Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = restriction endonuclease analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3736 KB  
Article
Molecular Characterization of a Restriction Endonuclease PsaI from Pseudomonas anguilliseptica KM9 and Sequence Analysis of the PsaI R-M System
by Beata Furmanek-Blaszk, Iwona Mruk and Marian Sektas
Int. J. Mol. Sci. 2025, 26(14), 6548; https://doi.org/10.3390/ijms26146548 - 8 Jul 2025
Viewed by 512
Abstract
A restriction enzyme PsaI, an isoschizomer of the type II restriction endonuclease HindIII, has been purified to homogeneity from Gram-negative bacilli Pseudomonas anguilliseptica KM9 found in a wastewater treatment plant in Poland. Experimental data revealed that R.PsaI is highly active in the presence [...] Read more.
A restriction enzyme PsaI, an isoschizomer of the type II restriction endonuclease HindIII, has been purified to homogeneity from Gram-negative bacilli Pseudomonas anguilliseptica KM9 found in a wastewater treatment plant in Poland. Experimental data revealed that R.PsaI is highly active in the presence of Co2+, Mg2+, and Zn2+ and reached a maximal level of activity between 2.5 and 10 mM while its activity was significantly decreased in the presence of Ca2+, Fe2+, Mn2+, and Ni2+. Moreover, we found that the purified R.PsaI did not require NaCl for enzyme activity. Restriction cleavage analysis followed by sequencing confirmed 5′-AAGCTT-3′ as the recognition site. The genes for restriction–modification system PsaI were identified and characterized. Downstream of the psaIM gene, we noticed an ORF that shares extensive similarity with recombinase family protein specifically involved in genome rearrangements. Sequence analysis revealed that the PsaI R-M gene complex showed striking nucleotide sequence similarity (>98%) with the genes of the PanI R-M system from a P. anguilliseptica MatS1 strain identified in a soil sample from Sri Lanka. Full article
(This article belongs to the Special Issue Genetic Engineering in Microbial Biotechnology)
Show Figures

Figure 1

24 pages, 10317 KB  
Article
Peptide Inhibitor Assay for Allocating Functionally Important Accessible Sites Throughout a Protein Chain: Restriction Endonuclease EcoRI as a Model Protein System
by Joji M. Otaki
BioTech 2025, 14(1), 1; https://doi.org/10.3390/biotech14010001 - 30 Dec 2024
Viewed by 1492
Abstract
Functionally important amino acid sequences in proteins are often located at multiple sites. Three-dimensional structural analysis and site-directed mutagenesis may be performed to allocate functional sites for understanding structure‒function relationships and for developing novel inhibitory drugs. However, such methods are too demanding to [...] Read more.
Functionally important amino acid sequences in proteins are often located at multiple sites. Three-dimensional structural analysis and site-directed mutagenesis may be performed to allocate functional sites for understanding structure‒function relationships and for developing novel inhibitory drugs. However, such methods are too demanding to comprehensively cover potential functional sites throughout a protein chain. Here, a peptide inhibitor assay (PIA) was devised to allocate functionally important accessible sites in proteins. This simple method presumes that protein‒ligand interactions, intramolecular interactions, and dimerization interactions can be partially inhibited by high concentrations of competitive “endogenous” peptides of the protein of interest. Focusing on the restriction endonuclease EcoRI as a model protein system, many endogenous peptides (6mer-14mer) were synthesized, covering the entire EcoRI protein chain. Some of them were highly inhibitory, but interestingly, the nine most effective peptides were located outside the active sites, with the exception of one. Relatively long peptides with aromatic residues (F, H, W, and Y) corresponding to secondary structures were generally effective. Because synthetic peptides are flexible enough to change length and amino acid residues, this method may be useful for quickly and comprehensively understanding structure‒function relationships and developing novel drugs or epitopes for neutralizing antibodies. Full article
Show Figures

Figure 1

25 pages, 3110 KB  
Article
5-Substituted Flavones—Another Class of Potent Triplex DNA-Specific Ligands as Antigene Enhancers
by Landy Gu, Nghia Tran, Vanessa M. Rangel, Mandeep Singh, Krege M. Christison, Geoff P. Lin-Cereghino and Liang Xue
Molecules 2024, 29(24), 5862; https://doi.org/10.3390/molecules29245862 - 12 Dec 2024
Viewed by 1375
Abstract
In the field of drug development, the quest for novel compounds that bind to DNA with high affinity and specificity never ends. In the present work, we report the newest development in this field, namely, triplex DNA-specific binding ligands based on the 5-substituted [...] Read more.
In the field of drug development, the quest for novel compounds that bind to DNA with high affinity and specificity never ends. In the present work, we report the newest development in this field, namely, triplex DNA-specific binding ligands based on the 5-substituted flavone scaffold in our lab. Biophysical studies showed that the newly synthesized flavone derivatives (depending on the side chains) bind to triplex DNA with binding affinities better than or similar to 5-substituted 3,3′,4′,7-tetramethoxyflavonoids. These compounds selectively stabilize triplex DNA while having little effect on duplex DNA, as verified by various biophysical methods. A detailed structural analysis suggested that the binding of these compounds to triplex DNA depends on the type of amino groups in the side chains and the length of the side chains. Viscosity studies suggested that these ligands bind to triplex DNA via intercalation. A representative ligand, compound 4b, showed a positive inhibitory effect on the activity of a restriction endonuclease (DraI) via ligand-mediated triplex formation. Several of these compounds exhibited excellent cytotoxicity toward various cancer cell lines (HT-29, HCT116, and HL-60), as indicated by the MTT assay. The work presented here is part of a continued effort from our laboratory to explore the novel structural motifs of natural product flavonoids for the development of triplex-specific ligands as antigene enhancers. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Graphical abstract

13 pages, 3150 KB  
Article
FAN1 Deletion Variant in Basenji Dogs with Fanconi Syndrome
by Fabiana H. G. Farias, Tendai Mhlanga-Mutangadura, Juyuan Guo, Liz Hansen, Gary S. Johnson and Martin L. Katz
Genes 2024, 15(11), 1469; https://doi.org/10.3390/genes15111469 - 14 Nov 2024
Cited by 2 | Viewed by 2248
Abstract
Background: Fanconi syndrome is a disorder of renal proximal tubule transport characterized by metabolic acidosis, amino aciduria, glucosuria, and phosphaturia. There are acquired and hereditary forms of this disorder. A late-onset form of Fanconi syndrome in Basenjis was first described in 1976 and [...] Read more.
Background: Fanconi syndrome is a disorder of renal proximal tubule transport characterized by metabolic acidosis, amino aciduria, glucosuria, and phosphaturia. There are acquired and hereditary forms of this disorder. A late-onset form of Fanconi syndrome in Basenjis was first described in 1976 and is now recognized as an inherited disease in these dogs. In part because of the late onset of disease signs, the disorder has not been eradicated from the breed by selective mating. A study was therefore undertaken to identify the molecular genetic basis of the disease so that dogs could be screened prior to breeding in order to avoid generating affected offspring. Methods: Linkage analysis within a large family of Basenjis that included both affected and unaffected individuals was performed to localize the causative variant within the genome. Significant linkage was identified between chromosome 3 (CFA3) makers and the disease phenotype. Fine mapping restricted the region to a 2.7 Mb section of CFA3. A whole genome sequence of a Basenji affected with Fanconi syndrome was generated, and the sequence data were examined for the presence of potentially deleterious homozygous variants within the mapped region. Results: A homozygous 317 bp deletion was identified in the last exon of FAN1 of the proband. 78 Basenjis of known disease status were genotyped for the deletion variant. Among these dogs, there was almost complete concordance between genotype and phenotype. The only exception was one dog that was homozygous for the deletion variant but did not exhibit signs of Fanconi syndrome. Conclusions: These data indicate that the disorder is very likely the result of FAN1 deficiency. The mechanism by which this deficiency causes the disease signs remains to be elucidated. FAN1 has endonuclease and exonuclease activity that catalyzes incisions in regions of double-stranded DNA containing interstrand crosslinks. FAN1 inactivation may cause Fanconi syndrome in Basenjis by sensitization of kidney proximal tubule cells to toxin-mediated DNA crosslinking, resulting in the accumulation of genomic and mitochondrial DNA damage in the kidney. Differential exposure to environmental toxins that promote DNA crosslink formation may explain the wide age-at-onset variability for the disorder in Basenjis. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

11 pages, 685 KB  
Article
Effect of the COVID-19 Pandemic on Rates and Epidemiology of Clostridioides difficile Infection in One VA Hospital
by Lorinda M. Wright, Andrew M. Skinner, Adam Cheknis, Conor McBurney, Ling Ge, Susan M. Pacheco, David Leehey, Dale N. Gerding and Stuart Johnson
Antibiotics 2023, 12(7), 1159; https://doi.org/10.3390/antibiotics12071159 - 7 Jul 2023
Cited by 5 | Viewed by 2263
Abstract
The COVID-19 pandemic was associated with increases in some healthcare-associated infections. We investigated the impact of the pandemic on the rates and molecular epidemiology of Clostridioides difficile infection (CDI) within one VA hospital. We anticipated that the potential widespread use of antibiotics for [...] Read more.
The COVID-19 pandemic was associated with increases in some healthcare-associated infections. We investigated the impact of the pandemic on the rates and molecular epidemiology of Clostridioides difficile infection (CDI) within one VA hospital. We anticipated that the potential widespread use of antibiotics for pneumonia during the pandemic might increase CDI rates given that antibiotics are a major risk for CDI. Hospital data on patients with CDI and recurrent CDI (rCDI) were reviewed both prior to the COVID-19 pandemic (2015 to 2019) and during the pandemic (2020–2021). Restriction endonuclease analysis (REA) strain typing was performed on CD isolates recovered from stool samples collected from October 2019 to March 2022. CDI case numbers declined by 43.2% in 2020 to 2021 compared to the annual mean over the previous 5 years. The stool test positivity rate was also lower during the COVID-19 pandemic (14.3% vs. 17.2%; p = 0.013). Inpatient hospitalization rates declined, and rates of CDI among inpatients were reduced by 34.2% from 2020 to 2021. The mean monthly cases of rCDI also declined significantly after 2020 [3.38 (95% CI: 2.89–3.87) vs. 1.92 (95% CI: 1.27–2.56); p = <0.01]. Prior to the pandemic, REA group Y was the most prevalent CD strain among the major REA groups (27.3%). During the first wave of the pandemic, from 8 March 2020, to 30 June 2020, there was an increase in the relative incidence of REA group BI (26.7% vs. 9.1%); After adjusting for CDI risk factors, a multivariable logistic regression model revealed that the odds of developing an REA group BI CDI increased during the first pandemic wave (OR 6.41, 95% CI: 1.03–39.91) compared to the pre-pandemic period. In conclusion, the incidence of CDI and rCDI decreased significantly during the COVID-19 pandemic. In contrast, REA BI (Ribotype 027), a virulent, previously epidemic CD strain frequently associated with hospital transmission and outbreaks, reappeared as a prevalent strain during the first wave of the pandemic, but subsequently disappeared, and overall CDI rates declined. Full article
Show Figures

Figure 1

14 pages, 3018 KB  
Article
Differential Detection of Alternaria alternata Haplotypes Isolated from Carya illinoinensis Using PCR-RFLP Analysis of Alt a1 Gene Region
by Conrad Chibunna Achilonu, Marieka Gryzenhout, Gert Johannes Marais and Soumya Ghosh
Genes 2023, 14(5), 1115; https://doi.org/10.3390/genes14051115 - 20 May 2023
Cited by 5 | Viewed by 3163
Abstract
Alternaria black spot disease on pecan is caused by the opportunistic pathogen Alternaria alternata and poses a serious threat to the local South African and global pecan industry. Several diagnostic molecular marker applications have been established and used in the screening of various [...] Read more.
Alternaria black spot disease on pecan is caused by the opportunistic pathogen Alternaria alternata and poses a serious threat to the local South African and global pecan industry. Several diagnostic molecular marker applications have been established and used in the screening of various fungal diseases worldwide. The present study investigated the potential for polymorphism within samples of A. alternata isolates obtained from eight different geographical locations in South Africa. Pecan (Carya illinoinensis) leaves, shoots, and nuts-in-shuck with Alternaria black spot disease were sampled, and 222 A. alternata isolates were retrieved. For rapid screening to identify Alternaria black spot pathogens, polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) analysis of the Alternaria major allergen (Alt a1) gene region was used, followed by the digestion of the amplicons with HaeIII and HinfI endonucleases. The assay resulted in five (HaeIII) and two (HinfI) band patterns. Unique banding patterns from the two endonucleases showed the best profile and isolates were grouped into six clusters using a UPGMA (unweighted pair group method with arithmetic averages) distance matrix (Euclidean) dendrogram method on R-Studio. The analysis confirmed that the genetic diversity of A. alternata does not depend on host tissues or the pecan cultivation region. The grouping of selected isolates was confirmed by DNA sequence analysis. The Alt a1 phylogeny corroborated no speciation within the dendrogram groups and showed 98–100% bootstrap similarity. This study reports the first documented rapid and reliable technique for routine screening identification of pathogens causing Alternaria black spot in South Africa. Full article
(This article belongs to the Special Issue Microbial Population Genetics)
Show Figures

Figure 1

12 pages, 3205 KB  
Article
Label-Free Sequence-Specific Visualization of LAMP Amplified Salmonella via DNA Machine Produces G-Quadruplex DNAzyme
by Huan Zeng, Shuqin Huang, Yunong Chen, Minshi Chen, Kaiyu He, Caili Fu, Qiang Wang, Fang Zhang, Liu Wang and Xiahong Xu
Biosensors 2023, 13(5), 503; https://doi.org/10.3390/bios13050503 - 26 Apr 2023
Cited by 5 | Viewed by 2667
Abstract
Salmonella is one of four key global causes of diarrhea, and in humans, it is generally contracted through the consumption of contaminated food. It is necessary to develop an accurate, simple, and rapid method to monitor Salmonella in the early phase. Herein, we [...] Read more.
Salmonella is one of four key global causes of diarrhea, and in humans, it is generally contracted through the consumption of contaminated food. It is necessary to develop an accurate, simple, and rapid method to monitor Salmonella in the early phase. Herein, we developed a sequence-specific visualization method based on loop-mediated isothermal amplification (LAMP) for the detection of Salmonella in milk. With restriction endonuclease and nicking endonuclease, amplicons were produced into single-stranded triggers, which further promoted the generation of a G-quadruplex by a DNA machine. The G-quadruplex DNAzyme possesses peroxidase-like activity and catalyzes the color development of 2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) as the readouts. The feasibility for real samples analysis was also confirmed with Salmonella spiked milk, and the sensitivity was 800 CFU/mL when observed with the naked eye. Using this method, the detection of Salmonella in milk can be completed within 1.5 h. Without the involvement of any sophisticated instrument, this specific colorimetric method can be a useful tool in resource-limited areas. Full article
(This article belongs to the Special Issue Label-Free Biosensor)
Show Figures

Graphical abstract

12 pages, 2717 KB  
Article
The Satellite DNAs Populating the Genome of Trigona hyalinata and the Sharing of a Highly Abundant satDNA in Trigona Genus
by Jaqueline A. Pereira, Diogo C. Cabral-de-Mello and Denilce M. Lopes
Genes 2023, 14(2), 418; https://doi.org/10.3390/genes14020418 - 6 Feb 2023
Cited by 9 | Viewed by 2442
Abstract
Among Meliponini species, c-heterochromatin can occupy large portions of chromosomes. This characteristic could be useful for understanding evolutionary patterns of satellite DNAs (satDNAs), although few sequences have been characterized in these bees. In Trigona, phylogenetically represented by clades A and B, [...] Read more.
Among Meliponini species, c-heterochromatin can occupy large portions of chromosomes. This characteristic could be useful for understanding evolutionary patterns of satellite DNAs (satDNAs), although few sequences have been characterized in these bees. In Trigona, phylogenetically represented by clades A and B, the c-heterochromatin is mostly located in one chromosome arm. Here we used different techniques, including restriction endonucleases and genome sequencing followed by chromosomal analysis, to identify satDNAs that may be contributing to the evolution of c-heterochromatin in Trigona. Our results revealed a highly abundant ThyaSat01-301 satDNA, corresponding to about 13.77% of the Trigona hyalinata genome. Another seven satDNAs were identified, one corresponding to 2.24%, and the other six corresponding to 0.545% of the genome. The satDNA ThyaSat01-301 was shown to be one of the main constituents of the c-heterochromatin of this species, as well as of other species belonging to clade B of Trigona. However, this satDNA was not observed on the chromosomes of species from clade A, demonstrating that the c-heterochromatin is evolving divergently between species of clade A and B, as a consequence of the evolution of repetitive DNA sequences. Finally, our data suggest the molecular diversification of the karyotypes, despite a conservated macrochromosomal structure on the genus. Full article
(This article belongs to the Special Issue State-of-the-Art in Insect Cytogenetics)
Show Figures

Figure 1

12 pages, 2236 KB  
Article
A Novel Fluorescent Aptamer Sensor with DNAzyme Signal Amplification for the Detection of CEA in Blood
by Qingmin Wei, Huakui Huang, Shulong Wang, Fa Liu, Jiayao Xu and Zhihui Luo
Sensors 2023, 23(3), 1317; https://doi.org/10.3390/s23031317 - 24 Jan 2023
Cited by 5 | Viewed by 3195
Abstract
Carcinoembryonic antigen (CEA) is a tumor-specific biomarker; however, its low levels in the early stages of cancer make it difficult to detect. To address the need for analysis of ultra-low-level substances, we designed and synthesized a fluorescent aptamer sensor with DNAzyme signal amplification [...] Read more.
Carcinoembryonic antigen (CEA) is a tumor-specific biomarker; however, its low levels in the early stages of cancer make it difficult to detect. To address the need for analysis of ultra-low-level substances, we designed and synthesized a fluorescent aptamer sensor with DNAzyme signal amplification and used it for the detection of CEA in blood. In the presence of the target protein, the aptamer sequence in the recognition probe binds to the target protein and opens the hairpin structure, hybridizes with the primer and triggers a polymerization reaction in the presence of polymerase to generate double-stranded DNA with two restriction endonuclease Nb.BbvCl cleavage sites. At the same time, the target protein is displaced and continues to bind to another recognition probe, triggering a new round of polymerization reaction, forming a cyclic signal amplification triggered by the target. The experimental results show that the blood detection with CEA has a high sensitivity and a wide detection range. The detection range: 10 fg/mL~10 ng/mL, with a detection limit of 5.2 fg/mL. In addition, the sensor can be used for the analysis of complex biological samples such as blood. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

27 pages, 5705 KB  
Article
Genetic Variation, DIMBOA Accumulation, and Candidate Gene Identification in Maize Multiple Insect-Resistance
by Yining Niu, Xiaoqiang Zhao, Wun Chao, Peina Lu, Xiaodong Bai and Taotao Mao
Int. J. Mol. Sci. 2023, 24(3), 2138; https://doi.org/10.3390/ijms24032138 - 21 Jan 2023
Cited by 15 | Viewed by 3291
Abstract
Maize seedlings contain high amounts of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and the effect of DIMBOA is directly associated with multiple insect-resistance against insect pests such as Asian corn borer and corn leaf aphids. Although numerous genetic loci for multiple insect-resistant traits have been identified, little [...] Read more.
Maize seedlings contain high amounts of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and the effect of DIMBOA is directly associated with multiple insect-resistance against insect pests such as Asian corn borer and corn leaf aphids. Although numerous genetic loci for multiple insect-resistant traits have been identified, little is known about genetic controls regarding DIMBOA content. In this study, the best linear unbiased prediction (BLUP) values of DIMBOA content in two ecological environments across 310 maize inbred lines were calculated; and their phenotypic data and BLUP values were used for marker-trait association analysis. We identified nine SSRs that were significantly associated with DIMBOA content, which explained 4.30–20.04% of the phenotypic variation. Combined with 47 original genetic loci from previous studies, we detected 19 hot loci and approximately 11 hot loci (in Bin 1.04, Bin 2.00–2.01, Bin 2.03–2.04, Bin 4.00–4.03, Bin 5.03, Bin 5.05–5.07, Bin 8.01–8.03, Bin 8.04–8.05, Bin 8.06, Bin 9.01, and Bin 10.04 regions) supported pleiotropy for their association with two or more insect-resistant traits. Within the 19 hot loci, we identified 49 candidate genes, including 12 controlling DIMBOA biosynthesis, 6 involved in sugar metabolism/homeostasis, 2 regulating peroxidases activity, 21 associated with growth and development [(auxin-upregulated RNAs (SAUR) family member and v-myb avian myeloblastosis viral oncogene homolog (MYB)], and 7 involved in several key enzyme activities (lipoxygenase, cysteine protease, restriction endonuclease, and ubiquitin-conjugating enzyme). The synergy and antagonism interactions among these genes formed the complex defense mechanisms induced by multiple insect pests. Moreover, sufficient genetic variation was reported for DIMBOA performance and SSR markers in the 310 tested maize inbred lines, and 3 highly (DIMBOA content was 402.74–528.88 μg g−1 FW) and 15 moderate (DIMBOA content was 312.92–426.56 μg g−1 FW) insect-resistant genotypes were major enriched in the Reid group. These insect-resistant inbred lines can be used as parents in maize breeding programs to develop new varieties. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

15 pages, 6061 KB  
Article
Presence of Spodoptera frugiperda Multiple Nucleopolyhedrovirus (SfMNPV) Occlusion Bodies in Maize Field Soils of Mesoamerica
by Trevor Williams, Guadalupe del Carmen Melo-Molina, Jaime A. Jiménez-Fernández, Holger Weissenberger, Juan S. Gómez-Díaz, Laura Navarro-de-la-Fuente and Andrew R. Richards
Insects 2023, 14(1), 80; https://doi.org/10.3390/insects14010080 - 13 Jan 2023
Cited by 6 | Viewed by 3526
Abstract
The occlusion bodies (OBs) of lepidopteran nucleopolyhedroviruses can persist in soil for extended periods before being transported back on to the foliage for transmission to the host insect. A sensitive insect bioassay technique was used to detect OBs of Spodoptera frugiperda multiple nucleopolyhedrovirus [...] Read more.
The occlusion bodies (OBs) of lepidopteran nucleopolyhedroviruses can persist in soil for extended periods before being transported back on to the foliage for transmission to the host insect. A sensitive insect bioassay technique was used to detect OBs of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) in 186 soil samples collected from maize fields in the southern Mexican states of Chiapas, Tabasco, Campeche, Yucatán, and Quintana Roo, as well Belize and Guatemala. Overall, 35 (18.8%) samples proved positive for SfMNPV OBs. The frequency of OB-positive samples varied significantly among Mexican states and countries (p < 0.05). Between 1.7 and 4.4% of S. frugiperda larvae that consumed OB-positive samples died from polyhedrosis disease. Restriction endonuclease analysis using PstI and HindIII confirmed that the soil-derived isolates were strains of SfMNPV and that genetic diversity was evident among the isolates. The prevalence of OB-positive soil samples did not differ with altitude or extension (area) of the maize field, but it was significantly higher in fields with the presence of living maize plants compared to those containing dead plants or crop residues (p < 0.05). Georeferenced soil samples were used to identify soil types on digitized soil maps. Lithosol and Luvisol soils had a higher than average prevalence of OB-positive samples (42–45% positive) (p = 0.006), as did Andosol, Gleysol, and Vertisol soils (33–60% OB-positive), although the sample sizes were small (<5 samples) for the latter three soils. In contrast, Cambisol soils had a lower than average prevalence of OB-positive samples (5% positive). Bioassays on Acrisol, Fluvisol, Phaeozem, and Rendzina soils resulted in intermediate levels of OB-positive samples. We conclude that certain soil types may favor OB persistence and virus-mediated biological pest control. The soil is also likely to provide a valuable source of genetic diversity for the design of virus-based insecticides against this pest. Full article
(This article belongs to the Special Issue Targeting Insects: A Focus on Viruses and Toxic Proteins)
Show Figures

Figure 1

15 pages, 2859 KB  
Article
Classification and Identification of S Haplotypes in Radish Based on SRK Kinase Domain Sequence Analysis
by Meng Ni, Xiaofang Yi, Qin Wang, Juan Wang, Shuang Wang, Liwang Liu, Liang Xu and Yan Wang
Plants 2022, 11(17), 2304; https://doi.org/10.3390/plants11172304 - 2 Sep 2022
Cited by 2 | Viewed by 2472
Abstract
Radish is a typical self-incompatible crop. The rapid and accurate identification of S haplotypes can circumvent the blindness of the hybrid combination process, which is critical in radish heterosis utilization and the breeding of new varieties. In this study, based on the gene [...] Read more.
Radish is a typical self-incompatible crop. The rapid and accurate identification of S haplotypes can circumvent the blindness of the hybrid combination process, which is critical in radish heterosis utilization and the breeding of new varieties. In this study, based on the gene sequence which encodes the S-locus receptor kinase (SRK) of radish, and the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, the S haplotypes were identified among 79 cultivated radish genotypes. The PCR results indicated that 79 radish genotypes could be divided into 48 Class I, 13 Class II, and 17 Class I/II S haplotypes. Sequence alignment confirmed that the Class I materials contained 19 S haplotypes, of which three haplotypes (‘NAU-S53’, ‘NAU-S54’ and ‘NAU-S55’) were identified for the first time in radish. After digestion using the Hinf I restriction endonuclease, the SRK domain of DNA fragments of different genotypes showed high polymorphism. Homozygous materials S haplotypes could be quickly distinguished by the differences in the digested bands. Molecular identification of the S haplotype was highly consistent with the field pollination and pollen tube germination results. These results would provide an important approach for the rapid identification of radish S haplotypes and the efficient utilization of self-incompatibility in heterosis breeding. Full article
Show Figures

Figure 1

19 pages, 4846 KB  
Article
Cross-Species Analysis of Innate Immune Antagonism by Cytomegalovirus IE1 Protein
by Franziska Rothemund, Myriam Scherer, Eva-Maria Schilling, Johannes Schweininger, Yves A. Muller and Thomas Stamminger
Viruses 2022, 14(8), 1626; https://doi.org/10.3390/v14081626 - 26 Jul 2022
Cited by 2 | Viewed by 2594
Abstract
The human cytomegalovirus (CMV) immediate early 1 (IE1) protein has evolved as a multifunctional antagonist of intrinsic and innate immune mechanisms. In addition, this protein serves as a transactivator and potential genome maintenance protein. Recently, the crystal structures of the human and rat [...] Read more.
The human cytomegalovirus (CMV) immediate early 1 (IE1) protein has evolved as a multifunctional antagonist of intrinsic and innate immune mechanisms. In addition, this protein serves as a transactivator and potential genome maintenance protein. Recently, the crystal structures of the human and rat CMV IE1 (hIE1, rIE1) core domain were solved. Despite low sequence identity, the respective structures display a highly similar, all alpha-helical fold with distinct variations. To elucidate which activities of IE1 are either species-specific or conserved, this study aimed at a comparative analysis of hIE1 and rIE1 functions. To facilitate the quantitative evaluation of interactions between IE1 and cellular proteins, a sensitive NanoBRET assay was established. This confirmed the species-specific interaction of IE1 with the cellular restriction factor promyelocytic leukemia protein (PML) and with the DNA replication factor flap endonuclease 1 (FEN1). To characterize the respective binding surfaces, helix exchange mutants were generated by swapping hIE1 helices with the corresponding rIE1 helices. Interestingly, while all mutants were defective for PML binding, loss of FEN1 interaction was confined to the exchange of helices 1 and 2, suggesting that FEN1 binds to the stalk region of IE1. Furthermore, our data reveal that both hIE1 and rIE1 antagonize human STAT2; however, distinct regions of the respective viral proteins mediated the interaction. Finally, while PML, FEN1, and STAT2 binding were conserved between primate and rodent proteins, we detected that rIE1 lacks a chromatin tethering function suggesting that this activity is dispensable for rat CMV. In conclusion, our study revealed conserved and distinct functions of primate and rodent IE1 proteins, further supporting the concept that IE1 proteins underwent a narrow co-evolution with their respective hosts to maximize their efficacy in antagonizing innate immune mechanisms and supporting viral replication. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 13910 KB  
Article
Evolutionary History of RNA Modifications at N6-Adenosine Originating from the R-M System in Eukaryotes and Prokaryotes
by Congshan Liu, Jianping Cao, Haobing Zhang and Jianhai Yin
Biology 2022, 11(2), 214; https://doi.org/10.3390/biology11020214 - 28 Jan 2022
Cited by 12 | Viewed by 6325
Abstract
Methylation at the N6-position of adenosine (N6mA) on mRNA (m6A) is one of the most widespread, highly selective and dynamically regulated RNA modifications and plays an important role in transcription and translation. In the present study, a comprehensive analysis of phylogenetic [...] Read more.
Methylation at the N6-position of adenosine (N6mA) on mRNA (m6A) is one of the most widespread, highly selective and dynamically regulated RNA modifications and plays an important role in transcription and translation. In the present study, a comprehensive analysis of phylogenetic relationships, conserved domain sequence characteristics and protein structure comparisons were employed to explore the distribution of RNA N6mA modification (m6A, m6,6A, m6Am, m6, 6Am and m6t6A)-associated proteins (writers, readers and erasers) in three kingdoms of life and reveal the evolutionary history of these modifications. These findings further confirmed that the restriction-modification (R-M) system is the origin of DNA and RNA N6mA modifications. Among them, the existing mRNA m6A modification system derived from the last eukaryotic common ancestor (LECA) is the evolutionary product of elements from the last universal common ancestor (LUCA) or driven by horizontal gene transfer (HGT) from bacterial elements. The subsequent massive gene gains and losses contribute to the development of unique and diverse functions in distinct species. Particularly, RNA methyltransferases (MTases) as the writer responsible for adding N6mA marks on mRNA and ncRNAs may have evolved from class α and β prokaryotic “orphan” MTases originating from the R-M system. The reader, YTH proteins that specifically recognize the m6A deposit, may be acquired by LECA from an individual prokaryotic YTH-domain protein that evolved from N-terminals of an R-M system endonuclease. The eraser, which emerged from the ALKB family (ALKBH5 and FTO) in eukaryotes, may be driven by independent HTG from bacterial ALKB proteins. The evolutionary history of RNA N6mA modifications was inferred in the present study, which will deepen our understanding of these modifications in different species. Full article
Show Figures

Figure 1

22 pages, 6655 KB  
Article
12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae
by Adélaïde Renard, Seydina M. Diene, Luka Courtier-Martinez, Julien Burlaud Gaillard, Houssein Gbaguidi-Haore, Laurent Mereghetti, Roland Quentin, Patrice Francois and Nathalie Van Der Mee-Marquet
Microorganisms 2021, 9(6), 1112; https://doi.org/10.3390/microorganisms9061112 - 21 May 2021
Cited by 6 | Viewed by 3417
Abstract
CC17 Streptococcus agalactiae carrying group-A prophages is increasingly responsible for neonatal infections. To investigate the impact of the genetic features of a group-A prophage, we first conducted an in silico analysis of the genome of 12/111phiA, a group-A prophage carried by a strain [...] Read more.
CC17 Streptococcus agalactiae carrying group-A prophages is increasingly responsible for neonatal infections. To investigate the impact of the genetic features of a group-A prophage, we first conducted an in silico analysis of the genome of 12/111phiA, a group-A prophage carried by a strain responsible for a bloodstream infection in a parturient. This revealed a Restriction Modification system, suggesting a prophage maintenance strategy and five ORFs of interest for the host and encoding a type II toxin antitoxin system RelB/YafQ, an endonuclease, an S-adenosylmethionine synthetase MetK, and an StrP-like adhesin. Using the WT strain cured from 12/111phiA and constructing deleted mutants for the ORFs of interest, and their complemented mutants, we demonstrated an impact of prophage features on growth characteristics, cell morphology and biofilm formation. Our findings argue in favor of 12/111phiA domestication by the host and a role of prophage features in cell autoaggregation, glycocalyx and biofilm formation. We suggest that lysogeny may promote GBS adaptation to the acid environment of the vagina, consequently colonizing and infecting neonates. Full article
(This article belongs to the Special Issue Bacteriophage-Host Interactions and Bacteriophage Therapy)
Show Figures

Figure 1

Back to TopTop