Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = retransmission diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 2628 KiB  
Article
A Decentralized Multi-Venue Real-Time Video Broadcasting System Integrating Chain Topology and Intelligent Self-Healing Mechanisms
by Tianpei Guo, Ziwen Song, Haotian Xin and Guoyang Liu
Appl. Sci. 2025, 15(14), 8043; https://doi.org/10.3390/app15148043 - 19 Jul 2025
Viewed by 470
Abstract
The rapid growth in large-scale distributed video conferencing, remote education, and real-time broadcasting poses significant challenges to traditional centralized streaming systems, particularly regarding scalability, cost, and reliability under high concurrency. Centralized approaches often encounter bottlenecks, increased bandwidth expenses, and diminished fault tolerance. This [...] Read more.
The rapid growth in large-scale distributed video conferencing, remote education, and real-time broadcasting poses significant challenges to traditional centralized streaming systems, particularly regarding scalability, cost, and reliability under high concurrency. Centralized approaches often encounter bottlenecks, increased bandwidth expenses, and diminished fault tolerance. This paper proposes a novel decentralized real-time broadcasting system employing a peer-to-peer (P2P) chain topology based on IPv6 networking and the Secure Reliable Transport (SRT) protocol. By exploiting the global addressing capability of IPv6, our solution simplifies direct node interconnections, effectively eliminating complexities associated with Network Address Translation (NAT). Furthermore, we introduce an innovative chain-relay transmission method combined with distributed node management strategies, substantially reducing reliance on central servers and minimizing deployment complexity. Leveraging SRT’s low-latency UDP transmission, packet retransmission, congestion control, and AES-128/256 encryption, the proposed system ensures robust security and high video stream quality across wide-area networks. Additionally, a WebSocket-based real-time fault detection algorithm coupled with a rapid fallback self-healing mechanism is developed, enabling millisecond-level fault detection and swift restoration of disrupted links. Extensive performance evaluations using Video Multi-Resolution Fidelity (VMRF) metrics across geographically diverse and heterogeneous environments confirm significant performance gains. Specifically, our approach achieves substantial improvements in latency, video quality stability, and fault tolerance over existing P2P methods, along with over tenfold enhancements in frame rates compared with conventional RTMP-based solutions, thereby demonstrating its efficacy, scalability, and cost-effectiveness for real-time video streaming applications. Full article
Show Figures

Figure 1

26 pages, 987 KiB  
Article
Traj-Q-GPSR: A Trajectory-Informed and Q-Learning Enhanced GPSR Protocol for Mission-Oriented FANETs
by Mingwei Wu, Bo Jiang, Siji Chen, Hong Xu, Tao Pang, Mingke Gao and Fei Xia
Drones 2025, 9(7), 489; https://doi.org/10.3390/drones9070489 - 10 Jul 2025
Viewed by 360
Abstract
Routing in flying ad hoc networks (FANETs) is hindered by high mobility, trajectory-induced topology dynamics, and energy constraints. Conventional topology-based or position-based protocols often fail due to stale link information and limited neighbor awareness. This paper proposes a trajectory-informed routing protocol enhanced by [...] Read more.
Routing in flying ad hoc networks (FANETs) is hindered by high mobility, trajectory-induced topology dynamics, and energy constraints. Conventional topology-based or position-based protocols often fail due to stale link information and limited neighbor awareness. This paper proposes a trajectory-informed routing protocol enhanced by Q-learning: Traj-Q-GPSR, tailored for mission-oriented UAV swarm networks. By leveraging mission-planned flight trajectories, the protocol builds time-aware two-hop neighbor tables, enabling routing decisions based on both current connectivity and predicted link availability. This spatiotemporal information is integrated into a reinforcement learning framework that dynamically optimizes next-hop selection based on link stability, queue length, and node mobility patterns. To further enhance adaptability, the learning parameters are adjusted in real time according to network dynamics. Additionally, a delay-aware queuing model is introduced to forecast optimal transmission timing, thereby reducing buffering overhead and mitigating redundant retransmissions. Extensive ns-3 simulations across diverse mobility, density, and CBR connections demonstrate that the proposed protocol consistently outperforms GPSR, achieving up to 23% lower packet loss, over 80% reduction in average end-to-end delay, and improvements of up to 37% and 52% in throughput and routing efficiency, respectively. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

27 pages, 4717 KiB  
Article
Enhancing Bidirectional Modbus TCP ↔ RTU Gateway Performance: A UDP Mechanism and Markov Chain Approach
by Shuang Zhao, Qinghai Zhang, Qingjian Zhao, Xiaoqian Zhang, Yang Guo, Shilei Lu, Liqiang Song and Zhengxu Zhao
Sensors 2025, 25(13), 3861; https://doi.org/10.3390/s25133861 - 21 Jun 2025
Viewed by 1113
Abstract
In the Industrial Internet of Things (IIoT) field, the diversity of devices and protocols leads to interconnection challenges. Conventional Modbus Transmission Control Protocol (TCP) to Remote Terminal Unit (RTU) gateways suffer from high overhead and latency of the TCP protocol stack. To enhance [...] Read more.
In the Industrial Internet of Things (IIoT) field, the diversity of devices and protocols leads to interconnection challenges. Conventional Modbus Transmission Control Protocol (TCP) to Remote Terminal Unit (RTU) gateways suffer from high overhead and latency of the TCP protocol stack. To enhance real-time communication while ensuring reliability, this study applies Markov chain theory to analyze User Datagram Protocol (UDP) transmission characteristics. An Advanced UDP (AUDP) protocol is proposed by integrating a Cyclic Redundancy Check (CRC) check mechanism, retransmission mechanism, Transaction ID matching mechanism, and exponential backoff mechanism at the UDP application layer. Based on AUDP, a Modbus AUDP-RTU gateway is designed with a lightweight architecture to achieve bidirectional conversion between Modbus AUDP and Modbus RTU. Experimental validation and Markov chain-based modeling demonstrate that the proposed gateway significantly reduces communication latency compared to Modbus TCP-RTU and exhibits higher reliability than Modbus UDP-RTU. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

31 pages, 9117 KiB  
Article
Intelligent Omni-Surface-Assisted Cooperative Hybrid Non-Orthogonal Multiple Access: Enhancing Spectral Efficiency Under Imperfect Successive Interference Cancellation and Hardware Distortions
by Helen Sheeba John Kennedy and Vinoth Babu Kumaravelu
Sensors 2025, 25(7), 2283; https://doi.org/10.3390/s25072283 - 3 Apr 2025
Cited by 1 | Viewed by 460
Abstract
Non-orthogonal multiple access (NOMA) has emerged as a key enabler of massive connectivity in next-generation wireless networks. However, conventional NOMA studies predominantly focus on two-user scenarios, limiting their scalability in practical multi-user environments. A critical challenge in these systems is error propagation in [...] Read more.
Non-orthogonal multiple access (NOMA) has emerged as a key enabler of massive connectivity in next-generation wireless networks. However, conventional NOMA studies predominantly focus on two-user scenarios, limiting their scalability in practical multi-user environments. A critical challenge in these systems is error propagation in successive interference cancellation (SIC), which is further exacerbated by hardware distortions (HWDs). Hybrid NOMA (HNOMA) mitigates SIC errors and reduces system complexity, yet cell-edge users (CEUs) continue to experience degraded sum spectral efficiency (SSE) and throughput. Cooperative NOMA (C-NOMA) enhances CEU performance through retransmissions but incurs higher energy consumption. To address these limitations, this study integrates intelligent omni-surfaces (IOSs) into a cooperative hybrid NOMA (C-HNOMA) framework to enhance retransmission efficiency and extend network coverage. The closed-form expressions for average outage probability and throughput are derived, and a power allocation (PA) optimization framework is proposed to maximize SSE, with validation through Monte Carlo simulations. The introduction of a novel strong–weak strong–weak (SW-SW) user pairing strategy capitalizes on channel diversity, achieving an SSE improvement of ∼0.48% to ∼3.81% over conventional pairing schemes. Moreover, the proposed system demonstrates significant performance gains as the number of IOS elements increases, even under imperfect SIC (iSIC) and HWD conditions. By optimizing PA values, SSE is further enhanced by at least 2.24%, even with an SIC error of 0.01 and an HWD level of 8%. These results underscore the potential of an IOS-assisted C-HNOMA system with SW-SW pairing as a viable solution for improving multi-user connectivity, SSE, and system robustness in future wireless communication networks. Full article
(This article belongs to the Special Issue Performance Analysis of Wireless Communication Systems)
Show Figures

Graphical abstract

16 pages, 1215 KiB  
Article
A Space-Time Correlation Model for MRC Receivers in Rayleigh Fading Channels
by Ramiro Sámano-Robles
Technologies 2020, 8(3), 41; https://doi.org/10.3390/technologies8030041 - 22 Jul 2020
Cited by 1 | Viewed by 4360
Abstract
This paper presents a statistical model for maximum ratio combining (MRC) receivers in Rayleigh fading channels enabled with a temporal combining process. This means that the receiver effectively combines spatial and temporal branch components. Therefore, the signals that will be processed by the [...] Read more.
This paper presents a statistical model for maximum ratio combining (MRC) receivers in Rayleigh fading channels enabled with a temporal combining process. This means that the receiver effectively combines spatial and temporal branch components. Therefore, the signals that will be processed by the MRC receiver are collected not only across different antennas (space), but also at different instants of time. This suggests the use of a retransmission, repetition or space-time coding algorithm that forces the receiver to store signals in memory at different instants of time. Eventually, these stored signals are combined after a predefined or dynamically optimized number of time-slots or retransmissions. The model includes temporal correlation features in addition to the space correlation between the signals of the different components or branches of the MRC receiver. The derivation uses a frequency domain approach (using the characteristic function of the random variables) to obtain closed-form expressions of the statistics of the post-processing signal-to-noise ratio (SNR) under the assumption of equivalent correlation in time and equivalent correlation in space. The described methodology paves the way for the reformulation of other statistical functions as a frequency-domain polynomial root analysis problem. This is opposed to the infinite series approach that is used in the conventional methodology using directly the probability density function (PDF). The results suggest that temporal diversity is a good complement to receivers with limited spatial diversity capabilities. It is also shown that this additional operation could be maximized when the temporal diversity is adaptive (i.e., activated by thresholds of SNR), thus leading to a better resource utilization. Full article
(This article belongs to the Special Issue Reviews and Advances in Internet of Things Technologies)
Show Figures

Figure 1

15 pages, 614 KiB  
Article
Performance of LoRaWAN for Handling Telemetry and Alarm Messages in Industrial Applications
by Francisco Helder C. dos Santos Filho, Plínio S. Dester, Elvis M. G. Stancanelli, Paulo Cardieri, Pedro H. J. Nardelli, Dick Carrillo and Hirley Alves
Sensors 2020, 20(11), 3061; https://doi.org/10.3390/s20113061 - 28 May 2020
Cited by 18 | Viewed by 8449
Abstract
This paper analyzes the feasibility of the coexistence of telemetry and alarm messages employing Long-Range Wide-Area Network (LoRaWAN) technology in industrial environments. The regular telemetry messages come from periodic measurements from the majority of sensors while the alarm messages come from sensors whose [...] Read more.
This paper analyzes the feasibility of the coexistence of telemetry and alarm messages employing Long-Range Wide-Area Network (LoRaWAN) technology in industrial environments. The regular telemetry messages come from periodic measurements from the majority of sensors while the alarm messages come from sensors whose transmissions are triggered by rarer (random) events that require highly reliable communication. To reach such a strict requirement, we propose here strategies of allocation of spreading factor, by treating alarm and regular (telemetry) messages differently. The potential of such allocation strategies has also been investigated under retransmission and diversity of gateways. Both indoor industrial plant and open-field scenarios are investigated. We compare the proposed solution with a benchmark scenario—where no alarm is considered—by using system level simulation. Our results show that it is possible to achieve high reliability with reasonably low delay for the alarm messages without significantly affecting the performance of the regular links. Full article
(This article belongs to the Special Issue Advanced Measurements for Industry 4.0)
Show Figures

Figure 1

27 pages, 3642 KiB  
Article
Consumption Analysis of Smartphone based Fall Detection Systems with Multiple External Wireless Sensors
by Francisco Javier González-Cañete and Eduardo Casilari
Sensors 2020, 20(3), 622; https://doi.org/10.3390/s20030622 - 22 Jan 2020
Cited by 11 | Viewed by 5241
Abstract
Fall Detection Systems (FDSs) based on wearable technologies have gained much research attention in recent years. Due to the networking and computing capabilities of smartphones, these widespread personal devices have been proposed to deploy cost-effective wearable systems intended for automatic fall detection. In [...] Read more.
Fall Detection Systems (FDSs) based on wearable technologies have gained much research attention in recent years. Due to the networking and computing capabilities of smartphones, these widespread personal devices have been proposed to deploy cost-effective wearable systems intended for automatic fall detection. In spite of the fact that smartphones are natively provided with inertial sensors (accelerometers and gyroscopes), the effectiveness of a smartphone-based FDS can be improved if it also exploits the measurements collected by small low-power wireless sensors, which can be firmly attached to the user’s body without causing discomfort. For these architectures with multiple sensing points, the smartphone transported by the user can act as the core of the FDS architecture by processing and analyzing the data measured by the external sensors and transmitting the corresponding alarm whenever a fall is detected. In this context, the wireless communications with the sensors and with the remote monitoring point may impact on the general performance of the smartphone and, in particular, on the battery lifetime. In contrast with most works in the literature (which disregard the real feasibility of implementing an FDS on a smartphone), this paper explores the actual potential of current commercial smartphones to put into operation an FDS that incorporates several external sensors. This study analyzes diverse operational aspects that may influence the consumption (as the use of a GPS sensor, the coexistence with other apps, the retransmission of the measurements to an external server, etc.) and identifies practical scenarios in which the deployment of a smartphone-based FDS is viable. Full article
Show Figures

Figure 1

16 pages, 1709 KiB  
Article
Novel Extensions to Enhance Scalability and Reliability of the IEEE 802.15.4-DSME Protocol
by Filippo Battaglia, Mario Collotta, Luca Leonardi, Lucia Lo Bello and Gaetano Patti
Electronics 2020, 9(1), 126; https://doi.org/10.3390/electronics9010126 - 9 Jan 2020
Cited by 17 | Viewed by 3543
Abstract
The Deterministic and Synchronous Multichannel Extension (DSME) of the IEEE 802.15.4 standard was designed to fulfill the requirements of commercial and industrial applications. DSME overcomes the IEEE 802.15.4 limitation on the maximum number of Guaranteed Time Slots (GTS) in a superframe and it [...] Read more.
The Deterministic and Synchronous Multichannel Extension (DSME) of the IEEE 802.15.4 standard was designed to fulfill the requirements of commercial and industrial applications. DSME overcomes the IEEE 802.15.4 limitation on the maximum number of Guaranteed Time Slots (GTS) in a superframe and it also exploits channel diversity to increase the communication reliability. However, DSME suffers from scalability problems, as its multi-superframe structure does not efficiently handle GTS in networks with a high number of nodes and periodic flows. This paper proposes the enhanceD DSME (D-DSME), which consists of two extensions that improve the DSME scalability and reliability exploiting a GTS within the multi-superframe to accommodate multiple flows or multiple retransmissions of the same flow. The paper describes the proposed extensions and the performance results of both OMNeT simulations and experiments with real devices implementing the D-DSME. Full article
(This article belongs to the Special Issue Emerging Trends in Industrial Communication)
Show Figures

Figure 1

19 pages, 3705 KiB  
Article
Efficient Resource Scheduling for Multipath Retransmission over Industrial WSAN Systems
by Hongchao Wang, Jian Ma, Dong Yang and Mikael Gidlund
Sensors 2019, 19(18), 3927; https://doi.org/10.3390/s19183927 - 12 Sep 2019
Cited by 3 | Viewed by 3023
Abstract
With recent adoption of Wireless Sensor-Actuator Networks (WSANs) in industrial automation, wireless control systems have emerged as a frontier of industrial networks. Hence, it has been shown that existing standards and researches concentrate on the reliability and real-time performance of WSANs. The multipath [...] Read more.
With recent adoption of Wireless Sensor-Actuator Networks (WSANs) in industrial automation, wireless control systems have emerged as a frontier of industrial networks. Hence, it has been shown that existing standards and researches concentrate on the reliability and real-time performance of WSANs. The multipath retransmission scheme with multiple channels is a key approach to guarantee the deterministic wireless communication. However, the efficiency of resource scheduling is seldom considered in applications with diverse data sampling rates. In this paper, we propose an efficient resources scheduling algorithm for multipath retransmission in WSANs. The objective of our algorithm is to improve efficiency and schedulability for the use of slot and channel resources. In detail, the proposed algorithm uses the approaches of CCA (clear channel assessment)-Embedded slot and Multiple sinks with Rate Monotonic scheme (CEM-RM) to decrease the number of collisions. We have simulated and implemented our algorithm in hardware and verified its performance in a real industrial environment. The achieved results show that the proposed algorithm significantly improves the schedulability without trading off reliability and real-time performance. Full article
(This article belongs to the Special Issue Real-Time Sensor Networks and Systems for the Industrial IoT)
Show Figures

Figure 1

16 pages, 1618 KiB  
Article
Stability and Delay of NDMA-MPR Protocol in Rice-Correlated Channels with Co-Channel Interference
by Ramiro Sámano-Robles
Technologies 2019, 7(1), 22; https://doi.org/10.3390/technologies7010022 - 13 Feb 2019
Cited by 1 | Viewed by 5359
Abstract
This paper investigates backlog retransmission strategies for a class of random access protocols with retransmission diversity (i.e., network diversity multiple access or NDMA) combined with multiple-antenna-based multi-packet reception (MPR). This paper proposes NDMA-MPR as a candidate for 5G contention-based and ultra-low latency multiple [...] Read more.
This paper investigates backlog retransmission strategies for a class of random access protocols with retransmission diversity (i.e., network diversity multiple access or NDMA) combined with multiple-antenna-based multi-packet reception (MPR). This paper proposes NDMA-MPR as a candidate for 5G contention-based and ultra-low latency multiple access. This proposal is based on the following known features of NDMA-MPR: (1) near collision-free performance, (2) very low latency values, and (3) reduced feedback complexity (binary feedback). These features match the machine-type traffic, real-time, and dense object connectivity requirements in 5G. This work is an extension of previous works using a multiple antenna receiver with correlated Rice channels and co-channel interference modelled as a Rayleigh fading variable. Two backlog retransmission strategies are implemented: persistent and randomized. Boundaries and extended analysis of the system are here obtained for different network and channel conditions. Average delay is evaluated using the M/G/1 queue model with statistically independent vacations. The results suggest that NDMA-MPR can achieve very low values of latency that can guarantee real- or near-real-time performance for multiple access in 5G, even in scenarios with high correlation and moderate co-channel interference. Full article
Show Figures

Figure 1

28 pages, 564 KiB  
Article
Exploiting Outage and Error Probability of Cooperative Incremental Relaying in Underwater Wireless Sensor Networks
by Hina Nasir, Nadeem Javaid, Muhammad Sher, Umar Qasim, Zahoor Ali Khan, Nabil Alrajeh and Iftikhar Azim Niaz
Sensors 2016, 16(7), 1076; https://doi.org/10.3390/s16071076 - 12 Jul 2016
Cited by 10 | Viewed by 5974
Abstract
This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three [...] Read more.
This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE) efficient depth based routing and Enhanced-ACE (E-ACE) are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ). E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment. Full article
Show Figures

Figure 1

21 pages, 520 KiB  
Article
NetCoDer: A Retransmission Mechanism for WSNs Based on Cooperative Relays and Network Coding
by Odilson T. Valle, Carlos Montez, Gustavo Medeiros de Araujo, Francisco Vasques and Ricardo Moraes
Sensors 2016, 16(6), 799; https://doi.org/10.3390/s16060799 - 31 May 2016
Cited by 24 | Viewed by 5304
Abstract
Some of the most difficult problems to deal with when using Wireless Sensor Networks (WSNs) are related to the unreliable nature of communication channels. In this context, the use of cooperative diversity techniques and the application of network coding concepts may be promising [...] Read more.
Some of the most difficult problems to deal with when using Wireless Sensor Networks (WSNs) are related to the unreliable nature of communication channels. In this context, the use of cooperative diversity techniques and the application of network coding concepts may be promising solutions to improve the communication reliability. In this paper, we propose the NetCoDer scheme to address this problem. Its design is based on merging cooperative diversity techniques and network coding concepts. We evaluate the effectiveness of the NetCoDer scheme through both an experimental setup with real WSN nodes and a simulation assessment, comparing NetCoDer performance against state-of-the-art TDMA-based (Time Division Multiple Access) retransmission techniques: BlockACK, Master/Slave and Redundant TDMA. The obtained results highlight that the proposed NetCoDer scheme clearly improves the network performance when compared with other retransmission techniques. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop