | 73 | ≥99 | 66 | 81 | 73 | 74 |
Carbamazepine | 236 | 2500 | 60 | 88 | 89 | 34 | 25 | 71 | 89 | ≥99 | 83 | 61 | ≥99 | 58 | 77 | 58 | 68 |
Ibuprofen | 206 | 780 | 69 | 90 | 94 | 46 | 76 | 77 | 95 | 99 | 97 | 71 | 98 | 66 | 82 | 73 | 74 |
Caffeine | 194 | 5000 | 61 | 88 | 85 | 32 | 19 | 69 | 85 | 95 | 61 | 57 | 96 | 59 | 78 | 52 | 68 |
Gabapentine | 171 | 620 | 61 | 88 | 93 | 34 | 24 | 74 | 95 | 98 | 96 | 63 | 96 | 59 | 78 | 67 | 68 |
Paracetamol | 151 | 1250 | 50 | 76 | 18 | 15 | 4 | 24 | 30 | 81 | 24 | 43 | 90 | 54 | 72 | 27 | 66 |
Metformin | 129 | 30 | 64 | 87 | 67 | 21 | 35 | 58 | 69 | 98 | 42 | 57 | 98 | 59 | 78 | 66 | 70 |
Water permeance (LMH/bar) | 2.08 | 3.25 | 6.06 | 3.19 | 2.63 | 7.09 | 7.19 | 0.36 | 4.37 | 0.28 | 0.73 | 3.98 | 1.71 | 3.69 | 2.54 | ||
Conductivity (µs/cm) | 756 | 659 | 605 | 681 | 718 | 720 | 722 | 723 | 545 | 457 | 605 | 170 | 694 | 621 | 606 | 677 | |
MWCO (Da) | 200 | 200 | 170 | 146 | 200–250 | 150–300 | 150 | 150 | 200–300 | 200 | ~100 | - | - | 152 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasdemir, E.B.; Pardon, M.; Rezaei Hosseinabadi, S.; Rutgeerts, L.A.J.; Cabooter, D.; Vankelecom, I.F.J. Selection of Optimal Nanofiltration/Reverse Osmosis (NF/RO) Membranes for the Removal of Organic Micropollutants from Drinking Water. Membranes 2025, 15, 183. https://doi.org/10.3390/membranes15060183
Tasdemir EB, Pardon M, Rezaei Hosseinabadi S, Rutgeerts LAJ, Cabooter D, Vankelecom IFJ. Selection of Optimal Nanofiltration/Reverse Osmosis (NF/RO) Membranes for the Removal of Organic Micropollutants from Drinking Water. Membranes. 2025; 15(6):183. https://doi.org/10.3390/membranes15060183
Chicago/Turabian StyleTasdemir, E. Busra, Marie Pardon, Sareh Rezaei Hosseinabadi, Laurens A. J. Rutgeerts, Deirdre Cabooter, and Ivo F. J. Vankelecom. 2025. "Selection of Optimal Nanofiltration/Reverse Osmosis (NF/RO) Membranes for the Removal of Organic Micropollutants from Drinking Water" Membranes 15, no. 6: 183. https://doi.org/10.3390/membranes15060183
APA StyleTasdemir, E. B., Pardon, M., Rezaei Hosseinabadi, S., Rutgeerts, L. A. J., Cabooter, D., & Vankelecom, I. F. J. (2025). Selection of Optimal Nanofiltration/Reverse Osmosis (NF/RO) Membranes for the Removal of Organic Micropollutants from Drinking Water. Membranes, 15(6), 183. https://doi.org/10.3390/membranes15060183