Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,366)

Search Parameters:
Keywords = residual noise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 965 KB  
Article
Smart Protection Relay for Power Transformers Using Time-Domain Feature Recognition
by Hengchu Shi, Hao You, Xiaofan Chen, Ruisi Li, Shoudong Xu, Jianqiao Zhang and Ruiwen He
Processes 2026, 14(3), 449; https://doi.org/10.3390/pr14030449 - 27 Jan 2026
Abstract
Conventional transformer protection schemes are limited by the difficulty in distinguishing inrush currents from internal and external faults, which restricts operational accuracy to below 70%. Existing solutions are constrained by a trade-off: sensitivity is compromised when setting values are increased, while speed is [...] Read more.
Conventional transformer protection schemes are limited by the difficulty in distinguishing inrush currents from internal and external faults, which restricts operational accuracy to below 70%. Existing solutions are constrained by a trade-off: sensitivity is compromised when setting values are increased, while speed is sacrificed when time delays are introduced. To address these limitations, a novel deep learning-based method for transformer fault identification is proposed. First, a feature model is constructed utilizing the time-domain sum of voltage and current fault components alongside current polarity characteristics. Subsequently, a channel attention-based Capsule Network (SE-CapsuleNet) is employed to automatically extract deep features across normal operation, inrush currents, and fault types. Simulation results demonstrate that inrush conditions are accurately differentiated from fault states. Robustness is maintained under high fault resistance (400 Ω) and 20 dB noise interference, while immunity to current transformer (CT) saturation and core residual magnetism is exhibited. The proposed protection relay simultaneously meets the requirements of rapid response, high sensitivity, and safety stability. Full article
(This article belongs to the Special Issue Adaptive Control and Optimization in Power Grids)
27 pages, 2292 KB  
Article
Source Camera Identification via Explicit Content–Fingerprint Decoupling with a Dual-Branch Deep Learning Framework
by Zijuan Han, Yang Yang, Jiaxuan Lu, Jian Sun, Yunxia Liu and Ngai-Fong Bonnie Law
Appl. Sci. 2026, 16(3), 1245; https://doi.org/10.3390/app16031245 - 26 Jan 2026
Abstract
In this paper, we propose a source camera identification method based on disentangled feature modeling, aiming to achieve robust extraction of camera fingerprint features under complex imaging and post-processing conditions. To address the severe coupling between image content and camera fingerprint features in [...] Read more.
In this paper, we propose a source camera identification method based on disentangled feature modeling, aiming to achieve robust extraction of camera fingerprint features under complex imaging and post-processing conditions. To address the severe coupling between image content and camera fingerprint features in existing methods, which makes content interference difficult to suppress, we develop a dual-branch deep learning framework guided by imaging physics. By introducing physical consistency constraints, the proposed framework explicitly separates image content representations from device-related fingerprint features in the feature space, thereby enhancing the stability and robustness of source camera identification. The proposed method adopts two parallel branches: a content modeling branch and a fingerprint feature extraction branch. The content branch is built upon an improved U-Net architecture to reconstruct scene and color information, and further incorporates texture refinement and multi-scale feature fusion to reduce residual content interference in fingerprint modeling. The fingerprint branch employs ResNet-50 as the backbone network to learn discriminative global features associated with the camera imaging pipeline. Based on these branches, fingerprint information dominated by sensor noise is explicitly extracted by computing the residual between the input image and the reconstructed content, and is further encoded through noise analysis and feature fusion for joint camera model classification. Experimental results on multiple public-source camera forensics datasets demonstrate that the proposed method achieves stable and competitive identification performance in same-brand camera discrimination, complex imaging conditions, and post-processing scenarios, validating the effectiveness of the proposed disentangled modeling and physical consistency constraint strategy for source camera identification. Full article
(This article belongs to the Special Issue New Development in Machine Learning in Image and Video Forensics)
Show Figures

Figure 1

16 pages, 3390 KB  
Article
Adaptive Multi-Scale Feature Fusion for Spectral Peak Extraction with Morphological Segmentation and Optimized Clustering
by Ting Liu, Li-Zhen Liang, Zheng-Kun Cao, Xing-Qin Xu, Shang-Xuan Zou and Guang-Nian Hu
Appl. Sci. 2026, 16(3), 1239; https://doi.org/10.3390/app16031239 - 26 Jan 2026
Abstract
In the diagnostics of plasmas heated by neutral beam injection (NBI), which serves as a fundamental heating technique, critical core parameters such as ion temperatures and rotational velocities can be measured through NBI’s associated diagnostic methods. However, conventional spectral analysis methods applied in [...] Read more.
In the diagnostics of plasmas heated by neutral beam injection (NBI), which serves as a fundamental heating technique, critical core parameters such as ion temperatures and rotational velocities can be measured through NBI’s associated diagnostic methods. However, conventional spectral analysis methods applied in NBI-based Beam Emission Spectroscopy diagnostics face a significant limitation: a relatively high false detection rate during characteristic peak detection and boundary determination. This issue stems from three primary factors: persistent noise interference, overlapping spectral peaks, and dynamic broadening effects. To address this critical issue, we propose a spectral feature extraction method based on morphological segmentation and optimized clustering, with three key innovations that work synergistically: (1) an adaptive chunking algorithm driven by gradient, Laplacian, and curvature features to dynamically partition spectral regions, laying a foundation for localized analysis; (2) a hierarchical residual iteration mechanism combining dynamic thresholding and Gaussian template subtraction to enhance weak peak signals; (3) optimized DBSCAN clustering integrated with morphological closure to refine peak boundaries accurately. Among them, the adaptive chunking technique is distinct from general adaptive methods: its chunking granularity can be dynamically adjusted according to peak structures and can accurately adapt to low signal-to-noise ratio (SNR) scenarios. Experimental results based on measured data from the EAST device demonstrate that the adaptive chunking strategy maintains a missed detection rate of 0–20% across the full signal-to-noise ratio (SNR) range, with false positive rates limited to 16.67–50.00%. Notably, it achieves effective peak detection even under extremely low SNR conditions. Full article
Show Figures

Figure 1

26 pages, 2450 KB  
Article
Fault Detection in Axial Deformation Sensors for Hydraulic Turbine Head-Cover Fastening Bolts Using Analytical Redundancy
by Eddy Yujra Rivas, Alexander Vyacheslavov, Kirill Gogolinskiy, Kseniia Sapozhnikova and Roald Taymanov
Sensors 2026, 26(3), 801; https://doi.org/10.3390/s26030801 - 25 Jan 2026
Viewed by 55
Abstract
This study proposes an analytical redundancy method that combines empirical models with a Kalman filter to ensure the reliability of measurements from axial deformation sensors in a turbine head-cover bolt-monitoring system. This integration enables the development of predictive models that optimally estimate the [...] Read more.
This study proposes an analytical redundancy method that combines empirical models with a Kalman filter to ensure the reliability of measurements from axial deformation sensors in a turbine head-cover bolt-monitoring system. This integration enables the development of predictive models that optimally estimate the dynamic deformation of each bolt during turbine operation at full and partial load. The test results of the models under conditions of outliers, measurement noise, and changes in turbine operating mode, evaluated using accuracy and sensitivity metrics, confirmed their high accuracy (Acc ≈ 0.146 µm) and robustness (SA < 0.001). The evaluation of the models’ responses to simulated sensor faults (offset, drift, precision degradation, stuck-at) revealed characteristic residual patterns for faults with magnitudes > 5 µm. These findings establish the foundation for developing a fault detection and isolation algorithm for continuous monitoring of these sensors’ operational health. For practical implementation, the models require validation across all operational modes, and maximum admissible deformation thresholds must be defined. Full article
Show Figures

Figure 1

24 pages, 4010 KB  
Article
Bridging Time-Scale Mismatch in WWTPs: Long-Term Influent Forecasting via Decomposition and Heterogeneous Temporal Attention
by Wenhui Lei, Fei Yuan, Yanjing Xu, Yanyan Nie and Jian He
Water 2026, 18(3), 295; https://doi.org/10.3390/w18030295 - 23 Jan 2026
Viewed by 177
Abstract
The time-scale mismatch between rapid influent fluctuations and slow biochemical responses hinders the stability of wastewater treatment plants (WWTPs). Existing models often fail to capture shock signals due to noise interference (“signal pollution”). To address this, we propose the HD-MAED-LSTM model, which employs [...] Read more.
The time-scale mismatch between rapid influent fluctuations and slow biochemical responses hinders the stability of wastewater treatment plants (WWTPs). Existing models often fail to capture shock signals due to noise interference (“signal pollution”). To address this, we propose the HD-MAED-LSTM model, which employs a “decompose-and-conquer” strategy. Targeting the dynamic characteristics of different components, this study innovatively designs heterogeneous attention mechanisms: utilizing Long-term Dependency Attention to capture the global evolution of the trend component, employing Multi-scale Periodic Attention to reinforce the cyclic patterns of the seasonal component, and using Gated Anomaly Attention to keenly capture sudden shocks in the residual component. In a case study, the effectiveness of the proposed model was validated based on one year of operational data from a large-scale industrial WWTP. HD-MAED-LSTM outperformed baseline models such as Transformer and LSTM in the medium-to-long-term (10-h) prediction of COD, TN, and TP, clearly demonstrating the positive role of differentiated modeling. Notably, in the core task of shock load early warning, the model achieved an F1-Score of 0.83 (superior to Transformer’s 0.77 and LSTM’s 0.67), and a Mean Directional Accuracy (MDA) as high as 0.93. Ablation studies confirm that the specialized attention mechanism is the key performance driver, reducing the Mean Absolute Error (MAE) by 56.7%. This framework provides precise support for shifting WWTPs from passive response to proactive control. Full article
Show Figures

Figure 1

35 pages, 17028 KB  
Article
Vibration Signal Denoising Method Based on ICFO-SVMD and Improved Wavelet Thresholding
by Yanping Cui, Xiaoxu He, Zhe Wu, Qiang Zhang and Yachao Cao
Sensors 2026, 26(2), 750; https://doi.org/10.3390/s26020750 - 22 Jan 2026
Viewed by 67
Abstract
Non-stationary, multi-component vibration signals in rotating machinery are easily contaminated by strong background noise, which masks weak fault features and degrades diagnostic reliability. This paper proposes a joint denoising method that combines an improved cordyceps fungus optimization algorithm (ICFO), successive variational mode decomposition [...] Read more.
Non-stationary, multi-component vibration signals in rotating machinery are easily contaminated by strong background noise, which masks weak fault features and degrades diagnostic reliability. This paper proposes a joint denoising method that combines an improved cordyceps fungus optimization algorithm (ICFO), successive variational mode decomposition (SVMD), and an improved wavelet thresholding scheme. ICFO, enhanced by Chebyshev chaotic initialization, a longitudinal–transverse crossover fusion mutation operator, and a thinking innovation strategy, is used to adaptively optimize the SVMD penalty factor and number of modes. The optimized SVMD decomposes the noisy signal into intrinsic mode functions, which are classified into effective and noise-dominated components via the Pearson correlation coefficient. An improved wavelet threshold function, whose threshold is modulated by the sub-band signal-to-noise ratio, is then applied to the effective components, and the denoised signal is reconstructed. Simulation experiments on nonlinear, non-stationary signals with different noise levels (SNR = 1–20 dB) show that the proposed method consistently achieves the highest SNR and lowest RMSE compared to VMD, SVMD, VMD–WTD, CFO–SVMD, and WTD. Tests on CWRU bearing data and gearbox vibration signals with added −2 dB Gaussian white noise further confirm that the method yields the lowest residual variance ratio and highest signal energy ratio while preserving key fault characteristic frequencies. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

25 pages, 8863 KB  
Article
A Multi-Scale Residual Convolutional Neural Network for Fault Diagnosis of Progressive Cavity Pump Systems in Coalbed Methane Wells with Imbalanced and Differentiated Data
by Jiaojiao Yu, Yajie Ou, Ying Gao, Youwu Li, Feng Gu, Jinhuang You, Bin Liu, Xiaoyong Gao and Chaodong Tan
Processes 2026, 14(2), 383; https://doi.org/10.3390/pr14020383 - 22 Jan 2026
Viewed by 44
Abstract
Coalbed methane, an abundant clean energy resource in China, is gaining significant attention. Electric submersible progressive cavity pumps, ideal for downhole extraction with high solids content, are vital in coalbed methane operations. Current fault diagnosis research for these pumps mainly relies on machine [...] Read more.
Coalbed methane, an abundant clean energy resource in China, is gaining significant attention. Electric submersible progressive cavity pumps, ideal for downhole extraction with high solids content, are vital in coalbed methane operations. Current fault diagnosis research for these pumps mainly relies on machine learning algorithms to identify fault features, but complex working conditions and imbalanced sample distributions challenge these models’ ability to perceive multi-scale and multi-dimensional features. To enhance the model’s perception of deep abnormal data in complex multi-case industrial datasets, this study proposes a deep learning model based on a multi-scale extraction and residual module convolutional neural network. Innovatively, a cross-attention module using global autocorrelation and local cross-correlation is introduced to constrain the multi-scale feature extraction process, making the model better suited to specific and differentiated data environments. Post feature extraction, the model employs Borderline-SMOTE to augment minority class samples and uses Tomek Links for noise removal. These enhancements improve the comprehensive perception of fault types with significant differences in period, amplitude, and dimension, as well as the learning capability for rare faults. Based on field-collected fault data and using enhanced and cleaned features for classifier training, tests on a real industrial dataset show the proposed model achieves an F1 Measure of 90.7%—an improvement of 13.38% over the unimproved model and 9.15–31.64% over other common fault diagnosis models. Experimental results confirm the method’s effectiveness in adapting to extremely imbalanced sample distributions and complex, variable field data characteristics. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

16 pages, 3906 KB  
Article
S3PM: Entropy-Regularized Path Planning for Autonomous Mobile Robots in Dense 3D Point Clouds of Unstructured Environments
by Artem Sazonov, Oleksii Kuchkin, Irina Cherepanska and Arūnas Lipnickas
Sensors 2026, 26(2), 731; https://doi.org/10.3390/s26020731 - 21 Jan 2026
Viewed by 109
Abstract
Autonomous navigation in cluttered and dynamic industrial environments remains a major challenge for mobile robots. Traditional occupancy-grid and geometric planning approaches often struggle in such unstructured settings due to partial observability, sensor noise, and the frequent presence of moving agents (machinery, vehicles, humans). [...] Read more.
Autonomous navigation in cluttered and dynamic industrial environments remains a major challenge for mobile robots. Traditional occupancy-grid and geometric planning approaches often struggle in such unstructured settings due to partial observability, sensor noise, and the frequent presence of moving agents (machinery, vehicles, humans). These limitations seriously undermine long-term reliability and safety compliance—both essential for Industry 4.0 applications. This paper introduces S3PM, a lightweight entropy-regularized framework for simultaneous mapping and path planning that operates directly on dense 3D point clouds. Its key innovation is a dynamics-aware entropy field that fuses per-voxel occupancy probabilities with motion cues derived from residual optical flow. Each voxel is assigned a risk-weighted entropy score that accounts for both geometric uncertainty and predicted object dynamics. This representation enables (i) robust differentiation between reliable free space and ambiguous/hazardous regions, (ii) proactive collision avoidance, and (iii) real-time trajectory replanning. The resulting multi-objective cost function effectively balances path length, smoothness, safety margins, and expected information gain, while maintaining high computational efficiency through voxel hashing and incremental distance transforms. Extensive experiments in both real-world and simulated settings, conducted on a Raspberry Pi 5 (with and without the Hailo-8 NPU), show that S3PM achieves 18–27% higher IoU in static/dynamic segmentation, 0.94–0.97 AUC in motion detection, and 30–45% fewer collisions compared to OctoMap + RRT* and standard probabilistic baselines. The full pipeline runs at 12–15 Hz on the bare Pi 5 and 25–30 Hz with NPU acceleration, making S3PM highly suitable for deployment on resource-constrained embedded platforms. Full article
(This article belongs to the Special Issue Mobile Robots: Navigation, Control and Sensing—2nd Edition)
Show Figures

Figure 1

16 pages, 1206 KB  
Article
HASwinNet: A Swin Transformer-Based Denoising Framework with Hybrid Attention for mmWave MIMO Systems
by Xi Han, Houya Tu, Jiaxi Ying, Junqiao Chen and Zhiqiang Xing
Entropy 2026, 28(1), 124; https://doi.org/10.3390/e28010124 - 20 Jan 2026
Viewed by 161
Abstract
Millimeter-wave (mmWave) massive multiple-input, multiple-output (MIMO) systems are a cornerstone technology for integrated sensing and communication (ISAC) in sixth-generation (6G) mobile networks. These systems provide high-capacity backhaul while simultaneously enabling high-resolution environmental sensing. However, accurate channel estimation remains highly challenging due to intrinsic [...] Read more.
Millimeter-wave (mmWave) massive multiple-input, multiple-output (MIMO) systems are a cornerstone technology for integrated sensing and communication (ISAC) in sixth-generation (6G) mobile networks. These systems provide high-capacity backhaul while simultaneously enabling high-resolution environmental sensing. However, accurate channel estimation remains highly challenging due to intrinsic noise sensitivity and clustered sparse multipath structures. These challenges are particularly severe under limited pilot resources and low signal-to-noise ratio (SNR) conditions. To address these difficulties, this paper proposes HASwinNet, a deep learning (DL) framework designed for mmWave channel denoising. The framework integrates a hierarchical Swin Transformer encoder for structured representation learning. It further incorporates two complementary branches. The first branch performs sparse token extraction guided by angular-domain significance. The second branch focuses on angular-domain refinement by applying discrete Fourier transform (DFT), squeeze-and-excitation (SE), and inverse DFT (IDFT) operations. This generates a mask that highlights angularly coherent features. A decoder combines the outputs of both branches with a residual projection from the input to yield refined channel estimates. Additionally, we introduce an angular-domain perceptual loss during training. This enforces spectral consistency and preserves clustered multipath structures. Simulation results based on the Saleh–Valenzuela (S–V) channel model demonstrate that HASwinNet achieves significant improvements in normalized mean squared error (NMSE) and bit error rate (BER). It consistently outperforms convolutional neural network (CNN), long short-term memory (LSTM), and U-Net baselines. Furthermore, experiments with reduced pilot symbols confirm that HASwinNet effectively exploits angular sparsity. The model retains a consistent advantage over baselines even under pilot-limited conditions. These findings validate the scalability of HASwinNet for practical 6G mmWave backhaul applications. They also highlight its potential in ISAC scenarios where accurate channel recovery supports both communication and sensing. Full article
Show Figures

Figure 1

17 pages, 1423 KB  
Article
Residual Motion Correction in Low-Dose Myocardial CT Perfusion Using CNN-Based Deformable Registration
by Mahmud Hasan, Aaron So and Mahmoud R. El-Sakka
Electronics 2026, 15(2), 450; https://doi.org/10.3390/electronics15020450 - 20 Jan 2026
Viewed by 138
Abstract
Dynamic myocardial CT perfusion imaging enables functional assessment of coronary artery stenosis and myocardial microvascular disease. However, it is susceptible to residual motion artifacts arising from cardiac and respiratory activity. These artifacts introduce temporal misalignments, distorting Time-Enhancement Curves (TECs) and leading to inaccurate [...] Read more.
Dynamic myocardial CT perfusion imaging enables functional assessment of coronary artery stenosis and myocardial microvascular disease. However, it is susceptible to residual motion artifacts arising from cardiac and respiratory activity. These artifacts introduce temporal misalignments, distorting Time-Enhancement Curves (TECs) and leading to inaccurate myocardial perfusion measurements. Traditional nonrigid registration methods can address such motion but are often computationally expensive and less effective when applied to low-dose images, which are prone to increased noise and structural degradation. In this work, we present a CNN-based motion-correction framework specifically trained for low-dose cardiac CT perfusion imaging. The model leverages spatiotemporal patterns to estimate and correct residual motion between time frames, aligning anatomical structures while preserving dynamic contrast behaviour. Unlike conventional methods, our approach avoids iterative optimization and manually defined similarity metrics, enabling faster, more robust corrections. Quantitative evaluation demonstrates significant improvements in temporal alignment, with reduced Target Registration Error (TRE) and increased correlation between voxel-wise TECs and reference curves. These enhancements enable more accurate myocardial perfusion measurements. Noise from low-dose scans affects registration performance, but this remains an open challenge. This work emphasizes the potential of learning-based methods to perform effective residual motion correction under challenging acquisition conditions, thereby improving the reliability of myocardial perfusion assessment. Full article
Show Figures

Figure 1

18 pages, 10969 KB  
Article
Simulation Data-Based Dual Domain Network (Sim-DDNet) for Motion Artifact Reduction in MR Images
by Seong-Hyeon Kang, Jun-Young Chung, Youngjin Lee and for The Alzheimer’s Disease Neuroimaging Initiative
Magnetochemistry 2026, 12(1), 14; https://doi.org/10.3390/magnetochemistry12010014 - 20 Jan 2026
Viewed by 140
Abstract
Brain magnetic resonance imaging (MRI) is highly susceptible to motion artifacts that degrade fine structural details and undermine quantitative analysis. Conventional U-Net-based deep learning approaches for motion artifact reduction typically operate only in the image domain and are often trained on data with [...] Read more.
Brain magnetic resonance imaging (MRI) is highly susceptible to motion artifacts that degrade fine structural details and undermine quantitative analysis. Conventional U-Net-based deep learning approaches for motion artifact reduction typically operate only in the image domain and are often trained on data with simplified motion patterns, thereby limiting physical plausibility and generalization. We propose Sim-DDNet, a simulation-data-based dual-domain network that combines k-space-based motion simulation with a joint image-k-space reconstruction architecture. Motion-corrupted data were generated from T2-weighted Alzheimer’s Disease Neuroimaging Initiative brain MR scans using a k-space replacement scheme with three to five random rotational and translational events per volume, yielding 69,283 paired samples (49,852/6969/12,462 for training/validation/testing). Sim-DDNet integrates a real-valued U-Net-like image branch and a complex-valued k-space branch using cross attention, FiLM-based feature modulation, soft data consistency, and composite loss comprising L1, structural similarity index measure (SSIM), perceptual, and k-space-weighted terms. On the independent test set, Sim-DDNet achieved a peak signal-to-noise ratio of 31.05 dB, SSIM of 0.85, and gradient magnitude similarity deviation of 0.077, consistently outperforming U-Net and U-Net++ across all three metrics while producing less blurring, fewer residual ghost/streak artifacts, and reduced hallucination of non-existent structures. These results indicate that dual-domain, data-consistency-aware learning, which explicitly exploits k-space information, is a promising approach for physically plausible motion artifact correction in brain MRI. Full article
(This article belongs to the Special Issue Magnetic Resonances: Current Applications and Future Perspectives)
Show Figures

Figure 1

21 pages, 3569 KB  
Article
Lossless Compression of Infrared Images via Pixel-Adaptive Prediction and Residual Hierarchical Decomposition
by Ya Liu, Zheng Li, Yong Zhang and Rui Zhang
Appl. Sci. 2026, 16(2), 1030; https://doi.org/10.3390/app16021030 - 20 Jan 2026
Viewed by 107
Abstract
Linear array detector-based infrared push-broom imaging systems are widely employed in remote sensing and security surveillance due to their high spatial resolution, wide swath coverage, and low cost. However, the massive data volume generated during continuous scanning presents substantial storage and transmission challenges. [...] Read more.
Linear array detector-based infrared push-broom imaging systems are widely employed in remote sensing and security surveillance due to their high spatial resolution, wide swath coverage, and low cost. However, the massive data volume generated during continuous scanning presents substantial storage and transmission challenges. To mitigate this issue, we propose a lossless compression algorithm based on pixel-adaptive prediction and hierarchical decomposition of residuals. The algorithm first performs pixel-wise adaptive noise compensation according to local image characteristics and achieves efficient prediction by exploiting the strong inter-pixel correlation along the scanning direction. Subsequently, hierarchical decomposition is applied to high-energy residual blocks to further eliminate spatial redundancy. Finally, the Golomb–Rice coding parameters are adaptively adjusted based on the neighborhood residual energy, optimizing the overall code length distribution. The experimental results demonstrate that our method significantly outperforms most state-of-the-art approaches in terms of both the compression ratio (CR) and bits per pixel (BPP). Moreover, while maintaining a CR comparable to H.265-Intra, our method achieves a 21-fold reduction in time complexity, confirming its superiority for large-format image compression. Full article
Show Figures

Figure 1

19 pages, 1944 KB  
Article
Research on Adaptive Cooperative Positioning Algorithm for Underwater Robots Based on Dolphin Group Cooperative Mechanism
by Shiwei Fan, Jiachong Chang, Zicheng Wang, Mingfeng Ding, Hongchao Sun and Yubo Zhao
Biomimetics 2026, 11(1), 82; https://doi.org/10.3390/biomimetics11010082 - 20 Jan 2026
Viewed by 124
Abstract
Inspired by the remarkable collaborative echolocation mechanisms of dolphin pods, the paper addresses the challenge of achieving high-precision cooperative positioning for clusters of unmanned underwater vehicles (UUVs) in complex marine environments. Cooperative positioning systems for UUVs typically rely on acoustic ranging information to [...] Read more.
Inspired by the remarkable collaborative echolocation mechanisms of dolphin pods, the paper addresses the challenge of achieving high-precision cooperative positioning for clusters of unmanned underwater vehicles (UUVs) in complex marine environments. Cooperative positioning systems for UUVs typically rely on acoustic ranging information to correct positional errors. However, the propagation characteristics of underwater acoustic signals are susceptible to environmental disturbances, often resulting in non-Gaussian, heavy-tailed distributions of ranging noise. Additionally, the strong nonlinearity of the system and the limited observability of measurement information further constrain positioning accuracy. To tackle these issues, this paper innovatively proposes a Factor Graph-based Adaptive Cooperative Positioning Algorithm (FGAWSP) suitable for heavy-tailed noise environments. The method begins by constructing a factor graph model for UUV cooperative positioning to intuitively represent the probabilistic dependencies between system states and observed variables. Subsequently, a novel factor graph estimation mechanism integrating adaptive weights with the product algorithm is designed. By conducting online assessment of residual information, this mechanism dynamically adjusts the fusion weights of different measurements, thereby achieving robust handling of anomalous range values. Experimental results demonstrate that the proposed method reduces positioning errors by 22.31% compared to the traditional algorithm, validating the effectiveness of our approach. Full article
(This article belongs to the Special Issue Bioinspired Robot Sensing and Navigation)
Show Figures

Figure 1

27 pages, 4802 KB  
Article
Fine-Grained Radar Hand Gesture Recognition Method Based on Variable-Channel DRSN
by Penghui Chen, Siben Li, Chenchen Yuan, Yujing Bai and Jun Wang
Electronics 2026, 15(2), 437; https://doi.org/10.3390/electronics15020437 - 19 Jan 2026
Viewed by 131
Abstract
With the ongoing miniaturization of smart devices, fine-grained hand gesture recognition using millimeter-wave radar has attracted increasing attention, yet practical deployment remains challenging in continuous-gesture segmentation, robust feature extraction, and reliable classification. This paper presents an end-to-end fine-grained gesture recognition framework based on [...] Read more.
With the ongoing miniaturization of smart devices, fine-grained hand gesture recognition using millimeter-wave radar has attracted increasing attention, yet practical deployment remains challenging in continuous-gesture segmentation, robust feature extraction, and reliable classification. This paper presents an end-to-end fine-grained gesture recognition framework based on frequency modulated continuous wave(FMCW) millimeter-wave radar, including gesture design, data acquisition, feature construction, and neural network-based classification. Ten gesture types are recorded (eight valid gestures and two return-to-neutral gestures); for classification, the two return-to-neutral gesture types are merged into a single invalid class, yielding a nine-class task. A sliding-window segmentation method is developed using short-time Fourier transformation(STFT)-based Doppler-time representations, and a dataset of 4050 labeled samples is collected. Multiple signal classification(MUSIC)-based super-resolution estimation is adopted to construct range–time and angle–time representations, and instance-wise normalization is applied to Doppler and range features to mitigate inter-individual variability without test leakage. For recognition, a variable-channel deep residual shrinkage network (DRSN) is employed to improve robustness to noise, supporting single-, dual-, and triple-channel feature inputs. Results under both subject-dependent evaluation with repeated random splits and subject-independent leave one subject out(LOSO) cross-validation show that DRSN architecture consistently outperforms the RefineNet-based baseline, and the triple-channel configuration achieves the best performance (98.88% accuracy). Overall, the variable-channel design enables flexible feature selection to meet diverse application requirements. Full article
Show Figures

Figure 1

23 pages, 7021 KB  
Article
Improved Daily Nighttime Light Data as High-Frequency Economic Indicator
by Xiangqi Yue, Zhong Zhao and Kun Hu
Appl. Sci. 2026, 16(2), 947; https://doi.org/10.3390/app16020947 - 16 Jan 2026
Viewed by 192
Abstract
Daily nighttime light (NTL) observations made by remote sensing satellites can monitor human activity at high temporal resolution, but are often constrained by residual physical disturbances. Even in standard products, such as NASA’s Black Marble VNP46A2, factors related to sensor viewing geometry, lunar [...] Read more.
Daily nighttime light (NTL) observations made by remote sensing satellites can monitor human activity at high temporal resolution, but are often constrained by residual physical disturbances. Even in standard products, such as NASA’s Black Marble VNP46A2, factors related to sensor viewing geometry, lunar illumination, atmospheric conditions, and seasonality can introduce noise into daily radiance retrievals. This study develops a locally adaptive framework to diagnose and correct residual disturbances in daily NTL data. By estimating location-specific regression models, we quantify the residual sensitivity of VNP46A2 radiance to multiple disturbance factors and selectively remove statistically significant components. The results show that the proposed approach effectively removes statistically significant residual disturbances from daily NTL data in the VNP46A2 product. An application for COVID-19 containment periods in China demonstrates the effectiveness of the proposed approach, where corrected daily NTL data exhibit enhanced temporal stability and improved interpretability. Further analysis based on event study approaches demonstrates that corrected daily NTL data enable the identification of short-run policy effects that are difficult to detect with lower-frequency indicators. Overall, this study enhances the suitability of daily NTL data for high-frequency socioeconomic applications and extends existing preprocessing approaches for daily NTL observations. Full article
(This article belongs to the Collection Space Applications)
Show Figures

Figure 1

Back to TopTop