Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = residential compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1717 KiB  
Article
Development of Floor Structures with Crumb Rubber for Efficient Floor Impact Noise Reduction
by Ji-Hoon Park and Chan-Hoon Haan
Acoustics 2025, 7(3), 47; https://doi.org/10.3390/acoustics7030047 - 29 Jul 2025
Viewed by 308
Abstract
Korea has a high population density, considering the size of its territory. Therefore, the importance of convenient and comfortable apartment buildings and high-rise residential–commercial complex buildings has been rising. In addition, because of the improvement in the standard of living along with continuous [...] Read more.
Korea has a high population density, considering the size of its territory. Therefore, the importance of convenient and comfortable apartment buildings and high-rise residential–commercial complex buildings has been rising. In addition, because of the improvement in the standard of living along with continuous national economic growth, the interest in well-being and the expectation of a quiet life with a comfortable and pleasant residential environment have also been increasing. However, Koreans have a lifestyle involving sitting on the floor, so floor impact noise has been occurring more and more frequently. Because of this, neighborly disputes have been a serious social problem. And lately, damage and disputes from noise between floors have been increasing much more. The present work, therefore, used waste tire chips as a resilient material for reducing floor impact noise in order to recycle waste tires effectively. Also, a compounded resilient material, which combines EPS (expanded polystyrene), a flat resilient material on the upper part, with waste tire chips for the lower part, was developed. After constructing waste tire chips at a standardized test building, experiments with both light-weight and heavy-weight floor impact noise were performed. The tests confirmed that waste tire chips, when used as a resilient material, can effectively reduce both light-weight and heavy-weight floor impact noise. Full article
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 295
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

20 pages, 11386 KiB  
Article
Real-Time Source Dynamics of PM2.5 During Winter Haze Episodes Resolved by SPAMS: A Case Study in Yinchuan, Northwest China
by Huihui Du, Tantan Tan, Jiaying Pan, Meng Xu, Aidong Liu and Yanpeng Li
Sustainability 2025, 17(14), 6627; https://doi.org/10.3390/su17146627 - 20 Jul 2025
Viewed by 443
Abstract
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry [...] Read more.
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry (SPAMS) to investigate PM2.5 sources and dynamics during winter haze episodes in Yinchuan, Northwest China. Results showed that the average PM2.5 concentration was 57 μg·m−3, peaking at 218 μg·m−3. PM2.5 was dominated by organic carbon (OC, 17.3%), mixed carbonaceous particles (ECOC, 17.0%), and elemental carbon (EC, 14.3%). The primary sources were coal combustion (26.4%), fugitive dust (25.8%), and vehicle emissions (19.1%). Residential coal burning dominated coal emissions (80.9%), highlighting inefficient decentralized heating. Source contributions showed distinct diurnal patterns: coal combustion peaked nocturnally (29.3% at 09:00) due to heating and inversions, fugitive dust rose at night (28.6% at 19:00) from construction and low winds, and vehicle emissions aligned with traffic (17.5% at 07:00). Haze episodes were driven by synergistic increases in local coal (+4.0%), dust (+2.7%), and vehicle (+2.1%) emissions, compounded by regional transport (10.1–36.7%) of aged particles from northwestern zones. Fugitive dust correlated with sulfur dioxide (SO2) and ozone (O3) (p < 0.01), suggesting roles as carriers and reactive interfaces. Findings confirm local emission dominance with spatiotemporal heterogeneity and regional transport influence. SPAMS effectively resolved short-term pollution dynamics, providing critical insights for targeted air quality management in arid regions. Full article
Show Figures

Figure 1

10 pages, 206 KiB  
Review
Chemicals in Medical Laboratory and Its Impact on Healthcare Workers and Biotic Factors: Analysis Through the Prism of Environmental Bioethics
by Manjeshwar Shrinath Baliga, Rashmi T. D’souza, Lal P. Madathil, Russell F. DeSouza, Arnadi R. Shivashankara and Princy L. Palatty
Laboratories 2025, 2(3), 14; https://doi.org/10.3390/laboratories2030014 - 4 Jul 2025
Viewed by 390
Abstract
From an occupational health perspective, if not stored, handled, and disposed of properly, laboratory chemicals exhibit hazardous properties such as flammability, corrosion, and explosibility. Additionally, they can also cause a range of health effects in handlers, including irritation, sensitization, and carcinogenicity. Additionally, the [...] Read more.
From an occupational health perspective, if not stored, handled, and disposed of properly, laboratory chemicals exhibit hazardous properties such as flammability, corrosion, and explosibility. Additionally, they can also cause a range of health effects in handlers, including irritation, sensitization, and carcinogenicity. Additionally, the chemical waste generated during the planned assay is a significant byproduct and, if left untreated, can cause detrimental effects on both living organisms and non-living elements when released into the environment. Chemically, laboratory waste contains reagents, organic and inorganic compounds, and diagnostic stains. These agents are more toxic and hazardous than residential waste and affect the personnel handling them and the environments in which they are released. Considering this, it is crucial to adhere to waste management regulations during the various stages including generation, segregation, collection, storage, transportation, and treatment. This is extremely important and necessary if we are to avoid harm to individuals and environmental contamination. This review encompasses the examination of laboratory medical waste, various categories of chemical waste, and strategies to minimize and ensure the safe disposal of these toxic agents. As far as the authors are aware, this is the first review that focuses on the effects of laboratory-generated chemical wastes and environmental ethics. This is a neglected topic in healthcare education, and this review will serve as a valuable resource for students. Full article
(This article belongs to the Special Issue Exposure and Risk in the Laboratory)
18 pages, 1328 KiB  
Article
Spatiotemporal Patterns of Indoor Air Pollution and Its Association with Depressive Symptoms Among Schoolchildren in China
by Yaqi Wang, Di Shi, Xinyao Ye, Jiajia Dang, Jianhui Guo, Xinyao Lian, Shaoguan Wang, Jieyun Song, Yanhui Dong, Jing Li and Yi Song
Toxics 2025, 13(7), 563; https://doi.org/10.3390/toxics13070563 - 1 Jul 2025
Viewed by 513
Abstract
Despite spending a substantial proportion of their time indoors, the mental health effects of indoor air pollution on children and adolescents remain inadequately explored. This study aimed to elucidate the spatiotemporal variations and sociodemographic inequalities in exposure to multiple indoor pollutants and to [...] Read more.
Despite spending a substantial proportion of their time indoors, the mental health effects of indoor air pollution on children and adolescents remain inadequately explored. This study aimed to elucidate the spatiotemporal variations and sociodemographic inequalities in exposure to multiple indoor pollutants and to assess their potential associations with depressive symptoms among school-aged children in Beijing. Using real-time portable monitors, concentrations of fine particulate matter (PM2.5), coarse particulate matter (PM10), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOC), temperature, and humidity in classrooms and bedrooms were measured during both weekdays and weekends. Moreover, substantial spatiotemporal heterogeneity was observed. It was found that concentrations of PM2.5, PM10, and TVOC peaked in classrooms during weekday daytime, while CO2 levels were highest in bedrooms on weekend nights. Exposure levels were notably higher among children whose mothers had lower educational attainment and those living in recently renovated homes, indicating marked socio-demographic disparities. In multivariable logistic regression models, indoor exposure to CO2 and TVOC was significantly associated with increased odds of depressive symptoms. These findings highlight the critical need to improve indoor air quality through enhanced ventilation and the mitigation of emissions from indoor sources, particularly within school and residential settings. The results offer valuable empirical evidence to guide the development of targeted environmental interventions and public health policies designed to support and enhance the psychological well-being of children. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

15 pages, 1297 KiB  
Article
Thermal and Emission Performance Evaluation of Hydrogen-Enriched Natural Gas-Fired Domestic Condensing Boilers
by Radosław Jankowski, Rafał Ślefarski, Ireneusz Bauma and Giennadii Varlamov
Energies 2025, 18(13), 3240; https://doi.org/10.3390/en18133240 - 20 Jun 2025
Viewed by 355
Abstract
The combustion of gaseous fuels in condensing boilers contributes to the greenhouse gas and toxic compound emissions in exhaust gases. Hydrogen, as a clean energy carrier, could play a key role in decarbonizing the residential heating sector. However, its significantly different combustion behavior [...] Read more.
The combustion of gaseous fuels in condensing boilers contributes to the greenhouse gas and toxic compound emissions in exhaust gases. Hydrogen, as a clean energy carrier, could play a key role in decarbonizing the residential heating sector. However, its significantly different combustion behavior compared to hydrocarbon fuels requires thorough investigation prior to implementation in heating systems. This study presents experimental and theoretical analyses of the co-combustion of natural gas with hydrogen in low-power-output condensing boilers (second and third generation), with hydrogen content of up to 50% by volume. The results show that mixtures of hydrogen and natural gas contribute to increasing heat transfer in boilers through convection and flue gas radiation. They also highlight the benefits of using the heat from the condensation of vapors in the flue gases. Other studies have observed an increase in efficiency of up to 1.6 percentage points compared to natural gas at 50% hydrogen content. Up to a 6% increase in the amount of energy recovered by water vapor condensation was also recorded, while exhaust gas losses did not change significantly. Notably, the addition of hydrogen resulted in a substantial decrease in the emission of nitrogen oxides (NOx) and carbon monoxide (CO). At 50% hydrogen content, NOx emissions decreased several-fold to 2.7 mg/m3, while CO emissions were reduced by a factor of six, reaching 9.9 mg/m3. All measured NOx values remained well below the current regulatory limit for condensing gas boilers, which is 33.5 mg/m3. These results highlight the potential of hydrogen blending as a transitional solution on the path toward cleaner residential heating systems. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

17 pages, 1128 KiB  
Article
Occurrence, Migration Behavior, and Environmental Burden of Phthalate Esters in Flooring Materials Used in Newly Renovated Chinese Homes
by Ying Zhang, Li-Bo Chen, Hao-Yang Shen, Zi-Chao Wu, Ning-Zheng Zhu, Chong-Jing Gao and Ying Guo
Toxics 2025, 13(7), 517; https://doi.org/10.3390/toxics13070517 - 20 Jun 2025
Viewed by 400
Abstract
Phthalic acid esters (PAEs), a class of synthetic semi-volatile organic compounds, are extensively incorporated into decorative materials. However, their specific occurrence, migration behaviors, and environmental impact on these materials—which comprise the largest surface areas in residential settings—remain insufficiently understood. This study investigated the [...] Read more.
Phthalic acid esters (PAEs), a class of synthetic semi-volatile organic compounds, are extensively incorporated into decorative materials. However, their specific occurrence, migration behaviors, and environmental impact on these materials—which comprise the largest surface areas in residential settings—remain insufficiently understood. This study investigated the distribution, emission dynamics, and environmental burdens of PAEs in flooring commonly used in Chinese households. The results showed that PAEs are widespread in flooring, with total concentrations ranging from 1220 to 166,000 ng/g (14,100 ng/g, median value). Solid wood flooring (55,900 ng/g) exhibited significantly higher PAE levels compared to engineered flooring (22,600 ng/g) and laminate flooring (4000 ng/g) (p < 0.05). Migration experiments revealed that solid wood flooring tended to continuously release PAEs, laminate flooring showed a pronounced capacity for PAE absorption, and engineered flooring exhibited both release and absorption behaviors. The initial PAE concentration is the dominant factor influencing migration rates, while the flooring type and substrate density also contribute to varying degrees. The estimated environmental burdens of PAEs resulting from flooring in newly renovated Chinese households ranged from 3.63 × 109 ng to 3.45 × 1011 ng, with a median value of 1.23 × 1010 ng. Households in the eastern and southwestern regions exhibited the highest PAE burdens, while the southern region showed the lowest. Socioeconomic factors such as residential floor area, number of rooms, household income, and renovation budget significantly influenced the environmental burden of PAEs derived from flooring. Full article
(This article belongs to the Special Issue Environmental Behavior and Risks of Organic Pollutants)
Show Figures

Graphical abstract

21 pages, 7192 KiB  
Article
Study on Spatial Adaptability of Tangjia Village in the Weibei Loess Plateau Gully Region Based on Diverse Social Relationships
by Qin He, Guochen Zhang, Jizhe Zhou, Xintong Zhao, Ruiqi Dong and Quanhua Hou
Land 2025, 14(6), 1290; https://doi.org/10.3390/land14061290 - 17 Jun 2025
Viewed by 487
Abstract
In the context of rapid urbanization, traditional villages in the Weibei Loess Plateau gully region are facing compounded pressures from social structure disruption and physical space reconstruction. It is urgent to deeply analyze the influence mechanism of social relations on spatial adaptability. This [...] Read more.
In the context of rapid urbanization, traditional villages in the Weibei Loess Plateau gully region are facing compounded pressures from social structure disruption and physical space reconstruction. It is urgent to deeply analyze the influence mechanism of social relations on spatial adaptability. This study attempts to construct an analytical framework that couples social relationships with village spatial development. With Tangjia Village in the gully region of the Weibei Loess Plateau as an example, the study integrated various data sources such as satellite imagery, interviews, and policy documents. Through social network analysis and an improved cascade failure model, the spatial adaptation processes and characteristics based on changes in kinship, occupational ties, and geographical networks were explored. The findings indicate that (1) before 2001, kinship networks led to the formation of a monocentric settlement structure. From 2001 to 2011, occupational ties fostered the differentiation of industrial and residential zones. After 2011, geographical networks drove the multifunctional integration of space. (2) Clan-based settlement zones (consisting of 80 kinship nodes) and core cultural tourism facilities are key units in maintaining spatial adaptability. The research reveals the impact mechanism of social network fission on spatial function reorganization and proposes adaptive planning strategies, aiming to provide theoretical and practical value for the coordinated governance of society and space in traditional villages. Full article
Show Figures

Figure 1

21 pages, 422 KiB  
Article
Profiling Land Use Planning: Legislative Structures in Five European Nations
by Dimitrios Koumoulidis, Ioannis Varvaris, Diofantos Hadjimitsis, Marzia Gabriele, Raffaella Brumana, Ioannis Gitas, Nikos Georgopoulos, Azadeh Abdollahnejad, Eleni Gkounti, Dimitris Stavrakoudis, Donatella Caniani, Andriy Dorosh, Roman Derkulskyi, Oksana Sakal, Shamil Ibatullin, Yevhenii Khan, Oleksandr Melnyk, Anne Fromage Mariette, Marc Tondriaux, Andrzej Perkowski, Adam Sieczka, Mariusz Maciejczak, Chryssa Kopra, Georgia Kostaki and Paraskevi Chantziadd Show full author list remove Hide full author list
Land 2025, 14(6), 1261; https://doi.org/10.3390/land14061261 - 12 Jun 2025
Viewed by 1546
Abstract
Land use transformation, the longest-standing human-driven environmental alteration, is a pressing and complex issue that significantly impacts European landscapes and contributes to global environmental change. The urgency to act is reinforced by the European Environment Agency (EEA), which identifies industrial, commercial, and residential [...] Read more.
Land use transformation, the longest-standing human-driven environmental alteration, is a pressing and complex issue that significantly impacts European landscapes and contributes to global environmental change. The urgency to act is reinforced by the European Environment Agency (EEA), which identifies industrial, commercial, and residential development—particularly near major urban centers—as key contributors to land take. As the EU sets a vision for achieving zero net land take by 2050, assessing the readiness and coherence of national legislation becomes critical. This comprehensive study employs a comparative legal analysis across five European countries—Italy, Greece, Poland, France, and Ukraine—examining their laws, strategies, and commitments related to land degradation neutrality. Using a review of national legislation and policy documents, the research identifies systemic patterns, barriers, and opportunities within current legal frameworks. The present study aims to provide valuable insights for policymakers, planners, and academic institutions, fostering a comprehensive understanding of existing gaps, implementation, and inconsistencies in national land use legislation. Among the results, it has become evident that a typical “pathway” between the examined states in terms of the legislative framework on land use–land take is probably a utopia for the time being. The legislations in force, in several cases, are labyrinthine and multifaceted, highlighting the urgent and immediate need for simplification and standardization. The need for this action is further underscored by the fact that, in most cases, land use frameworks are characterized by complementary legislation and ongoing amendments. Ultimately, the research underscores the critical need for harmonized governance and transparent, enforceable policies, particularly in regions where deregulated land use planning persists. The diversity in legislative layers and the decentralized role of the authorities further compounds the complexity, reinforcing the importance of cross-country dialogue and EU-wide coordination in advancing sustainable land use development. Full article
Show Figures

Figure 1

18 pages, 5654 KiB  
Case Report
The Influence of Pre-Existing Tension Cracks on the Stability of Unsupported Temporary Excavations in Stratified Hard Clays: Case Study of Corfu Island, Northwestern Greece
by Panagiotis Pelekis, Anastasios Batilas, Spyridon Lainas and Nikolaos Depountis
Geosciences 2025, 15(5), 187; https://doi.org/10.3390/geosciences15050187 - 21 May 2025
Viewed by 458
Abstract
Slope failures in overconsolidated hard clays present significant geotechnical challenges, particularly in stratified formations prone to pre-existing discontinuities. Despite extensive research on residual shear strength and fissuring in stiff clays, the role of undetected tension cracks and their interaction with hydrogeological conditions in [...] Read more.
Slope failures in overconsolidated hard clays present significant geotechnical challenges, particularly in stratified formations prone to pre-existing discontinuities. Despite extensive research on residual shear strength and fissuring in stiff clays, the role of undetected tension cracks and their interaction with hydrogeological conditions in temporary excavations remains underexplored. This study addresses this research gap through a detailed case study of a slope failure during an unsupported residential excavation on Corfu Island, Greece. The investigation aimed to identify the failure mechanism, assess the influence of geological discontinuities and groundwater conditions, and evaluate the contribution of residual shear strength to slope stability. The methodology combined field observations, laboratory testing (including unconfined compression and ring shear tests), and numerical modelling using both finite element (FEM) and limit equilibrium (LEM) approaches. The results revealed that a nearly vertical, pre-existing fissure—acting as a tension crack—and water infiltration along the clay–sandstone interface significantly reduced the factor of safety, triggering a planar slide. Both FEM and LEM analyses indicated that critical conditions for failure were reached with a residual friction angle of 19°, inclined sandstone layers at 15–17°, and hydrostatic pressure from groundwater accumulation. This study demonstrates the compounded destabilizing effects of undetected discontinuities and water pressures in stratified hard clays and underscores the necessity of comprehensive geotechnical assessments for temporary excavations, even in seemingly stable formations. Full article
Show Figures

Figure 1

17 pages, 3083 KiB  
Article
Investigation of Influences on Indoor and Outdoor SVOC Exposure
by Brianna N. Rivera, Lisa M. Bramer, Christine C. Ghetu, Diana Rohlman, Kaley Adams, Katrina M. Waters and Kim A. Anderson
Int. J. Environ. Res. Public Health 2025, 22(4), 556; https://doi.org/10.3390/ijerph22040556 - 3 Apr 2025
Viewed by 833
Abstract
Americans spend approximately 90% of their time indoors, with more than 66% of that time spent in residential buildings. Factors pertaining to household behavior or environmental factors may influence types of semi-volatile organic compounds (SVOC) found indoors. Paired indoor and outdoor passive samplers [...] Read more.
Americans spend approximately 90% of their time indoors, with more than 66% of that time spent in residential buildings. Factors pertaining to household behavior or environmental factors may influence types of semi-volatile organic compounds (SVOC) found indoors. Paired indoor and outdoor passive samplers were deployed at twenty-four locations across the United States. Samples were analyzed for >1500 SVOCs to identify common patterns in exposure profiles and investigate influences of household behavior and environmental factors. Unique differences between indoor and outdoor profiles were identified, with indoor air typically having greater frequency and concentration of SVOCs relative to outdoor air. A significant relationship between fragrance chemicals and scented consumer products was identified. When considering a multifactorial approach, chemical exposures were most influenced by environmental and demographic factors. Our data highlights specific groups of chemicals identified at higher concentrations indoors and their potential influences, as well as the complexity of identifying specific sources of chemical exposures. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

30 pages, 10670 KiB  
Article
Impact of Multiple HVAC Systems on Indoor Air VOC and Radon Concentrations from Vapor Intrusion During Seasonal Usage
by John H. Zimmerman, Alan Williams, Brian Schumacher, Christopher Lutes, Rohit Warrier, Brian Cosky, Ben Thompson, Chase W. Holton and Kate Bronstein
Atmosphere 2025, 16(4), 378; https://doi.org/10.3390/atmos16040378 - 27 Mar 2025
Viewed by 678
Abstract
Subsurface contamination can migrate upward into overlying buildings, exposing the buildings’ inhabitants to contaminants that can cause detrimental health effects. This phenomenon is known as vapor intrusion (VI). When evaluating a building for VI, one must understand that seasonal and short-term variability are [...] Read more.
Subsurface contamination can migrate upward into overlying buildings, exposing the buildings’ inhabitants to contaminants that can cause detrimental health effects. This phenomenon is known as vapor intrusion (VI). When evaluating a building for VI, one must understand that seasonal and short-term variability are significant factors in determining the reasonable maximum exposure (RME) to the occupants. RME is a semi-quantitative term that refers to the lower portion of the high end of the exposure distribution—conceptually, above the 90th percentile exposure but less than the 98th percentile exposure. Samples were collected between December 2020 and April 2022 at six non-residential commercial buildings in Fairbanks, Alaska. The types of samples collected included indoor air (IA); outdoor air; subslab soil gas; soil gas; indoor radon; differential pressure; indoor and outdoor temperature; heating, ventilation, and air conditioning (HVAC) parameters; and other environmental factors. The buildings in close proximity to the volatile organic compound (VOC) source/release points presented less variability in indoor air concentrations of trichloroethylene (TCE) and tetrachloroethylene (PCE) compared to the buildings farther down gradient in the contaminated groundwater plume. The VOC data pattern for the source area buildings shows an outdoor air temperature-dominated behavior for indoor air concentrations in the summer season. HVAC system operations had less influence on long-term indoor air concentration trends than environmental factors, which is supported by similar indoor air concentration patterns independent of location within the plume. The use of soil temperature and indoor/outdoor temperatures as indicators and tracers (I&Ts) across the plume as predictors of the sampling period could produce a good estimation of the RME for the building occupants. These results, which show the use of soil temperature and indoor/outdoor temperatures as I&Ts, will help advance investigative methods for evaluation of VI in similar settings and thereby improve the protection of human health in indoor environments. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Graphical abstract

19 pages, 2197 KiB  
Article
Urban Tree Species Capturing Anthropogenic Volatile Organic Compounds—Impact on Air Quality
by Mauricio Araya, Javier Vera and Margarita Préndez
Atmosphere 2025, 16(4), 356; https://doi.org/10.3390/atmos16040356 - 21 Mar 2025
Viewed by 477
Abstract
Tropospheric ozone (O3) and other pollutants significantly affect Chile’s Metropolitan Region, posing risks to human health. As a secondary pollutant and a major photochemical oxidant, O3 formation is driven by anthropogenic volatile organic compounds (AVOCs) from the residential and transport [...] Read more.
Tropospheric ozone (O3) and other pollutants significantly affect Chile’s Metropolitan Region, posing risks to human health. As a secondary pollutant and a major photochemical oxidant, O3 formation is driven by anthropogenic volatile organic compounds (AVOCs) from the residential and transport sectors, the main sources of gaseous emissions. This study evaluated the AVOC capture capacity of leaf material from two tree species, Quillaja saponaria (native species) and Robinia pseudoacacia (exotic species), as potential urban biomonitors. Leaf samples were collected near nine SINCA official monitoring stations and the Antumapu University Campus, stored frozen, and analyzed by HS-SPME-GC/MSD for AVOC quantification. Photochemical reactivity and O3 formation potential were assessed using equivalent propylene concentration (Prop-Equiv) and Ozone Formation Potential (OFP) methods. The results showed that both species captured atmospheric AVOCs, confirming their role as bioindicators. However, Q. saponaria adsorbed significantly higher AVOC concentrations and exhibited greater tropospheric O3 formation potential than R. pseudoacacia. Given the AVOC adsorption capacity of both tree species, they could be used as biomonitors for styrene and also as a biomonitor for toluene in the case of Q. saponaria. This research highlights the importance of selecting tree capacity to improve urban air quality. Full article
Show Figures

Figure 1

8 pages, 203 KiB  
Perspective
Energy Recovery Ventilation: What Is Needed to Fill the Research Gaps Related to Its Effects on Exposure to Indoor Bio-Aerosols, Nanoparticulate, and Gaseous Indoor Air Pollution
by Yevgen Nazarenko and Chitra Narayanan
Atmosphere 2025, 16(3), 309; https://doi.org/10.3390/atmos16030309 - 7 Mar 2025
Viewed by 1205
Abstract
Indoor air quality (IAQ) impacts human health, productivity, and well-being. As buildings become more energy-efficient and tightly sealed, the need for effective ventilation systems that maintain adequate IAQ grows. Energy Recovery Ventilators (ERVs) ensure adequate IAQ by bringing fresh outdoor air indoors while [...] Read more.
Indoor air quality (IAQ) impacts human health, productivity, and well-being. As buildings become more energy-efficient and tightly sealed, the need for effective ventilation systems that maintain adequate IAQ grows. Energy Recovery Ventilators (ERVs) ensure adequate IAQ by bringing fresh outdoor air indoors while minimizing costly energy wastage. ERVs provide major economic, health, and well-being benefits and are a critical technology in the fight against climate change. However, little is known about the impact of ERV operation on the generation and fate of particulate and gaseous indoor air pollutants, including toxic, carcinogenic, allergenic, and infectious air pollutants. Specifically, the air pollutant crossover, aerosol deposition within ERVs, the chemical identity and composition of aerosols and volatile organic compounds emitted by ERVs themselves and by the accumulated pollutants within them, and the effects on bioaerosols must be investigated. To fill these research gaps, both field and laboratory-based experimental research that closely mimics real-life conditions within a controlled environment is needed to explore critical aspects of ERVs’ effects on indoor air pollution. Filling the research gaps identified herein is urgently needed to alert and inform the industry about how to optimize ERVs to help prevent air pollutant generation and recirculation from these systems and enhance their function of pollutant removal from residential and commercial buildings. Addressing these knowledge gaps related to ERV design and operation will enable evidence-based recommendations and generate valuable insights for engineers, policymakers, and heating, ventilation and air conditioning (HVAC) professionals to create healthier indoor environments. Full article
(This article belongs to the Topic Indoor Air Quality and Built Environment)
16 pages, 4560 KiB  
Article
Volatile Organic Compounds (VOCs): Senegalese Residential Exposure and Health Risk Assessment
by Salimata Thiam, Mouhamadou Lamine Daffe, Fabrice Cazier, Awa Ndong Ba, Anthony Verdin, Paul Genevray, Dorothée Dewaele, Dominique Courcot and Mamadou Fall
Air 2025, 3(1), 6; https://doi.org/10.3390/air3010006 - 7 Feb 2025
Cited by 2 | Viewed by 1629
Abstract
Indoor air pollution constitutes a public health problem due to the long time that individuals spend in enclosed spaces every day. The present study aims to investigate the level of volatile organic compounds (VOCs) in indoor air in households in Senegal, and to [...] Read more.
Indoor air pollution constitutes a public health problem due to the long time that individuals spend in enclosed spaces every day. The present study aims to investigate the level of volatile organic compounds (VOCs) in indoor air in households in Senegal, and to assess health risks related to residents’ exposure. Of the 17 VOCs identified, 16 were detected in Medina accommodations versus 14 in Darou Khoudoss. Toluene levels reached 70.9 μg/m3 in Medina and 18.5 μg/m3 in Darou Khoudoss, which were the highest compared to other compounds. The sum of Benzene, Toluene, Ethylbenzene, o-Xylene, and 1,2,4-trimethylbenzene concentrations were two times higher in Medina (79.57 µg/m3 versus 37.1 µg/m3). Furthermore, VOCs were found at higher levels in living rooms compared to other living spaces. The highest benzene and acetone concentrations were estimated at 13.6 µg/m3 and 8.4 µg/m3, respectively, in households where incense was burnt daily, while the highest formaldehyde levels were observed in households using incense seasonally (6.8 µg/m3). As regards the health risks associated with exposure of residents, the lifetime cancer risks were all above the WHO tolerable limit (10−5–10−6). Exposure to benzene (8.5 µg/m3) associated with a lifetime risk of leukemia (51.3 per million people exposed) was higher in Darou Khoudoss, while the risk of nasopharyngeal cancer (600 per million people exposed) associated with exposure to formaldehyde (4.23 µg/m3) was higher in Medina. Full article
Show Figures

Figure 1

Back to TopTop