Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (795)

Search Parameters:
Keywords = residential standards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 21951 KiB  
Article
The Collective Dwelling of Cooperative Promotion in Caselas
by Vanda Pereira de Matos and Carlos Alberto Assunção Alho
Buildings 2025, 15(15), 2756; https://doi.org/10.3390/buildings15152756 - 5 Aug 2025
Abstract
To solve the present housing crisis, the Support for Access to Housing Program, in the context of PRR, mainly focuses on social housing to be built or on housing of social interest to be regenerated. To approach this problem, a research question was [...] Read more.
To solve the present housing crisis, the Support for Access to Housing Program, in the context of PRR, mainly focuses on social housing to be built or on housing of social interest to be regenerated. To approach this problem, a research question was raised: “What is the significance of the existing cooperative housing in solving the current housing crisis?” To analyze this issue, a multiple case study was adopted, comparing a collective dwelling of cooperative promotion at controlled costs in Caselas (1980s–1990s) with Expo Urbe (2000–2007) in Parque das Nações, a symbol of the new sustainable cooperative housing, which targets a population with a higher standard of living and thus is excluded from the PRR plan. These cases revealed the discrepancy created by the Cooperative Code of 1998 and its consequences for the urban regeneration of this heritage. They show that Caselas, built in a residential urban neighborhood, is strongly attached to a community, provides good social inclusion for vulnerable groups at more affordable prices, and it is eligible for urban regeneration and reuse (for renting or buying). However, the reuse of Caselcoop’s edifices cannot compromise their cultural and residential values or threaten the individual integrity. Full article
Show Figures

Figure 1

28 pages, 2566 KiB  
Article
Simulating Effectiveness of Low Impact Development (LID) for Different Building Densities in the Face of Climate Change Using a Hydrologic-Hydraulic Model (SWMM5)
by Helene Schmelzing and Britta Schmalz
Hydrology 2025, 12(8), 200; https://doi.org/10.3390/hydrology12080200 - 31 Jul 2025
Viewed by 307
Abstract
To date, few studies have been published for cities in Germany that take into account climate change and changing hydrologic patterns due to increases in building density. This study investigates the efficiency of LID for past and future climate in the polycentric agglomeration [...] Read more.
To date, few studies have been published for cities in Germany that take into account climate change and changing hydrologic patterns due to increases in building density. This study investigates the efficiency of LID for past and future climate in the polycentric agglomeration area Frankfurt, Main (Central Germany) using observed and projected climate (model) data for a standard reference period (1961–1990) and a high emission scenario (RCP 8.5) as well as a climate protection scenario (RCP 2.6), under 40 to 75 percent building density. LID elements included green roofs, permeable pavement and bioretention cells. SWMM5 was used as model for simulation purposes. A holistic evaluation of simulation results showed that effectiveness increases incrementally with LID implementation percentage and inverse to building density if implemented onto at least 50 percent of available impervious area. Building density had a higher adverse effect on LID efficiency than climate change. The results contribute to the understanding of localized effects of climate change and the implementation of adaption strategies to that end. The results of this study can be helpful for the scientific community regarding future investigations of LID implementation efficiency in dense residential areas and used by local governments to provide suggestions for urban water balance revaluation. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

28 pages, 8824 KiB  
Article
Platform Approaches in the AEC Industry: Stakeholder Perspectives and Case Study
by Layla Mujahed, Gang Feng and Jianghua Wang
Buildings 2025, 15(15), 2684; https://doi.org/10.3390/buildings15152684 - 30 Jul 2025
Viewed by 244
Abstract
The architecture, engineering, and construction (AEC) industry faces challenges related to inefficiencies and fragmentation that highlight the need for advanced construction technologies and drive interest in innovative solutions such as the platform approach to design. This study assessed platform-based building design through (1) [...] Read more.
The architecture, engineering, and construction (AEC) industry faces challenges related to inefficiencies and fragmentation that highlight the need for advanced construction technologies and drive interest in innovative solutions such as the platform approach to design. This study assessed platform-based building design through (1) interviews with practitioners from China, Jordan, and the UK, which helped to define the platform approach in the AEC industry and the challenges involved, and (2) a residential building design simulation conducted to evaluate the potential of the platform approach. The simulated design’s materials costs, energy efficiency, and construction time were compared with those of the traditional building design. The results of the comparison corroborate the interview findings concerning practitioners’ perspectives on platform definition, benefits, challenges, and implementation. The findings also demonstrate the potential of the platform approach to enhance productivity and scalability through modularization, kit-of-parts configuration, and standardization. This research bridges the gap between theory and practice by supporting shareholder perspectives on building design and construction with the results of a simulated platform approach to a real-world design project. This research addresses the urgent need to better understand and test the platform approach to achieve material, energy, and construction time savings through collaborative and practice-informed design. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

14 pages, 1717 KiB  
Article
Development of Floor Structures with Crumb Rubber for Efficient Floor Impact Noise Reduction
by Ji-Hoon Park and Chan-Hoon Haan
Acoustics 2025, 7(3), 47; https://doi.org/10.3390/acoustics7030047 - 29 Jul 2025
Viewed by 308
Abstract
Korea has a high population density, considering the size of its territory. Therefore, the importance of convenient and comfortable apartment buildings and high-rise residential–commercial complex buildings has been rising. In addition, because of the improvement in the standard of living along with continuous [...] Read more.
Korea has a high population density, considering the size of its territory. Therefore, the importance of convenient and comfortable apartment buildings and high-rise residential–commercial complex buildings has been rising. In addition, because of the improvement in the standard of living along with continuous national economic growth, the interest in well-being and the expectation of a quiet life with a comfortable and pleasant residential environment have also been increasing. However, Koreans have a lifestyle involving sitting on the floor, so floor impact noise has been occurring more and more frequently. Because of this, neighborly disputes have been a serious social problem. And lately, damage and disputes from noise between floors have been increasing much more. The present work, therefore, used waste tire chips as a resilient material for reducing floor impact noise in order to recycle waste tires effectively. Also, a compounded resilient material, which combines EPS (expanded polystyrene), a flat resilient material on the upper part, with waste tire chips for the lower part, was developed. After constructing waste tire chips at a standardized test building, experiments with both light-weight and heavy-weight floor impact noise were performed. The tests confirmed that waste tire chips, when used as a resilient material, can effectively reduce both light-weight and heavy-weight floor impact noise. Full article
Show Figures

Figure 1

12 pages, 1285 KiB  
Article
Investigation of Humidity Regulation and Heart Rate Variability in Indoor Environments with Larix kaempferi Wood Interiors
by Su-Yeon Lee, Yoon-Seong Chang, Chang-Deuk Eom, Oh-Won Kwon and Chun-Young Park
Appl. Sci. 2025, 15(15), 8392; https://doi.org/10.3390/app15158392 - 29 Jul 2025
Viewed by 190
Abstract
Wood, as a natural material that stores carbon, is gaining increasing attention and has potential for use in interior architectural applications. Given the long indoor stay time characteristic of modern society, it is important to scientifically understand the effects of indoor wood application [...] Read more.
Wood, as a natural material that stores carbon, is gaining increasing attention and has potential for use in interior architectural applications. Given the long indoor stay time characteristic of modern society, it is important to scientifically understand the effects of indoor wood application on the occupants. In this study, three residential buildings with an identical area and structure were constructed with different degrees of wood coverage (0%, 45%, 90%) using Larix kaempferi. Subsequently, indoor air quality (IAQ) evaluations and relative humidity measurements were conducted to assess the physical and chemical changes in each environment. The IAQ in wooden and non-wooden environments met the recommended IAQ standards established in South Korea. The results of the 8-month observation showed that, the higher the wood coverage ratio, the more the indoor humidity fluctuations were alleviated, and, in the case of the 90% wood coverage ratio condition, the humidity was maintained 5.2% lower in the summer and 10.9% higher in the winter compared to the 0% condition. To further assess the physiological responses induced by the wooden environment, the heart rate variability (HRV) was measured and compared for 26 participants exposed to each environment for two hours. In environments with a 0% and 90% degree of wood coverage, no statistically significant differences were found in the participants’ HRV indicators. But, in the group exposed to the 45% wooden environment, the results showed an increase in HRV indicators, natural logarithm of high frequency power (lnHF): 4.87 → 5.40 (p < 0.05), and standard deviation of normal-to-normal intervals (SDNN): 30.57 → 38.48 (p < 0.05), which are known indicators of parasympathetic nervous system activation. Full article
Show Figures

Figure 1

21 pages, 1558 KiB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 233
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

35 pages, 3995 KiB  
Review
Recent Advancements in Latent Thermal Energy Storage and Their Applications for HVAC Systems in Commercial and Residential Buildings in Europe—Analysis of Different EU Countries’ Scenarios
by Belayneh Semahegn Ayalew and Rafał Andrzejczyk
Energies 2025, 18(15), 4000; https://doi.org/10.3390/en18154000 - 27 Jul 2025
Viewed by 626
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) has emerged as a promising strategy to enhance HVAC efficiency. This review systematically examines the role of latent thermal energy storage using phase change materials (PCMs) in optimizing HVAC performance to align with EU climate targets, including the Energy Performance of Buildings Directive (EPBD) and the Energy Efficiency Directive (EED). By analyzing advancements in PCM-enhanced HVAC systems across residential and commercial sectors, this study identifies critical pathways for reducing energy demand, enhancing grid flexibility, and accelerating the transition to nearly zero-energy buildings (NZEBs). The review categorizes PCM technologies into organic, inorganic, and eutectic systems, evaluating their integration into thermal storage tanks, airside free cooling units, heat pumps, and building envelopes. Empirical data from case studies demonstrate consistent energy savings of 10–30% and peak load reductions of 20–50%, with Mediterranean climates achieving superior cooling load management through paraffin-based PCMs (melting range: 18–28 °C) compared to continental regions. Policy-driven initiatives, such as Germany’s renewable integration mandates for public buildings, are shown to amplify PCM adoption rates by 40% compared to regions lacking regulatory incentives. Despite these benefits, barriers persist, including fragmented EU standards, life cycle cost uncertainties, and insufficient training. This work bridges critical gaps between PCM research and EU policy implementation, offering a roadmap for scalable deployment. By contextualizing technical improvement within regulatory and economic landscapes, the review provides strategic recommendations to achieve the EU’s 2030 emissions reduction targets and 2050 climate neutrality goals. Full article
Show Figures

Figure 1

26 pages, 4627 KiB  
Article
A Low-Voltage Back-to-Back Converter Interface for Prosumers in a Multifrequency Power Transfer Environment
by Zaid Ali, Hamed Athari and David Raisz
Appl. Sci. 2025, 15(15), 8340; https://doi.org/10.3390/app15158340 - 26 Jul 2025
Viewed by 234
Abstract
The research demonstrates, through simulation and laboratory validation, the development of a low-voltage DC-link (LVDC) back-to-back converter system that enables multi-frequency power transfer. The system operates in two distinct modes, which include a three-phase grid-connected converter transferring fundamental and 5th and 7th harmonic [...] Read more.
The research demonstrates, through simulation and laboratory validation, the development of a low-voltage DC-link (LVDC) back-to-back converter system that enables multi-frequency power transfer. The system operates in two distinct modes, which include a three-phase grid-connected converter transferring fundamental and 5th and 7th harmonic power to a three-phase residential inverter supplying a clean 50 Hz load and another mode that uses a DC–DC buck–boost converter to integrate a battery storage unit for single-phase load supply. The system allows independent control of each harmonic component and maintains a clean sinusoidal voltage at the load side through DC-link isolation. The LVDC link functions as a frequency-selective barrier to suppress non-standard harmonic signals on the load side, effectively isolating the multi-frequency power grid from standard-frequency household loads. The proposed solution fills the gap between the multi-frequency power systems and the single-frequency loads because it allows the transfer of total multi-frequency grid power to the traditional household loads with pure fundamental frequency. Experimental results and simulation outcomes demonstrate that the system achieves high efficiency, robust harmonic isolation, and dynamic adaptability when load conditions change. Full article
(This article belongs to the Special Issue Power Electronics: Control and Applications)
Show Figures

Figure 1

15 pages, 526 KiB  
Article
Differences in Personal Recovery Among Individuals with Severe Mental Disorders in Private and Supported Accommodations: An Exploratory Study
by Alessandra Martinelli, Tecla Pozzan, Doriana Cristofalo, Chiara Bonetto, Camilla D’Astore, Elena Procura, Corrado Barbui and Mirella Ruggeri
Int. J. Environ. Res. Public Health 2025, 22(8), 1173; https://doi.org/10.3390/ijerph22081173 - 25 Jul 2025
Viewed by 247
Abstract
People with severe mental disorders (SMD) face long-term functional impairments requiring integrated, community-based, recovery-oriented care. Italy provides two main housing models for people with SMD: private accommodation (PA) and supported accommodation (SA). This exploratory study investigated differences in recovery outcomes across these settings [...] Read more.
People with severe mental disorders (SMD) face long-term functional impairments requiring integrated, community-based, recovery-oriented care. Italy provides two main housing models for people with SMD: private accommodation (PA) and supported accommodation (SA). This exploratory study investigated differences in recovery outcomes across these settings using the Mental Health Recovery Star (MHRS). A six-month longitudinal study was conducted within the South Verona Community Mental Health Service. Nineteen trained mental health professionals assessed 25 people with SMD (14 in PA, 11 in SA) at baseline (BL) and follow-up (FU) using standardized tools for recovery (MHRS), functioning, psychopathology, functional autonomy, and needs. Group comparisons and within-group changes were analyzed using paired and independent t-tests. At BL, people with SMD in PA showed better functioning (p = 0.040) and fewer needs than those in SA (p = 0.008). Recovery goals differed, with people with SMD in PA focusing on health and networks, while people with SMD in SA emphasized functioning. At FU, people with SMD in PA improved across all MHRS domains (p < 0.001), with significant reductions in symptom severity and unmet needs. People with SMD in SA showed targeted improvements in functioning, autonomy, and MHRS social networks (p < 0.001), with increases in met needs but non-significant changes in unmet needs. When comparing PA and SA at FU, the differences were relatively modest. Recovery is achievable in both housing settings, although outcomes differ. People with SMD in PA experienced broader improvements, while people with SMD in SA progressed in their prioritized areas, likely reflecting more complex initial needs. These findings underscore the value of aligning recovery-oriented care with the specific needs and contexts of different residential settings. Further research is needed to confirm and expand these results. Full article
(This article belongs to the Section Behavioral and Mental Health)
Show Figures

Figure 1

23 pages, 1593 KiB  
Article
Natural Ventilation Technique of uNVeF in Urban Residential Unit Through a Case Study
by Ming-Lun Alan Fong and Wai-Kit Chan
Urban Sci. 2025, 9(8), 291; https://doi.org/10.3390/urbansci9080291 - 25 Jul 2025
Viewed by 892
Abstract
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient [...] Read more.
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient tools to optimize natural ventilation rate, particularly in urban settings with varying building heights. To address this, the scientific technique developed with an innovative metric, the urbanized natural ventilation effectiveness factor (uNVeF), integrates regression analysis of wind direction, velocity, air change rate per hour (ACH), window configurations, and building height to quantify ventilation efficiency. By employing a field measurement methodology, the measurements were conducted across 25 window-opening scenarios in a 13.9 m2 residential unit on the 35/F of a Hong Kong public housing building, supplemented by the Hellman Exponential Law with a site-specific friction coefficient (0.2907, R2 = 0.9232) to estimate the lower floor natural ventilation rate. The results confirm compliance with Hong Kong’s statutory 1.5 ACH requirement (Practice Note for Authorized Persons, Registered Structural Engineers, and Registered Geotechnical Engineers) and achieving a peak ACH at a uNVeF of 0.953 with 75% window opening. The results also revealed that lower floors can maintain 1.5 ACH with adjusted window configurations. Using the Wells–Riley model, the estimation results indicated significant airborne disease infection risk reductions of 96.1% at 35/F and 93.4% at 1/F compared to the 1.5 ACH baseline which demonstrates a strong correlation between ACH, uNVeF and infection risks. The uNVeF framework offers a practical approach to optimize natural ventilation and provides actionable guidelines, together with future research on the scope of validity to refine this technique for residents and developers. The implications in the building industry include setting up sustainable design standards, enhancing public health resilience, supporting policy frameworks for energy-efficient urban planning, and potentially driving innovation in high-rise residential construction and retrofitting globally. Full article
Show Figures

Figure 1

19 pages, 894 KiB  
Article
Minimum Spatial Housing Requirements for Human Flourishing
by Karl T. Ulrich
Buildings 2025, 15(15), 2623; https://doi.org/10.3390/buildings15152623 - 24 Jul 2025
Viewed by 381
Abstract
This study defines evidence-based minimum internal floor areas required to support long-term residential use across different household types. It addresses the following question: what is the smallest viable floor area that supports sustained occupancy without persistent stress, conflict, or turnover? An integrative review [...] Read more.
This study defines evidence-based minimum internal floor areas required to support long-term residential use across different household types. It addresses the following question: what is the smallest viable floor area that supports sustained occupancy without persistent stress, conflict, or turnover? An integrative review method was employed, drawing from behavioural studies in environmental psychology, international regulatory standards, and real-world market data. The analysis focuses on essential domestic functions including sleep, hygiene, food preparation, storage, social interaction, and work. Quantitative findings from tenancy surveys, post-occupancy research, and market performance data indicate that residential units below 30 square metres for single occupants and 45 square metres for couples are consistently associated with reduced satisfaction and shorter tenancies. Regulatory minimums across diverse jurisdictions tend to converge near these same thresholds. The study proposes technical minimums of 30, 45, and 60 square metres for one-, two-, and three-person households, respectively. These values reflect functional lower bounds rather than ideal or aspirational sizes and are intended to inform performance-based housing standards. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

11 pages, 1012 KiB  
Article
Quantification of Ultra-Trace Lead in Water After Preconcentration on Nano-Titanium Oxide Using the Slurry Sampling ETAAS Method
by Lucia Nemček and Ingrid Hagarová
Toxics 2025, 13(8), 610; https://doi.org/10.3390/toxics13080610 - 22 Jul 2025
Viewed by 279
Abstract
A simple and efficient dispersive micro solid-phase extraction (DMSPE) method using nano-TiO2 as a sorbent was developed for the separation and preconcentration of (ultra) trace levels of lead in water samples prior to quantification by electrothermal atomic absorption spectrometry (ETAAS). Key experimental [...] Read more.
A simple and efficient dispersive micro solid-phase extraction (DMSPE) method using nano-TiO2 as a sorbent was developed for the separation and preconcentration of (ultra) trace levels of lead in water samples prior to quantification by electrothermal atomic absorption spectrometry (ETAAS). Key experimental parameters affecting the DMSPE process, including pH, ionic strength, sorbent dosage, and preconcentration factor, were optimized. The optimized method demonstrated a preconcentration factor of 20, a relative standard deviation below 4.5%, and a detection limit of 0.11 µg/L. The procedure was validated using certified reference material (CRM TM-25.5) and applied to real water samples from a lake, a residential well, and industrial wastewater. Satisfactory recoveries (89–103%) confirmed the reliability of the method for the determination of low lead concentrations in complex matrices. Full article
Show Figures

Graphical abstract

20 pages, 6510 KiB  
Article
Research on the Operating Performance of a Combined Heat and Power System Integrated with Solar PV/T and Air-Source Heat Pump in Residential Buildings
by Haoran Ning, Fu Liang, Huaxin Wu, Zeguo Qiu, Zhipeng Fan and Bingxin Xu
Buildings 2025, 15(14), 2564; https://doi.org/10.3390/buildings15142564 - 20 Jul 2025
Viewed by 365
Abstract
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power [...] Read more.
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power generation in a real residential building. The back panel of the PV/T component featured a novel polygonal Freon circulation channel design. A prototype of the combined heating and power supply system was constructed and tested in Fuzhou City, China. The results indicate that the average coefficient of performance (COP) of the system is 4.66 when the ASHP operates independently. When the PV/T component is integrated with the ASHP, the average COP increases to 5.37. On sunny days, the daily average thermal output of 32 PV/T components reaches 24 kW, while the daily average electricity generation is 64 kW·h. On cloudy days, the average daily power generation is 15.6 kW·h; however, the residual power stored in the battery from the previous day could be utilized to ensure the energy demand in the system. Compared to conventional photovoltaic (PV) systems, the overall energy utilization efficiency improves from 5.68% to 17.76%. The hot water temperature stored in the tank can reach 46.8 °C, satisfying typical household hot water requirements. In comparison to standard PV modules, the system achieves an average cooling efficiency of 45.02%. The variation rate of the system’s thermal loss coefficient is relatively low at 5.07%. The optimal water tank capacity for the system is determined to be 450 L. This system demonstrates significant potential for providing efficient combined heat and power supply for buildings, offering considerable economic and environmental benefits, thereby serving as a reference for the future development of low-carbon and energy-saving building technologies. Full article
Show Figures

Figure 1

77 pages, 2935 KiB  
Review
Assessment Methods for Building Energy Retrofits with Emphasis on Financial Evaluation: A Systematic Literature Review
by Maria D. Papangelopoulou, Konstantinos Alexakis and Dimitris Askounis
Buildings 2025, 15(14), 2562; https://doi.org/10.3390/buildings15142562 - 20 Jul 2025
Viewed by 429
Abstract
The building sector remains one of the largest contributors to global energy consumption and CO2 emissions, yet selecting optimal retrofit strategies is often hindered by inconsistent evaluation practices and limited integration of environmental and social impacts. This review addresses that gap by [...] Read more.
The building sector remains one of the largest contributors to global energy consumption and CO2 emissions, yet selecting optimal retrofit strategies is often hindered by inconsistent evaluation practices and limited integration of environmental and social impacts. This review addresses that gap by systematically analyzing how various assessment methods are applied to building retrofits, particularly from a financial and environmental perspective. A structured literature review was conducted across four major scientific databases using predefined keywords, filters, and inclusion/exclusion criteria, resulting in a final sample of 50 studies (green colored citations of this paper). The review focuses on the application of Life Cycle Cost Analysis (LCCA), Cost–Benefit Analysis (CBA), and Life Cycle Assessment (LCA), as well as additional indicators that quantify energy and sustainability performance. Results show that LCCA is the most frequently used method, applied in over 60% of the studies, often in combination with LCA (particularly for long time horizons). CBA appears in fewer than 25% of cases. More than 50% of studies are based in Europe, and over 60% of case studies involve residential buildings. EnergyPlus and DesignBuilder were the most common simulation tools, used in 28% and 16% of the cases, respectively. Risk and uncertainty were typically addressed through Monte Carlo simulations (22%) and sensitivity analysis. Comfort and social impact indicators were underrepresented, with thermal comfort included in only 12% of studies and no formal use of tools like Social-LCA or SROI. The findings highlight the growing sophistication of retrofit assessments post-2020, but also reveal gaps such as geographic imbalance (absence of African case studies), inconsistent treatment of discount rates, and limited integration of social indicators. The study concludes that future research should develop standardized, multidimensional evaluation frameworks that incorporate social equity, stakeholder values, and long-term resilience alongside cost and carbon metrics. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

21 pages, 4944 KiB  
Article
Multi-Objective Optimization Methods for University Campus Planning and Design—A Case Study of Dalian University of Technology
by Lin Qi, Chaoran Chen and Jun Dong
Buildings 2025, 15(14), 2551; https://doi.org/10.3390/buildings15142551 - 19 Jul 2025
Viewed by 366
Abstract
This study focuses on the multi-objective coordination problem in university campus planning and design, proposing an optimized methodology integrating an improved multi-objective decision-making framework. A five-dimensional objective system—comprising energy efficiency, spatial quality, economic cost, ecological benefits, and cultural expression—was established, alongside the identification [...] Read more.
This study focuses on the multi-objective coordination problem in university campus planning and design, proposing an optimized methodology integrating an improved multi-objective decision-making framework. A five-dimensional objective system—comprising energy efficiency, spatial quality, economic cost, ecological benefits, and cultural expression—was established, alongside the identification and standardization of 29 key variables to construct mapping relationships among objective functions. On the algorithmic level, an adapted NSGA-III was implemented on the MATLAB platform (version R2022b), introducing a dynamic reference point mechanism and hybrid constraint-handling strategy to enhance convergence and solution diversity. Taking the northern residential area of the western campus of Dalian University of Technology as a case study, multiple Pareto-optimal solutions were generated. Five representative alternatives were selected and evaluated through the AHP–TOPSIS method to determine the optimal scheme. The results indicated significant improvements in energy, economic, spatial, and ecological dimensions, while also achieving quantifiable control over cultural expression. On this basis, an integrated optimization strategy targeting “form–function–environment–culture” was proposed, offering data-informed support and procedural reference for systematic campus planning. This study demonstrates the effectiveness, adaptability, and practical value of the proposed approach in addressing multi-objective conflicts in university planning. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop