#
Stability and Delay of NDMA-MPR Protocol in Rice-Correlated Channels with Co-Channel Interference^{ †}

^{†}

## Abstract

**:**

## 1. Introduction

- Extension of NDMA-MPR to Correlated Rice channels.
- Analysis of backlog retransmission strategies.
- Analysis of NMDA detection protocol with co-channel interference.

## 2. System Model and Assumptions

#### 2.1. Scenario Description and NDMA Protocol Operation

#### 2.2. Backlog Retransmission Schemes

#### 2.3. Epoch-Slot Definition and Feedback Flags

#### 2.4. Examples

## 3. Signal Model

## 4. Receiver Operational Characteristic (ROC) for Terminal Presence Detection

## 5. Persistent Retransmission Strategy

Algorithm 1 Algorithm NDMA with persistent backlog retransmission control. | |

1. | Generate set of colliding terminals $\mathcal{T}$ using traffic model. |

2. | Start super-epoch slot. |

3. | Start of a conventional epoch-slot of NDMA ($\mathit{e}=\mathbf{1}$). |

4. | Detect the presence of contending terminals using ${\mathit{z}}_{\mathit{j}}$ in (4). |

5. | Request retransmissions $\left(\right)-\mathbf{1}$ to create a virtual MIMO system as in (6) |

6. | Attempt the decoding of the colliding terminals using ZF ($\widehat{\mathbf{S}}={\mathbf{H}}^{-\mathbf{1}}\mathbf{Y}$) or minimum mean square error (MMSE) detection ($\widehat{\mathbf{S}}={(\mathbf{H}+\mathbf{I}{\mathit{\sigma}}_{\mathit{v}}^{\mathbf{2}})}^{-\mathbf{1}}\mathbf{Y}$). |

7. | Is the collision resolved? If Yes, then end of a super-epoch and go back to step 1. If not, the same contending terminals restart one more epoch slot. Go back to step 3. |

## 6. Random Backlog Retransmission Strategy

Algorithm 2 Algorithm NDMA-MPR with random backlog retransmission control. | |

1. | Generate set of colliding terminals $\mathcal{T}$ using traffic model. |

2. | Start of a conventional epoch-slot of NDMA |

3. | Detect the presence of contenting terminals using ${\mathit{z}}_{\mathit{j}}$ in (4). |

4. | Request retransmissions $\left(\right)-\mathbf{1}$ to create a virtual MIMO system as in (6) |

5. | Attempt the decoding of the colliding terminals using ZF ($\widehat{\mathbf{S}}={\mathbf{H}}^{-\mathbf{1}}\mathbf{Y}$) or minimum mean square error (MMSE) detection ($\widehat{\mathbf{S}}={(\mathbf{H}+\mathbf{I}{\mathit{\sigma}}_{\mathit{v}}^{\mathbf{2}})}^{-\mathbf{1}}\mathbf{Y}$). |

6. | Is the collision resolved? If Yes, then go back to step 1. If not, terminals backlog randomly the lost packet with probability $\mathit{p}$. Go back to step 3. |

## 7. Results

## 8. Conclusions

## Funding

## Conflicts of Interest

## References

- Evans, D. The Internet of Things. How the next evolution of the Internet is changing everything. White paper. Available online: https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf (accessed on 1 February 2019).
- Samano-Robles, R. Stability and Delay of Network-Diversity Multiple Access with Backlog Retransmission Control. In Proceedings of the Second International Conference on Advances in Signal, Image and Video Processing—From Sensing to Applications (SIGNAL 2017), Barcelona, Spain, 21–25 May 2017. [Google Scholar]
- Naware, V.; Mergen, G.; Tong, L. Stability and delay of finite-user slotted ALOHA with multipacket reception. IEEE Trans. Inf. Theory
**2005**, 51, 2636–2656. [Google Scholar] [CrossRef] - Ngo, M.H.; Krishnamurthy, V.; Tong, L. Optimal Channel-Aware ALOHA Protocol for Random Access in WLANs with Multipacket reception and Decentralized CSI. IEEE Trans. Signal Process.
**2008**, 56, 2575–2588. [Google Scholar] [CrossRef] - Adireddy, S.; Tong, L. Exploiting decentralized CSI for Random Access. IEEE Trans. Inf. Theory
**2005**, 51, 537–561. [Google Scholar] [CrossRef] - Tsatsanis, M.K.; Zhang, R.; Banerjee, S. Network-Assisted Diversity for Random Access Wireless Networks. IEEE Trans. Signal Proc.
**2000**, 48, 702–711. [Google Scholar] [CrossRef] - Tsatsanis, M.K.; Zhang, R.; Banerjee, S. Network-Assisted Diversity for Random Access systems in dispersive channels. IEEE Trans. Commun.
**2002**, 50, 623–632. [Google Scholar] - Zhang, R.; Sidiropoulos, N.D.; Tsatsanis, M.K. Collision resolution in packet radio networks using rotational invariance techniques. IEEE Trans. Commun.
**2002**, 50, 146–155. [Google Scholar] [CrossRef] - Ozgul, B.; Delic, H. Wireless access with blind collision-multiplicity detection and retransmission diversity for quasi-static channels. IEEE Trans. Commun.
**2006**, 54, 858–867. [Google Scholar] [CrossRef] - Dimic, G.; Sidiropoulos, N.D.; Tassiulas, L. Wireless networks with retransmission diversity access mechanisms: stable throughput and delay properties. IEEE Trans. Signal Process.
**2003**, 51, 2019–2030. [Google Scholar] [CrossRef] [Green Version] - Samano-Robles, R.; Gameiro, A. Stability properties of network diversity multiple access protocols with multiple antenna reception and imperfect collision multiplicity estimation. J. Comput. Netw. Commun.
**2013**, 2013, 984956. [Google Scholar] - Samano-Robles, R.; McLernon, D.C.; Ghogho, M. A Random Access Protocol incorporating Retransmission Diversity, Multipacket Reception, and Successive Interference Cancellation. In Multiple Access Communications: MACOM 2015; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; pp. 70–86. [Google Scholar]
- Pereira, M.; Bernardo, L.; Dinis, R.; Oliveira, R.; Pinto, P. Performance Analysis of an Hybrid ARQ Adaptation of NDMA Schemes. IEEE Trans. Commun.
**2013**, 61, 3304–3317. [Google Scholar] - Lagen, S.; Agustin, A.; Vidal, J.; Garcia, J. Performance analysis of feedback-free collision resolution NDMA protocol. In Proceedings of the IEEE Vehicular Technology Conference VTC 2018, Porto, Portugal, 3–6 June 2018. [Google Scholar]
- Akl, N.; Tewfik, A. Asynchronous Blind Network Diversity Multiple Access. In Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing (ICASP), Calgary, AB, Canada, 15–20 April 2018. [Google Scholar]
- Samano-Robles, R. Performance Analysis of Network Diversity multiple Access with Sequential Detection and non-orthogonal training Sequences. In Proceedings of the IEEE Vehicular Technology Conference VTC 2018, Porto, Portugal, 3–6 June 2018. [Google Scholar]

**Figure 6.**Stable throughput ($\mathit{T}=\mathit{\lambda}\mathit{J}$) vs. transmission probability ($\mathit{p}$) using the first proposed backlog retransmission scheme (persistent) for various values of correlation coefficient $\mathit{\rho}$ and Rice factor ($\mathit{\kappa}$).

**Figure 7.**Stable throughput ($\mathit{T}=\mathit{\lambda}\mathit{J}$) vs. transmission probability ($\mathit{p}$) using the second proposed backlog retransmission scheme for various values of correlation coefficient $\mathit{\rho}$ and Rice factor ($\mathit{\kappa}$).

**Figure 8.**Average Delay ($\mathit{D}$) vs. transmission probability ($\mathit{p}$) using the first proposed backlog retransmission scheme for various values of correlation coefficient $\mathit{\rho}$ and Rice factor ($\mathit{\kappa}$).

**Figure 9.**Average Delay ($\mathit{D}$) vs. transmission probability ($\mathit{p}$) using the second proposed backlog retransmission scheme for various values of correlation coefficient $\mathit{\rho}$ and Rice factor ($\mathit{\kappa}$).

Variable | Meaning |
---|---|

$\mathit{J}$ | Total number of terminals in the network |

$\mathit{M}$ | Number of antennas at the BS. |

$\mathit{e}$ | Epoch-slot indicator |

$\mathit{l}$ | Length of an epoch-slot |

$\mathit{L}$ | Length of a epoch-slot |

${\mathit{L}}_{\mathit{r}}$ | Length of a relevant super epoch-slot |

${\mathit{L}}_{\mathit{ir}}$ | Length of an irrelevant super epoch-slot |

${\mathit{h}}_{\mathit{j},\mathit{m}}$ | Channel between terminal $\mathit{j}$ and the $\mathit{m}$th antenna of the BS |

${\mathit{\alpha}}_{\mathit{j},\mathit{m}}$ | Random component channel between terminal $\mathit{j}$ and the $\mathit{m}$th antenna of the BS |

${\mathit{\rho}}_{\mathit{m},\tilde{\mathit{m}}}$ | Correlation coefficient between the signal of antenna $\mathit{m}$ with the signal of antenna $\tilde{\mathit{m}}$ |

$\mathit{\gamma}$ | Channel variance between terminals and the BS |

${\mathit{\sigma}}_{\mathit{v}}^{\mathbf{2}}$ | Noise variance |

${\mathit{\sigma}}_{\mathit{g}}^{\mathbf{2}}$ | Interference variance |

$\mathit{\lambda}$ | Packet arrival rate |

$\mathit{p}$ | Terminal transmission probability |

$\mathit{K}$ | Collision multiplicity |

$\widehat{\mathit{K}}$ | Estimated collision multiplicity |

${\mathit{k}}_{\mathit{d}}$ | Number of active terminals correctly detected as active |

${\mathit{k}}_{\mathit{f}}$ | Number of idle terminals incorrectly detected as active |

$\mathcal{T}$ | Set of colliding terminals |

$\widehat{\mathcal{T}}$ | Estimated set of colliding terminals |

${\mathit{z}}_{\mathit{j}}$ | Terminal presence indicator |

$\mathit{\beta}$ | Energy presence detection threshold |

${\mathit{P}}_{\mathit{D}}$ | Terminal presence detection probability |

${\mathit{P}}_{\mathit{F}}$ | Probability of false alarm |

${\mathit{P}}_{\mathit{A}}$ | Total probability of detection |

${\mathit{P}}_{\mathit{c}}$ | Probability of correct resolution |

$\mathsf{\Gamma}$ | Post processing instantaneous Signal-to-Interference-plus-Noise Ratio |

$\mathit{\mu}$ | Line-of-Sight (LOS) component |

${\mathbf{w}}_{\mathit{j}}$ | Orthogonal training sequence for terminal $\mathit{j}$ |

${\mathbf{s}}_{\mathit{j}}$ | Signal transmitted by terminal $\mathit{j}$ |

$\mathbf{H}$ | Mixing channel matrix |

$\mathbf{Y}$ | Signal received by the BS |

$\mathbf{V}$ | Noise vector at the BS |

$\mathbf{G}$ | Interference vector at the BS |

$\mathit{T}$ | Packet throughput |

$\mathit{D}$ | Delay |

$\mathit{\kappa}$ | Rice factor |

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sámano-Robles, R.
Stability and Delay of NDMA-MPR Protocol in Rice-Correlated Channels with Co-Channel Interference. *Technologies* **2019**, *7*, 22.
https://doi.org/10.3390/technologies7010022

**AMA Style**

Sámano-Robles R.
Stability and Delay of NDMA-MPR Protocol in Rice-Correlated Channels with Co-Channel Interference. *Technologies*. 2019; 7(1):22.
https://doi.org/10.3390/technologies7010022

**Chicago/Turabian Style**

Sámano-Robles, Ramiro.
2019. "Stability and Delay of NDMA-MPR Protocol in Rice-Correlated Channels with Co-Channel Interference" *Technologies* 7, no. 1: 22.
https://doi.org/10.3390/technologies7010022