Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,557)

Search Parameters:
Keywords = responsive membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5113 KiB  
Article
Populus ussuriensis PuWRKY22 Transcription Factor Activates the ABA Receptor PYL4 to Enhance Drought Resistance
by Qiuhui Wang, Danni Li, Lihua Yang, Yu Yang, Shuchao Huang, Yipeng Zhao and Qingjie Guan
Plants 2025, 14(17), 2621; https://doi.org/10.3390/plants14172621 (registering DOI) - 23 Aug 2025
Abstract
Drought stress poses a significant threat to tree growth, making the development of drought-resistant species essential for ecological restoration. WRKY transcription factors are critical regulators of plant drought responses; however, the role of WRKY22 in the woody species Populus ussuriensis K. remains unclear. [...] Read more.
Drought stress poses a significant threat to tree growth, making the development of drought-resistant species essential for ecological restoration. WRKY transcription factors are critical regulators of plant drought responses; however, the role of WRKY22 in the woody species Populus ussuriensis K. remains unclear. In this study, the PuWRKY22 gene was cloned from P. ussuriensis via homologous cloning and was found to be highly expressed in leaves and responsive to abscisic acid (ABA) signaling. Subcellular localization confirmed that PuWRKY22 is a nuclear protein. Using fluorescein enzyme complementation assays, PuWRKY22 was shown to bind specifically to W-box cis-elements, indicating its function as a transcriptional regulator. Under ABA and osmotic (sorbitol) stress, the seed germination rate, root growth, and biomass of tobacco and Populus davidiana × Populus bolleana strains overexpressing PuWRKY22 were significantly increased. Additionally, these overexpressed strains exhibited a reduction in reactive oxygen species (ROS) accumulation and a decrease in membrane lipid peroxidation. Transcriptomic analyses revealed that PuWRKY22 activates expression of the ABA receptor gene Ptr.PYL4 (Potri.006G104100.v4.1), which regulates stomatal closure to minimize water loss. Consistent with this, stomatal observations and photosynthetic measurements demonstrated that PuWRKY22 enhances drought tolerance by protecting photosystem II and preserving chlorophyll content. Collectively, this study elucidates the molecular mechanism by which PuWRKY22 enhances drought resistance in woody plants through ABA signaling, providing a foundation for breeding drought-tolerant forest species. Full article
(This article belongs to the Special Issue Drought Responses and Adaptation Mechanisms in Plants, 2nd Edition)
Show Figures

Figure 1

16 pages, 2707 KiB  
Article
Functional Studies and Expression Characteristics of the Vacuolar Sugar Transporter CoSWEET2a in Camellia oleifera
by Xinhui Zou, Bingshuai Du, Jing Zhou, Jingjing Hu, Yibo Cao and Lingyun Zhang
Plants 2025, 14(17), 2618; https://doi.org/10.3390/plants14172618 - 22 Aug 2025
Abstract
Sugar transporters of the SWEET family are essential for plant growth, development, yield formation, and stress responses by regulating sugar transport and distribution. This study characterizes the function and expression characteristics of CoSWEET2a, a Clade I SWEET gene in Camellia oleifera. We [...] Read more.
Sugar transporters of the SWEET family are essential for plant growth, development, yield formation, and stress responses by regulating sugar transport and distribution. This study characterizes the function and expression characteristics of CoSWEET2a, a Clade I SWEET gene in Camellia oleifera. We conducted subcellular localization, functional complementation in Arabidopsis, sugar response assays, drought tolerance tests, and hormone induction analysis. A key finding is CoSWEET2a, which that is localized on the vacuolar membrane in Camellia oleifera. Heterologous expression in Arabidopsis atsweet2 mutants revealed sugar-specific effects on root growth. Moreover, expression of CoSWEET2a increased soluble sugar content in Arabidopsis seeds. Additionally, CoSWEET2a overexpression enhanced drought stress tolerance by augmenting sugar content. The expression of CoSWEET2a is regulated by gibberellin (GA) and abscisic acid (ABA), and its promoter contains corresponding hormone response elements. In conclusion, CoSWEET2a functions as a “sugar buffer” on the vacuolar membrane, regulating sugar accumulation, root development, and drought stress responses. This discovery not only reveals that vacuolar SWEET plays an important role in maintaining cytoplasmic sugar homeostasis in plants but also provides a direct genetic target for engineering high-quality, drought-tolerant crops. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
13 pages, 838 KiB  
Article
Multi-Component Vaccine Candidates Against Non-Typeable Haemophilus influenzae
by Nouria Belkacem, Ala-Eddine Deghmane and Muhamed-Kheir Taha
Vaccines 2025, 13(9), 892; https://doi.org/10.3390/vaccines13090892 - 22 Aug 2025
Abstract
Background: Haemophilus influenzae (Hi), a Gram-negative bacterium, is divided into two broad categories: encapsulated and non-capsulated isolates, also called non-typeable Hi isolates (NTHi). NTHi has become prevalent since the introduction of the vaccine against Hi of serotype b. Hi can cause local [...] Read more.
Background: Haemophilus influenzae (Hi), a Gram-negative bacterium, is divided into two broad categories: encapsulated and non-capsulated isolates, also called non-typeable Hi isolates (NTHi). NTHi has become prevalent since the introduction of the vaccine against Hi of serotype b. Hi can cause local infections on respiratory mucosal surfaces and urogenital infections, which can lead to septic abortion in pregnant women. It can also cause invasive infections such as meningitis and septicemia. Moreover, NTHi isolates are becoming increasingly resistant to antibiotics. Vaccines targeting NTHi are not yet available. As these NTHi isolates are not encapsulated, vaccines should target proteins at the bacterial surface. However, vaccine development is hindered by the high variability of these proteins. We aimed to identify conserved outer membrane proteins (OMPs) for vaccines against NTHi. Methods: We analyzed core-genome multilocus sequence typing (cgMLST) of 1144 genomes of Hi collected between 2017 and 2022 and, of these, identified 514 conserved genes that encoded OMPs. We focused on two specific OMPs: Haem1295, encoding the protein P5 (P5), and Haem1040, encoding the protein 26 (P26). P5 is known to bind human complement regulatory protein factor H (FH), while both P5 and P26 are involved in enhancing immune responses. The genes encoding these proteins were cloned, overexpressed, purified, and tested in both active and passive protection models using systemic infection in mice. Results: P5 and P26 were found to be immunogenic during human infections. Vaccination with these proteins conferred protection against both homologous and heterologous NTHi isolates in mice, suggesting broad cross-protection. Conclusions: P5 and P26 are promising vaccine candidates showing cross-protection against NTHi and offering the additional benefit of targeting bacterial virulence factors, enhancing vaccine efficacy against NTHi isolates. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
16 pages, 13677 KiB  
Article
Evolution of Characteristic Parameters in Fuel Cell Dynamic Response Under Durability Testing
by Zhexuan Qi, Xiangyang Chen, Ruidi Wang, Dong Hao, Wenlong Pan and Yongping Hou
World Electr. Veh. J. 2025, 16(9), 479; https://doi.org/10.3390/wevj16090479 - 22 Aug 2025
Abstract
The evolution of two key dynamic response parameters—undershoot voltage and stabilization time—was investigated throughout a 1000-h durability test on four distinct PEMFCs. Results demonstrate that cells with superior mass transport exhibited higher undershoot voltages, an effect amplified at higher current densities due to [...] Read more.
The evolution of two key dynamic response parameters—undershoot voltage and stabilization time—was investigated throughout a 1000-h durability test on four distinct PEMFCs. Results demonstrate that cells with superior mass transport exhibited higher undershoot voltages, an effect amplified at higher current densities due to a more pronounced gas supply-demand imbalance. Notably, the undershoot voltage decreased during the initial cell activation phase. Conversely, stabilization time showed no clear correlation with load magnitude but increased systematically with performance degradation. These findings reveal a strong connection between dynamic response characteristics and performance decay, providing meaningful insights for the design, application, and health assessment of high-performance fuel cells. Full article
Show Figures

Figure 1

24 pages, 3590 KiB  
Article
Palmitic Acid Esterification Boosts Epigallocatechin Gallate’s Immunomodulatory Effects in Intestinal Inflammation
by Raúl Domínguez-Perles, Concepción Medrano-Padial, Cristina García-Viguera and Sonia Medina
Biomolecules 2025, 15(8), 1208; https://doi.org/10.3390/biom15081208 - 21 Aug 2025
Abstract
Lipophenols, combining phenolic and lipid moieties in a single molecule, are valuable candidates for providing enhanced bioactive properties with therapeutic potential, including anti-inflammatory functions associated with immune-mediated diseases such as intestinal bowel disease (IBD). Thus, palmitoyl–epigallocatechin gallate (PEGCG), a lipophilic derivative of epigallocatechin [...] Read more.
Lipophenols, combining phenolic and lipid moieties in a single molecule, are valuable candidates for providing enhanced bioactive properties with therapeutic potential, including anti-inflammatory functions associated with immune-mediated diseases such as intestinal bowel disease (IBD). Thus, palmitoyl–epigallocatechin gallate (PEGCG), a lipophilic derivative of epigallocatechin gallate (EGCG), has been highlighted for its enhanced stability in lipid-rich environments and bioavailability due to improved cellular uptake. However, the contribution of lipophilic esterification to PEGCG’s capacity to inhibit inflammation and the development of harmful autoimmune responses remains underexplored. This work uncovered the differential efficiency of EGCG and its palmitoyl derivative in modulating, in vitro, the interleukin profile generated by intestinal epithelium under inflammatory conditions. Therefore, both could attenuate the immune response by lowering macrophage migration and polarisation towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes. While the fatty acid moiety gave PEGCG a functional advantage over EGCG in adjusting the interleukin-based response of intestinal epithelium to inflammation—since both of them decreased, to a similar extent, the expression of pro-inflammatory interleukins, namely IL-6, IL-17, IL-18, IL-23, and TNF-α (which lowered by 11.2%, on average)—the former was significantly more efficient in cushioning the increase in IL-1β and IL-12p70 (by 9.2% and 10.4%, respectively). This immune modulation capacity did not significantly impact the migration and expression of costimulatory molecules featuring M1 (CD86+) or M2 (CD206+) phenotypes by THP-1-derived macrophages, for which both bioactive compounds exhibited equivalent efficiency. Nonetheless, the analysis of the pro- and anti-inflammatory interleukins secreted by differentiated macrophages allowed the identification of an advantage for PEGCG, which decreased the expression of the pro-inflammatory immune mediators IL-1β and IL-12p70, IL-23, and TNF-α more efficiently. These results suggest that lipophilisation of phenolic compounds presents exciting potential for extending their application as functional molecules by combining the effects of their polar head with their ability to interfere with membranes, conveyed by their lipophilic tail. In addition, the enhanced reactivity would confer a higher capacity to interact with cellular signalling molecules and thus inhibit or attenuate the immune response, which is of special interest for preventing the onset and severity of immune-mediated pathologies such as IBD. Full article
(This article belongs to the Special Issue Recent Advances in the Enzymatic Synthesis of Bioactive Compounds)
Show Figures

Figure 1

16 pages, 1800 KiB  
Article
Extracellular Cr(VI) Reduction by the Salt-Tolerant Strain Bacillus safensis BSF-4
by Yilan Liu, Weiping Yu, Tianying Nie, Lu Wang and Yusheng Niu
Microorganisms 2025, 13(8), 1961; https://doi.org/10.3390/microorganisms13081961 - 21 Aug 2025
Abstract
Microbial reduction in hexavalent chromium (Cr(VI)) is a well characterized bioremediation strategy, yet the mechanistic diversity among bacterial taxa necessitates detailed investigations into strain-specific pathways. Here, we report the isolation and characterization of Bacillus safensis BSF-4, a halophilic bacterium derived from saline-alkali [...] Read more.
Microbial reduction in hexavalent chromium (Cr(VI)) is a well characterized bioremediation strategy, yet the mechanistic diversity among bacterial taxa necessitates detailed investigations into strain-specific pathways. Here, we report the isolation and characterization of Bacillus safensis BSF-4, a halophilic bacterium derived from saline-alkali soil, which demonstrates efficient Cr(VI) reduction capacity. Physiological assays showed that BSF-4 achieved 89.15% reduction of 20 mg/L Cr(VI) within 72 h, with Cr(III) identified as the primary extracellular end product. Resting cell assays and subcellular fractionation analyses confirmed that Cr(VI) reduction predominantly occurs in the extracellular milieu. X-ray photoelectron spectroscopy (XPS) further revealed soluble Cr(III) complexed with extracellular polymeric substances (EPS). Transcriptomic profiling indicated upregulation of membrane-associated transport systems (facilitating Cr(VI) exclusion) and quorum sensing (QS) pathways (mediating adaptive stress responses). These findings highlight a dual mechanism: (1) extracellular enzymatic reduction mediated by EPS-bound redox proteins, and (2) intracellular detoxification via QS-regulated defense pathways. Collectively, Bacillus safensis BSF-4 exhibits robust Cr(VI) reduction capacity under saline conditions, positioning it as a promising candidate for bioremediation of Cr(VI)-contaminated saline soils and aquatic ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

12 pages, 2542 KiB  
Article
Cumulative Low-Dose-Rate Radiation Induces Oxidative Stress, Apoptosis, and Fibrosis in Mouse Testis
by Eun-Jin Kim, Anjas Happy Prayoga, Jina Ha, Deok Gyeong Kang, Jinsung Yang, Sohi Kang, Jin-Mok Kim, Byeonggyu Ahn, Dang Long Cao, Seung Pil Yun, Bo Hyun Lee, Joong-Sun Kim and Dawon Kang
Antioxidants 2025, 14(8), 1028; https://doi.org/10.3390/antiox14081028 - 21 Aug 2025
Abstract
Ionizing radiation is a well-known environmental stressor capable of generating excessive reactive oxygen species (ROS), leading to oxidative damage in sensitive tissues, including the reproductive system. While oxidative stress is increasingly implicated in male reproductive dysfunction, the long-term effects of low-dose-rate (LDR) radiation [...] Read more.
Ionizing radiation is a well-known environmental stressor capable of generating excessive reactive oxygen species (ROS), leading to oxidative damage in sensitive tissues, including the reproductive system. While oxidative stress is increasingly implicated in male reproductive dysfunction, the long-term effects of low-dose-rate (LDR) radiation on testicular structure and oxidative status remain underexplored. In this study, mice were exposed to continuous LDR radiation (0.39, 1.29, and 3.46 mGy/h) for 21 days to assess testicular histopathology and oxidative status. Although testis weight did not significantly differ among groups, histological analysis revealed basal membrane disruption and reduced spermatogenic cell populations in irradiated groups. Masson’s Trichrome and Sirius Red staining demonstrated dose-dependent collagen deposition, indicating progressive testicular fibrosis. TUNEL assays confirmed increased germ cell apoptosis in the mid- and high-dose-rate groups. ROS levels were significantly elevated only in the highest-dose group, suggesting a threshold-dependent oxidative stress response. These findings indicate that chronic LDR radiation induces testicular damage primarily through apoptosis and fibrosis, with oxidative stress potentially contributing at higher exposure levels. Full article
Show Figures

Figure 1

28 pages, 1982 KiB  
Article
Mathematical Modeling and Finite Element Analysis of Torsional Divergence of Carbon Plates with an AIREX Foam Core
by Mirko Dinulović, Mato Perić, Dragi Stamenković, Marta Trninić and Jovan Bengin
Mathematics 2025, 13(16), 2695; https://doi.org/10.3390/math13162695 - 21 Aug 2025
Abstract
This study presents a novel analytical–numerical framework for investigating the torsional divergence of composite sandwich structures composed of carbon fiber-reinforced skins and an AIREX foam core. A divergence differential equation is derived and modified to accommodate the anisotropic behavior of composite materials through [...] Read more.
This study presents a novel analytical–numerical framework for investigating the torsional divergence of composite sandwich structures composed of carbon fiber-reinforced skins and an AIREX foam core. A divergence differential equation is derived and modified to accommodate the anisotropic behavior of composite materials through an equivalent shear modulus, extending classical formulations originally developed for isotropic structures. The resulting equation is solved using the Galerkin method, yielding structural section rotations as a continuous function along the wing span. These torsional modes are then applied as boundary inputs in a high-fidelity finite element model of the composite fin to determine stress distributions across the structure. The method enables evaluation of not only in-plane (membrane) stresses, but also out-of-plane responses such as interlaminar stresses and local core-skin interactions critical for assessing failure modes in sandwich composites. This integrated workflow links analytical aeroelastic modeling with detailed structural analysis, offering valuable insights into the interplay between global torsional stability and local stress behavior in laminated composite systems. Full article
(This article belongs to the Special Issue Numerical Analysis and Finite Element Method with Applications)
Show Figures

Figure 1

12 pages, 1108 KiB  
Article
Hydrogen Permeation Resistance of PVDF–Graphene Nanocomposite Coatings for Metallic Pipelines
by Mohammed M. Aman, Bashar S. Mohammed and Ahmad Mahamad Al-Yacouby
Polymers 2025, 17(16), 2262; https://doi.org/10.3390/polym17162262 - 21 Aug 2025
Abstract
Hydrogen-induced steel embrittlement imposes a technical difficulty in facilitating effective and safe hydrogen transportation via pipelines. This investigative study assesses the potency of polyvinylidene fluoride (PVDF)–graphene-based composite coatings in the inhibition of hydrogen permeation. Spin coating was the method selected for this study, [...] Read more.
Hydrogen-induced steel embrittlement imposes a technical difficulty in facilitating effective and safe hydrogen transportation via pipelines. This investigative study assesses the potency of polyvinylidene fluoride (PVDF)–graphene-based composite coatings in the inhibition of hydrogen permeation. Spin coating was the method selected for this study, and varying graphene concentrations ranging from 0.1 to 1wt% were selected and applied to 306 stainless steel substrates. A membrane permeation cell was used in the evaluation of hydrogen permeability, while the impact of graphene loading on coating performance was analyzed using the response surface methodology (RSM). The outcomes showed an inversely proportional relationship between the graphene concentration and hydrogen ingress. The permeation coefficient for pure PVDF was recorded as 16.74, which decreased to 14.23, 12.10, and 11.46 for 0.3, 0.5, and 1.0 wt% PVDF-G, respectively, with the maximum reduction of 31.6% observed at 1.0 wt%. ANOVA established statistical significance, along with indications of strong projection dependability. However, the inhibition reduction stabilized with increasing graphene concentrations, likely caused by nanoparticle agglomeration. The results support the notion of PVDF–graphene’s potential as a suitable coating for the transformation of pipelines for hydrogen transport infrastructure. This research will aid in the establishment of suitable contemporary barrier coating materials, which will enable the safe utilization of hydrogen energy in the current energy transportation grid. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

39 pages, 1435 KiB  
Review
Extracellular Vesicles in Osteogenesis: A Comprehensive Review of Mechanisms and Therapeutic Potential for Bone Regeneration
by Sreyee Biswas, Prakash Gangadaran, Chandrajeet Dhara, Shreya Ghosh, Soumya Deep Phadikar, Akash Chakraborty, Atharva Anand Mahajan, Ranit Mondal, Debdeep Chattopadhyay, Trisha Banerjee, Anuvab Dey, Subhrojyoti Ghosh, Anand Krishnan, Byeong-Cheol Ahn and Ramya Lakshmi Rajendran
Curr. Issues Mol. Biol. 2025, 47(8), 675; https://doi.org/10.3390/cimb47080675 - 21 Aug 2025
Viewed by 58
Abstract
Extracellular vesicles (EVs) are nanoscale, membrane-bound particles secreted by diverse cell types and act as pivotal mediators of intercellular communication during bone regeneration. These vesicles transport bioactive cargo including proteins, lipids, mRNAs, and microRNAs that modulate osteogenesis, angiogenesis, and immune responses within the [...] Read more.
Extracellular vesicles (EVs) are nanoscale, membrane-bound particles secreted by diverse cell types and act as pivotal mediators of intercellular communication during bone regeneration. These vesicles transport bioactive cargo including proteins, lipids, mRNAs, and microRNAs that modulate osteogenesis, angiogenesis, and immune responses within the bone microenvironment. EVs originating from mesenchymal stem cells, osteoblasts, endothelial cells, and macrophages have demonstrated substantial potential to promote bone formation, inhibit bone resorption, and enhance vascularization. This review examines the biogenesis, classification, and cellular uptake mechanisms of EVs, focusing on their roles in osteogenesis and their therapeutic applications in fracture healing, osteoporosis, and bone tissue engineering. Despite their promise, significant challenges remain, including the need for standardization, scalable production, and assessment of long-term safety to enable clinical translation of EV-based therapies. Here, we provide a comprehensive overview of EV biology, elucidate the molecular mechanisms of EVs in bone regeneration, and discuss innovative strategies to optimize their therapeutic efficacy, highlighting their potential as next-generation orthobiologics. Full article
Show Figures

Graphical abstract

17 pages, 5184 KiB  
Article
Preparation and Applications of Silver Nanowire-Polyurethane Flexible Sensor
by Jiangyin Shan, Jianhua Qian, Ling Lin, Mengrong Wei, Jingyue Xia and Lin Fu
Sensors 2025, 25(16), 5191; https://doi.org/10.3390/s25165191 - 21 Aug 2025
Viewed by 103
Abstract
To expand the application of silver nanowires (AgNWs) in the field of flexible sensors, this study developed a stretchable flexible sensor based on thermoplastic polyurethane (TPU). Initially, the TPU nanofiber membrane was prepared by electrospinning. Subsequently, high-aspect-ratio AgNWs were synthesized via a one-step [...] Read more.
To expand the application of silver nanowires (AgNWs) in the field of flexible sensors, this study developed a stretchable flexible sensor based on thermoplastic polyurethane (TPU). Initially, the TPU nanofiber membrane was prepared by electrospinning. Subsequently, high-aspect-ratio AgNWs were synthesized via a one-step polyol reduction method. The AgNWs with the optimal aspect ratio were selected for the conductive layer and spray-coated onto the surface of the TPU nanofiber membrane. Another layer of TPU nanofiber membrane was then laminated on top, resulting in a flexible thin-film sensor with a “sandwich” structure. Through morphological, chemical structure, and crystallinity analyses, the primary factors influencing AgNWs’ growth were investigated. Performance tests revealed that the prepared AgNWs had an average length of approximately 130 μm, a diameter of about 80 nm, and an average aspect ratio exceeding 1500, with the highest being 1921. The obtained sensor exhibited a low initial resistance (26.7 Ω), high strain range (sensing, ε = 0–150%), high sensitivity (GF, over 19.21), fast response and recovery time (112 ms), and excellent conductivity (428 S/cm). Additionally, the sensor maintained stable resistance after 3000 stretching cycles at a strain range of 0–10%. The sensor could output stable and recognizable electrical signals, demonstrating significant potential for applications in motion monitoring, human–computer interaction, and healthcare fields. Full article
Show Figures

Graphical abstract

20 pages, 6933 KiB  
Article
Physiological and Transcriptomic Mechanisms of Exogenous Salicylic Acid-Induced Resistance to Ear Rot in Maize
by Fangju Jiao, Ning Lan, Weijie Lu and Fang Wang
Agronomy 2025, 15(8), 2002; https://doi.org/10.3390/agronomy15082002 - 20 Aug 2025
Viewed by 142
Abstract
Maize ear rot is an important fungal disease in maize production, mainly caused by pathogens such as Fusarium graminearum, which seriously affects the yield and quality of maize. This study investigated the changes in the activity of defense-related enzymes in maize grains [...] Read more.
Maize ear rot is an important fungal disease in maize production, mainly caused by pathogens such as Fusarium graminearum, which seriously affects the yield and quality of maize. This study investigated the changes in the activity of defense-related enzymes in maize grains and their transcriptome response characteristics after exogenous SA treatment under Fusarium graminearum stress. The results showed that treatment with 0.01 mmol/L salicylic acid (SA) significantly inhibited the growth of Fusarium graminearum hyphae, while enhancing the activities of phenylalanine ammonia-lyase (PAL), superoxide dismutase (SOD), β-1,3-glucanase (β-1,3-GA), and polyphenol oxidase (PPO) in maize grains, and reducing the content of malondialdehyde (MDA), effectively alleviating the damage of Fusarium graminearum to the maize grain membrane system. Transcriptome analysis identified multiple key genes involved in SA-mediated disease resistance pathways, including disease-related proteins (PR10), acidic terpenoids, aspartic proteases, proteins containing BTB/POZ and MATH domains (BPM4), and PPT3 transporters. This study reveals the physiological and molecular mechanisms by which exogenous SA enhances maize resistance to ear rot, providing an important theoretical basis for further understanding the regulatory network of SA in plant disease resistance. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

12 pages, 5219 KiB  
Article
Design of Forward Osmosis Desalination Configurations: Exergy and Energy Perspectives
by Chulwoo Park, Yonghyuk Kim and Daejoong Kim
Appl. Sci. 2025, 15(16), 9168; https://doi.org/10.3390/app15169168 - 20 Aug 2025
Viewed by 72
Abstract
This study presents a detailed energy and exergy analysis of two forward osmosis (FO) desalination systems: single-pass and regenerative configurations. Both utilize osmotic pressure from a concentrated draw solution to drive water transport through a semi-permeable membrane. The regenerative system includes extra components [...] Read more.
This study presents a detailed energy and exergy analysis of two forward osmosis (FO) desalination systems: single-pass and regenerative configurations. Both utilize osmotic pressure from a concentrated draw solution to drive water transport through a semi-permeable membrane. The regenerative system includes extra components for draw solute recovery, which increases electrical energy consumption to 188.9 kW and slightly lowers water recovery to 54%, compared to 98 kW and 60% for the single-pass FO system. Equivalent work for desalination is 1.4 kWh/m3 for single-pass and 1.8 kWh/m3 for regenerative FO systems. Exergy analysis shows the distillation column as the largest contributor to exergy destruction in both systems, responsible for over 44% of losses. The regenerative system adds 57.9 MW of chemical exergy destruction in the regenerator. Physical exergy destruction mainly occurs in the reboiler and condenser, while chemical exergy destruction is dominant in the FO membrane unit and regenerator. These findings provide valuable insights for improving the efficiency and sustainability of FO desalination technologies. Full article
Show Figures

Figure 1

22 pages, 6193 KiB  
Article
Cilastatin Modulates DPEP1- and IQGAP1-Associated Neuro-Glio-Vascular Inflammation in Oxaliplatin-Induced Peripheral Neurotoxicity
by Rita Martín-Ramírez, María Ángeles González-Nicolás, Karen Álvarez-Tosco, Félix Machín, Julio Ávila, Manuel Morales, Alberto Lázaro and Pablo Martín-Vasallo
Cells 2025, 14(16), 1294; https://doi.org/10.3390/cells14161294 - 20 Aug 2025
Viewed by 156
Abstract
Oxaliplatin-induced peripheral neurotoxicity (OIPN) represents a major challenge in cancer therapy, characterized by dorsal root ganglia (DRG) inflammation and disruption of neuro-glio-vascular unit function. In this study, we investigated the involvement of the scaffold protein IQ Motif Containing GTPase Activating Protein 1 (IQGAP1) [...] Read more.
Oxaliplatin-induced peripheral neurotoxicity (OIPN) represents a major challenge in cancer therapy, characterized by dorsal root ganglia (DRG) inflammation and disruption of neuro-glio-vascular unit function. In this study, we investigated the involvement of the scaffold protein IQ Motif Containing GTPase Activating Protein 1 (IQGAP1) and dehydropeptidase-1 (DPEP1) in the DRG response to oxaliplatin (OxPt) and the modulatory effect of cilastatin. Behavioral assessment showed a robust nocifensive response to cold stimuli in OxPt-treated rats, attenuated by cilastatin co-treatment. Our confocal study revealed different cellular and subcellular expression patterns of IQGAP1 and DPEP1 in neurons, glia, and endothelial cells, where both signals overlap approximately one-third. OxPt enhanced cytosolic aggregation of IQGAP1 in neurons and upregulation of signal in glia, accompanied by co-expression of TNFα and IL-6, indicating involvement in the inflammatory process. DPEP1 showed altered subcellular distribution in OxPt-treated animals, suggesting a potential role in the inflammatory cascade. Notably, IQGAP1 expression was diminished in endothelial membranes under OxPt, while cilastatin preserved endothelial IQGAP1-CD31 colocalization, suggesting partial restoration of blood-nerve barrier integrity. These findings identify IQGAP1 and DPEP1 as key players in DRG inflammation and position cilastatin as a promising modulator of OIPN through neuro-glio-vascular stabilization. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Neuropathic Pain)
Show Figures

Figure 1

40 pages, 4676 KiB  
Review
Recent Developments in Polymer Inclusion Membranes: Advances in Selectivity, Structural Integrity, Environmental Applications and Sustainable Fabrication
by Anna Nowik-Zając and Vira Sabadash
Membranes 2025, 15(8), 249; https://doi.org/10.3390/membranes15080249 - 19 Aug 2025
Viewed by 350
Abstract
Polymer inclusion membranes (PIMs) have undergone substantial advancements in their selectivity and efficiency, driven by their increasing deployment in separation processes, environmental remediation, and sensing applications. This review presents recent progress in the development of PIMs, focusing on strategies to enhance ion and [...] Read more.
Polymer inclusion membranes (PIMs) have undergone substantial advancements in their selectivity and efficiency, driven by their increasing deployment in separation processes, environmental remediation, and sensing applications. This review presents recent progress in the development of PIMs, focusing on strategies to enhance ion and molecule selectivity through the incorporation of novel carriers, including ionic liquids and task-specific extractants, as well as through polymer functionalization techniques. Improvements in mechanical and chemical stability, achieved via the utilization of high-performance polymers such as polyvinylidene fluoride (PVDF) and polyether ether ketone (PEEK), as well as cross-linking approaches, are critically analyzed. The expanded application of PIMs in the removal of heavy metals, organic micropollutants, and gas separation, particularly for carbon dioxide capture, is discussed with an emphasis on efficiency and operational robustness. The integration of PIMs with electrochemical and optical transduction platforms for sensor development is also reviewed, highlighting enhancements in sensitivity, selectivity, and response time. Furthermore, emerging trends towards the fabrication of sustainable PIMs using biodegradable polymers and green solvents are evaluated. Advances in scalable manufacturing techniques, including phase inversion and electrospinning, are addressed, outlining pathways for the industrial translation of PIM technologies. The review concludes by identifying current limitations and proposing future research directions necessary to fully exploit the potential of PIMs in industrial and environmental sectors. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

Back to TopTop