Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (147)

Search Parameters:
Keywords = reserve capacity assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4069 KiB  
Article
Forest Volume Estimation in Secondary Forests of the Southern Daxing’anling Mountains Using Multi-Source Remote Sensing and Machine Learning
by Penghao Ji, Wanlong Pang, Rong Su, Runhong Gao, Pengwu Zhao, Lidong Pang and Huaxia Yao
Forests 2025, 16(8), 1280; https://doi.org/10.3390/f16081280 - 5 Aug 2025
Abstract
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have [...] Read more.
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have limitations in capturing forest vertical height information and may suffer from reflectance saturation. While LiDAR data can provide more detailed vertical structural information, they come with high processing costs and limited observation range. Therefore, improving the accuracy of volume estimation through multi-source data fusion has become a crucial challenge and research focus in the field of forest remote sensing. In this study, we integrated Sentinel-2 multispectral data, Resource-3 stereoscopic imagery, UAV-based LiDAR data, and field survey data to quantitatively estimate the forest volume in Saihanwula Nature Reserve, located in Inner Mongolia, China, on the southern part of Daxing’anling Mountains. The study evaluated the performance of multi-source remote sensing features by using recursive feature elimination (RFE) to select the most relevant factors and applied four machine learning models—multiple linear regression (MLR), k-nearest neighbors (kNN), random forest (RF), and gradient boosting regression tree (GBRT)—to develop volume estimation models. The evaluation metrics include the coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (rRMSE). The results show that (1) forest Canopy Height Model (CHM) data were strongly correlated with forest volume, helping to alleviate the reflectance saturation issues inherent in spectral texture data. The fusion of CHM and spectral data resulted in an improved volume estimation model with R2 = 0.75 and RMSE = 8.16 m3/hm2, highlighting the importance of integrating multi-source canopy height information for more accurate volume estimation. (2) Volume estimation accuracy varied across different tree species. For Betula platyphylla, we obtained R2 = 0.71 and RMSE = 6.96 m3/hm2; for Quercus mongolica, R2 = 0.74 and RMSE = 6.90 m3/hm2; and for Populus davidiana, R2 = 0.51 and RMSE = 9.29 m3/hm2. The total forest volume in the Saihanwula Reserve ranges from 50 to 110 m3/hm2. (3) Among the four machine learning models, GBRT consistently outperformed others in all evaluation metrics, achieving the highest R2 of 0.86, lowest RMSE of 9.69 m3/hm2, and lowest rRMSE of 24.57%, suggesting its potential for forest biomass estimation. In conclusion, accurate estimation of forest volume is critical for evaluating forest management practices and timber resources. While this integrated approach shows promise, its operational application requires further external validation and uncertainty analysis to support policy-relevant decisions. The integration of multi-source remote sensing data provides valuable support for forest resource accounting, economic value assessment, and monitoring dynamic changes in forest ecosystems. Full article
(This article belongs to the Special Issue Mapping and Modeling Forests Using Geospatial Technologies)
Show Figures

Figure 1

37 pages, 3151 KiB  
Review
Systematic Review of Multi-Objective UAV Swarm Mission Planning Systems from Regulatory Perspective
by Luke Checker, Hui Xie, Siavash Khaksar and Iain Murray
Drones 2025, 9(7), 509; https://doi.org/10.3390/drones9070509 - 20 Jul 2025
Viewed by 710
Abstract
Advancements in Unmanned Aerial Vehicle (UAV) technologies have increased exponentially in recent years, with UAV swarm being a key area of interest. UAV swarm overcomes the energy reserve, payload, and single-objective limitations of single UAVs, enabling broader mission scopes. Despite these advantages, UAV [...] Read more.
Advancements in Unmanned Aerial Vehicle (UAV) technologies have increased exponentially in recent years, with UAV swarm being a key area of interest. UAV swarm overcomes the energy reserve, payload, and single-objective limitations of single UAVs, enabling broader mission scopes. Despite these advantages, UAV swarm has yet to see widespread application within global industry. A leading factor hindering swarm application within industry is the divide that currently exists between the functional capacity of modern UAV swarm systems and the functionality required by legislation. This paper investigates this divide through an overview of global legislative practice, contextualized via a case study of Australia’s UAV regulatory environment. The overview highlighted legislative objectives that coincided with open challenges in the UAV swarm literature. These objectives were then formulated into analysis criteria that assessed whether systems presented sufficient functionality to address legislative concern. A systematic review methodology was used to apply analysis criteria to multi-objective UAV swarm mission planning systems. Analysis focused on multi-objective mission planning systems due to their role in defining the functional capacity of UAV swarms within complex real-world operational environments. This, alongside the popularity of these systems within the modern literature, makes them ideal candidates for defining new enabling technologies that could address the identified areas of weakness. The results of this review highlighted several legislative considerations that remain under-addressed by existing technologies. These findings guided the proposal of enabling technologies to bridge the divide between functional capacity and legislative concern. Full article
Show Figures

Figure 1

16 pages, 755 KiB  
Review
Hip Fracture as a Systemic Disease in Older Adults: A Narrative Review on Multisystem Implications and Management
by Silvia Andaloro, Stefano Cacciatore, Antonella Risoli, Rocco Maria Comodo, Vincenzo Brancaccio, Riccardo Calvani, Simone Giusti, Mathias Schlögl, Emanuela D’Angelo, Matteo Tosato, Francesco Landi and Emanuele Marzetti
Med. Sci. 2025, 13(3), 89; https://doi.org/10.3390/medsci13030089 - 11 Jul 2025
Viewed by 692
Abstract
Hip fractures are among the most serious health events in older adults, frequently leading to disability, loss of independence, and elevated mortality. In 2019, an estimated 9.6 million new cases occurred globally among adults aged ≥ 55 years, with an incidence rate of [...] Read more.
Hip fractures are among the most serious health events in older adults, frequently leading to disability, loss of independence, and elevated mortality. In 2019, an estimated 9.6 million new cases occurred globally among adults aged ≥ 55 years, with an incidence rate of 681 per 100,000. Despite improved surgical care, one-year mortality remains high (15–30%), and fewer than half of survivors regain their pre-fracture functional status. Traditionally regarded as mechanical injuries, hip fractures are now increasingly recognized as systemic events reflecting and accelerating biological vulnerability and frailty progression. We synthesize evidence across biological, clinical, and social domains to explore the systemic implications of hip fracture, from the acute catabolic response and immune dysfunction to long-term functional decline. The concept of intrinsic capacity, introduced by the World Health Organization, offers a resilience-based framework to assess the multidimensional impact of hip fracture on physical, cognitive, and psychological function. We highlight the importance of orthogeriatric co-management, early surgical intervention, and integrated rehabilitation strategies tailored to the individual’s functional reserves and personal goals. Innovations such as digital health tools, biological aging biomarkers, and personalized surgical approaches represent promising avenues to enhance recovery and autonomy. Ultimately, we advocate for a shift toward interdisciplinary, capacity-oriented models of care that align with the goals of healthy aging and enable recovery that transcends survival, focusing instead on restoring function and quality of life. Full article
Show Figures

Figure 1

41 pages, 4632 KiB  
Article
Assessing the Resilience of Malawi’s Power Grid to the 2022 Tropical Cyclone Ana Using a Combination of the AFLEPT Metric Framework and Resilience Capacities
by Joyce Nyuma Chivunga, Fransisco Gonzalez-Longatt, Zhengyu Lin and Richard Blanchard
Energies 2025, 18(12), 3165; https://doi.org/10.3390/en18123165 - 16 Jun 2025
Viewed by 399
Abstract
While power system resilience studies continue to grow due to the criticality of electrical infrastructures, the challenge of inconsistencies in evaluation frameworks remains. Furthermore, the desire for researchers to contribute towards the development of practical assessment frameworks continues to grow. In addition, the [...] Read more.
While power system resilience studies continue to grow due to the criticality of electrical infrastructures, the challenge of inconsistencies in evaluation frameworks remains. Furthermore, the desire for researchers to contribute towards the development of practical assessment frameworks continues to grow. In addition, the locality of resilience issues has challenged researchers to find context-based resilience solutions. This paper addresses these by proposing an assessment framework, which evaluates the five phases of the resilience trapezoid: preventive, absorptive, adaptive, restorative, and transformative. This framework presents metrics for measuring preventive indicators for the anticipating system status, frequency of functionality degradation, how low functionality drops, extension in a degraded state, the promptness of recovery, and system transformation—the AFLEPT model. The AFLEPT framework is applied, with its resilience indicators and capacities, to evaluate the resilience of Malawi’s transmission network to the 2022 Tropical Cyclone Ana (TCA). DigSILENT PowerFactory 2023 SP5 was utilised to support this research. The results indicate significant resilience challenges, manifested by an inadequate generation reserve, significant decline in grid functionality, extended total grid outage hours, longer restoration times, and a lack of transformation. Eight percent of key transmission lines and eighteen percent of power generation infrastructure were completely damaged by the TCA, which lasted up to 25 days and 16 months to, respectively, before restoration. Thus, the analysis reveals gaps in preventive, absorptive, adaptive, restorative, and transformative resilience capacities. The results underscore the need for context-based infrastructural and operational resilience enhancement measures, which have been discussed in this paper. Directions for further research have been proposed, which include exploring multiple grid improvement measures and an economic modelling of these measures. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

27 pages, 2926 KiB  
Article
Research on Resilience Evaluation and Prediction of Urban Ecosystems in Plateau and Mountainous Area: Case Study of Kunming City
by Hui Li, Fucheng Liang, Jiaheng Du, Yang Liu, Junzhi Wang, Qing Xu, Liang Tang, Xinran Zhou, Han Sheng, Yueying Chen, Kaiyan Liu, Yuqing Li, Yanming Chen and Mengran Li
Sustainability 2025, 17(12), 5515; https://doi.org/10.3390/su17125515 - 15 Jun 2025
Viewed by 628
Abstract
In the face of increasingly complex urban challenges, a critical question arises: can urban ecosystems maintain resilience, vitality, and sustainability when confronted with external threats and pressures? Taking Kunming—a plateau-mountainous city in China—as a case study, this research constructs an urban ecosystem resilience [...] Read more.
In the face of increasingly complex urban challenges, a critical question arises: can urban ecosystems maintain resilience, vitality, and sustainability when confronted with external threats and pressures? Taking Kunming—a plateau-mountainous city in China—as a case study, this research constructs an urban ecosystem resilience (UER) assessment model based on the DPSIR (Driving forces, Pressures, States, Impacts, and Responses) framework. A total of 25 indicators were selected via questionnaire surveys, covering five dimensions: driving forces such as natural population growth, annual GDP growth, urbanization level, urban population density, and resident consumption price growth; pressures including per capita farmland, per capita urban construction land, land reclamation and cultivation rate, proportion of natural disaster-stricken areas, and unit GDP energy consumption; states measured by Evenness Index (EI), Shannon Diversity Index (SHDI), Aggregation Index (AI), Interspersion and Juxtaposition Index (IJI), Landscape Shape Index (LSI), and Normalized Vegetation Index (NDVI); impacts involving per capita GDP, economic density, per capita disposable income growth, per capita green space area, and per capita water resources; and responses including proportion of natural reserve areas, proportion of environmental protection investment to GDP, overall utilization of industrial solid waste, and afforestation area. Based on remote sensing and other data, indicator values were calculated for 2006, 2011, and 2016. The entire-array polygon indicator method was used to visualize indicator interactions and derive composite resilience index values, all of which remained below 0.25—indicating a persistent low-resilience state, marked by sustained economic growth, frequent natural disasters, and declining ecological self-recovery capacity. Forecasting results suggest that, under current development trajectories, Kunming’s UER will remain low over the next decade. This study is the first to integrate the DPSIR framework, entire-array polygon indicator method, and Grey System Forecasting Model into the evaluation and prediction of urban ecosystem resilience in plateau-mountainous cities. The findings highlight the ecosystem’s inherent capacities for self-organization, adaptation, learning, and innovation and reveal its nested, multi-scalar resilience structure. The DPSIR-based framework not only reflects the complex human–nature interactions in urban systems but also identifies key drivers and enables the prediction of future resilience patterns—providing valuable insights for sustainable urban development. Full article
(This article belongs to the Special Issue Sustainable and Resilient Regional Development: A Spatial Perspective)
Show Figures

Figure 1

27 pages, 1213 KiB  
Systematic Review
Treatment Modalities for Angina with Non-Obstructive Coronary Arteries (ANOCA): A Systematic Review and Meta-Analysis
by Fabienne E. Vervaat, Annemiek de Vos, Jimmy Schenk, Pim A. L. Tonino and Inge F. Wijnbergen
J. Clin. Med. 2025, 14(12), 4069; https://doi.org/10.3390/jcm14124069 - 9 Jun 2025
Viewed by 709
Abstract
Background and Objectives: Up to 40% of patients undergoing a coronary angiogram due to angina pectoris have no obstructive coronary artery disease, also known as angina with non-obstructive coronary arteries (ANOCA). ANOCA is associated with significant impairment in patients’ quality of life, increased [...] Read more.
Background and Objectives: Up to 40% of patients undergoing a coronary angiogram due to angina pectoris have no obstructive coronary artery disease, also known as angina with non-obstructive coronary arteries (ANOCA). ANOCA is associated with significant impairment in patients’ quality of life, increased risk of myocardial infarction and all-cause mortality. Approximately 25% of patients with ANOCA have persisting symptoms despite optimal medical therapy. There is a lack of in-depth knowledge regarding tailored treatment for patients with ANOCA due to a scarcity of trials designed to assess the effect of treatment modalities. The aim of this systematic review and meta-analysis is to give clinicians an overview of the efficacy of current treatment modalities for patients with ANOCA. Methods: PudMed/MEDLINE, Embase, the Cochrane Library and clinical trial registries were searched for randomised controlled and cohort studies regarding treatment modalities for ANOCA. The main outcome was change in angina pectoris frequency for each treatment modality. Secondary outcomes included changes in exercise capacity, quality of life, Canadian Cardiovascular Society (CCS) class, coronary flow reserve (CFR) and survival. Results: In total, 80 studies were included and used in the meta-analysis, of which ten studies met the current definition of ANOCA. Angina pectoris frequency improved significantly in the majority of the treatment modalities, with neuromodulation resulting in −3.35 standardised mean difference (SMD) (95% CI: −5.13; −1.56), trimetazidine in −1.74 SMD (−2.63; −0.85), traditional Chinese medicine in −1.55 SMD (−2.36; −0.75), beta-blockers in −1.32 SMD (−1.88; −0.77), enhanced external counterpulsation in −1.27 SMD (−2.04; −0.49), stem cell therapy in −1.04 SMD (−1.51; −0.57), lifestyle interventions in −0.86 SMD (−1.15; −0.57), RAAS-inhibitors in −0.83 SMD (−1.31; −0.35) and calcium channel blockers in −0.64 SMD (−0.92; −0.35). Conclusions: This meta-analysis into treatment modalities for patients with ANOCA shows a significant improvement in angina pectoris frequency in the majority of included treatment modalities. However, these results should be interpreted cautiously, as only ten of the studies included in the meta-analysis meet the current definition of ANOCA. This review underlines the importance of undertaking new studies with existing treatment modalities to determine the efficacy in patients with ANOCA. Full article
Show Figures

Figure 1

17 pages, 1010 KiB  
Article
National Energy and Climate Plan—Polish Participation in the Implementation of European Climate Policy in the 2040 Perspective and Its Implications for Energy Sustainability
by Stanisław Tokarski, Beata Urych and Adam Smolinski
Sustainability 2025, 17(11), 5035; https://doi.org/10.3390/su17115035 - 30 May 2025
Viewed by 867
Abstract
This paper analyses Poland’s participation in implementing European climate policy within the framework of the National Energy and Climate Plan (NECP), looking toward 2040. It assesses the feasibility of Poland’s commitments to the European Union’s decarbonisation targets, particularly with regard to transitioning from [...] Read more.
This paper analyses Poland’s participation in implementing European climate policy within the framework of the National Energy and Climate Plan (NECP), looking toward 2040. It assesses the feasibility of Poland’s commitments to the European Union’s decarbonisation targets, particularly with regard to transitioning from fossil fuels to renewable energy sources and nuclear power. The study highlights the challenges related to the speed of the energy transition, the security of electricity supply, and the competitiveness of the national economy. The study also assesses the energy mix scenarios proposed in the NECP, taking into account historical energy consumption data, economic and demographic projections, and expert analyses of energy security. It also critically examines the risks of delayed investment in nuclear and offshore wind, the potential shortfall in renewable energy infrastructure, and the need for transitional solutions, including coal and gas generation. An alternative scenario is proposed to mitigate potential energy supply shortfalls between 2035 and 2040, highlighting the role of energy storage, strategic reserves, and the maintenance of certain fossil fuel capacities. Poland’s energy policy should prioritize flexibility and synchronization with EU objectives, while ensuring economic stability and technological feasibility. The analysis underlines that the sustainable development of the national energy system requires not only alignment with European climate goals, but also a long-term balance between environmental responsibility, energy affordability, and security. Strengthening the sustainability dimension in energy policy decisions—by integrating resilience, renewability, and social acceptance—is essential to ensure a just and enduring energy transition. Full article
Show Figures

Figure 1

18 pages, 2888 KiB  
Article
Effects of Stand Structure on Aboveground Biomass in Mixed Moso Bamboo Forests in Tianbaoyan National Nature Reserve, Fujian, China
by Ziyun Deng, Qing Xu, Shaohui Fan, Songpo Wei, Guanglu Liu, Zhiteng Li and Changtang Cai
Forests 2025, 16(6), 905; https://doi.org/10.3390/f16060905 - 28 May 2025
Viewed by 365
Abstract
Forest aboveground biomass (AGB) serves as a crucial indicator of productivity and carbon storage capacity. While the impact of stand structure on AGB is well-documented for pure moso bamboo stands, the specific structural factors influencing AGB and the mechanisms driving these effects in [...] Read more.
Forest aboveground biomass (AGB) serves as a crucial indicator of productivity and carbon storage capacity. While the impact of stand structure on AGB is well-documented for pure moso bamboo stands, the specific structural factors influencing AGB and the mechanisms driving these effects in mixed moso bamboo forests, characterized by species diversity and structural complexity, require further elucidation. This study analyzed 9453 bamboos and arbor trees within the TianBao MetaPlot, which were tessellated into 108 standard plots in Tianbaoyan National Nature Reserve, Fujian, China. Using a multi-method voting approach, we identified the key structural factors influencing stand AGB and employed Partial Least Squares Path Modeling (PLS-PM) to assess their direct and indirect effects. We found that the stand density, moso bamboo mixing ratio, Shannon’s index, Simpson’s index, mean tree height, openness, and tree size variation coefficient were the key structural factors influencing the stand AGB. The PLS-PM analysis showed that stand density had a negative effect on stand AGB, which can be explicitly decomposed through a direct negative effect and an indirect negative effect. Tree diversity showed a strong positive effect, supporting the niche complementarity theory. The stand mean tree height and stand tree size variation had positive effects on stand AGB, while stand openness had a negative effect. The direct effects of tree diversity, stand mean tree height, and stand openness were stronger than the indirect effects on stand AGB, while the indirect effect of stand density was greater than the aforementioned effects. These results highlight the complex interactions between stand structure and stand AGB in mixed moso bamboo forests. The negative effect of stand density on stand AGB is in contrast with previous findings on arbor forests, wherein a higher stand density often promotes AGB, highlighting the unique structural characteristics of mixed moso bamboo forests. To promote biomass accumulation and enhance carbon sequestration in mixed moso bamboo stands, it is recommended to increase the tree size variability, enhance the tree species diversity, and apply rational thinning of moso bamboo, based on site-specific conditions. Full article
Show Figures

Figure 1

23 pages, 3163 KiB  
Article
Assessment of Ecological Carrying Capacity and Spatiotemporal Evolution Analysis for Arid Areas Based on the AHP-EW Model: A Case Study of Urumqi, China
by Xiaoyan Tang, Funan Liu, Xinling Hu and Jingyu Feng
Land 2025, 14(6), 1143; https://doi.org/10.3390/land14061143 - 24 May 2025
Viewed by 467
Abstract
Ecological carrying capacity (ECC) is central to assessing the sustainability of ecosystems, aiming to quantify the limits of natural systems to support human activities while maintaining biodiversity and resource regeneration. To assess ECC, earlier studies typically used the analytic hierarchy process (AHP) method [...] Read more.
Ecological carrying capacity (ECC) is central to assessing the sustainability of ecosystems, aiming to quantify the limits of natural systems to support human activities while maintaining biodiversity and resource regeneration. To assess ECC, earlier studies typically used the analytic hierarchy process (AHP) method for modeling. In this study, we developed an AHP-EW method based on a combination of AHP and the entropy weight method, which considered important indicators including land use, vegetation, soil, location, topography, climate, and socio-economics, and constructed an ECC evaluation system. The new AHP-EW method was applied to analyze the spatiotemporal ECC patterns in Urumqi from 2000 to 2020. The results showed a general decreasing trend in ECC during the period 2000–2020. Among them, the ECC decreased significantly by 19.05% from 2000 to 2010. After 2010, the rate of decline in ECC slowed to 14.12% due to ecological conservation policies. In addition, Midong District, Dabancheng District, and Urumqi County had worse ECC. Still, in general, the distribution of ECC in each district and county showed a trend of decreasing in areas with low ECC and increasing in areas with high ECC. Cluster analysis showed that ECC improved in ecological reserve areas, while some built-up areas showed a decrease in ECC due to economic development and human activities. Driving factor analysis shows that NDVI, climate change, and land-use conversion are the key factors influencing the change in ECC in Urumqi. This study provides new ideas and technical support for ECC assessment in arid areas, which can help formulate more effective ecological protection strategies and promote the healthy and stable development of regional ecosystems. Full article
Show Figures

Figure 1

29 pages, 2822 KiB  
Article
Impact of Well-Controlled Type 2 Diabetes on Corneal Endothelium Following Cataract Surgery: A Prospective Longitudinal Analysis
by Aleksandra Opala, Łukasz Kołodziejski and Iwona Grabska-Liberek
J. Clin. Med. 2025, 14(10), 3603; https://doi.org/10.3390/jcm14103603 - 21 May 2025
Viewed by 578
Abstract
Background: The aim of this study was to evaluate corneal endothelial changes following phacoemulsification cataract surgery with intraocular lens implantation in patients with type 2 diabetes (study group) and without diabetes (control group). The study aimed to determine the extent of endothelial cell [...] Read more.
Background: The aim of this study was to evaluate corneal endothelial changes following phacoemulsification cataract surgery with intraocular lens implantation in patients with type 2 diabetes (study group) and without diabetes (control group). The study aimed to determine the extent of endothelial cell damage and the regenerative capacity of the cornea in patients with well-controlled diabetes. Methods: This study compared corneal endothelial parameters in 80 eyes (80 patients) with well-controlled type 2 diabetes and 80 eyes (80 patients) without diabetes, all of whom underwent uneventful phacoemulsification cataract surgery. Patients were examined preoperatively and at 14 days, 3 months, and 6–8 months postoperatively. Endothelial cell density (ECD), percentage of hexagonal cells (%HEX), cell size variability (CV), and central corneal thickness (CCT) were assessed using a specular microscope. Visual acuity, intraocular pressure (IOP), and cumulative dissipated energy (CDE) during phacoemulsification were also measured. Results: The study and control groups were matched for age and sex. Preoperatively, patients with type 2 diabetes had significantly lower endothelial cell density (2480.76 ± 303.48 cells/mm2) compared to the control group (2629.64 ± 304.73 cells/mm2, p = 0.002). Visual acuity was also significantly lower in the study group (0.44 ± 0.18) than in the control group (0.50 ± 0.19, p = 0.049). No significant preoperative differences were observed in IOP, CV, %HEX, or CCT. Postoperatively, both groups experienced ECD decline: −18.44%, −18.77%, and −19.05% in the study group and −15.12%, −16.42%, and −16.73% in the control group at 14 days, 3 months, and 6–8 months, respectively. Differences between groups were not statistically significant (p = 0.285). A significant %HEX decrease was observed in both groups at all time points, with a greater decline in the study group at 14 days and 3 months. CV significantly increased in both groups at 14 days and 3 months postoperatively, but no significant difference was found between groups. A significant increase in CCT was observed at 14 days and 3 months postoperatively, with a greater increase in the study group at 14 days. Preoperative visual acuity negatively correlated with CDE in both groups. Additionally, CDE negatively correlated with ECD at all time points. Conclusions: Endothelial cell density is lower in patients with well-controlled type 2 diabetes than in non-diabetic individuals. Both groups are at risk of endothelial cell loss during phacoemulsification. Despite good glycemic control and comparable preoperative endothelial morphology, the cornea in diabetic patients is more vulnerable to damage, with a prolonged regeneration process. The impaired regenerative capacity of the corneal endothelium suggests the need for additional precautions during cataract surgery in diabetic patients. Despite ECD decline and delayed endothelial regeneration, the functional status of the cornea, as indicated by visual acuity and CCT, remains stable. The adequate corneal endothelial cell reserve in well-controlled type 2 diabetes patients allows for cataract surgery without significant corneal complications. Full article
Show Figures

Figure 1

24 pages, 6093 KiB  
Article
Evaluation and Source Analysis of Plant Heavy Metal Pollution in Kalamaili Mountain Nature Reserve
by Jialin Li, Abdugheni Abliz, Buasi Nueraihemaiti, Dongping Guo and Xianhe Liu
Plants 2025, 14(10), 1521; https://doi.org/10.3390/plants14101521 - 19 May 2025
Viewed by 474
Abstract
Plants serve as vital components of ecosystems, with their contamination status acting as sensitive indicators of environmental pollution. Therefore, the precise assessment of plant heavy metal contamination and source identification are crucial for regional ecological conservation and sustainable development. This study investigated heavy [...] Read more.
Plants serve as vital components of ecosystems, with their contamination status acting as sensitive indicators of environmental pollution. Therefore, the precise assessment of plant heavy metal contamination and source identification are crucial for regional ecological conservation and sustainable development. This study investigated heavy metal pollution in four characteristic plant species (Anabasis aphylla L., Alhagi camelorum Fisch., Reaumuria songonica (PalL)Maxim., and Haloxylon ammodendron (C. A. Mey.) Bunge.) within the Kalamaili Mountain Nature Reserve, employing comprehensive methodologies including pollution indices, bioconcentration factors (BCFs), absolute principal component score–multiple linear regression (APCS-MLR), and the random forest model (RF). The key findings revealed the following: The soil exhibited severe Cd and Hg contamination. The plant Cr concentrations exceeded standard limits by 31.89 to 147 fold. The Pb, Hg, and As content in plants showed significant differences. The plants displayed differential metal enrichment capacities, ranked as Cr (BCF = 3.28) > Hg (1.22) > Cd (0.92) > Cu (0.25) > Zn (0.15) > Pb (0.125) > As (0.125), highlighting Cr, Hg, and Cd as priority ecological hazards. Complex interactions were observed, with Reaumuria songonica (PalL)Maxim. showing strong Cd soil–plant correlation (r = 0.78), whereas Alhagi camelorum Fisch. demonstrated negative associations (Cd: r = −0.21). APCS-MLR identified mining/smelting as primary contributors to Cd (63.49%), Zn (55.66%), and Cr (45.51%), while transportation dominated Pb emissions (72.92%). Mercury pollution originated from mixed sources (56.18%), likely involving atmospheric deposition, and RF modeling corroborated these patterns, confirming industrial and transportation synergies for Cd, Zn, Cr, Cu, Hg, and As, with Pb predominantly linked to vehicular emissions. This multidisciplinary approach provides scientific evidence for establishing heavy metal monitoring systems and formulating targeted remediation strategies in arid ecologically fragile regions. Full article
(This article belongs to the Topic Effect of Heavy Metals on Plants, 2nd Volume)
Show Figures

Figure 1

30 pages, 12333 KiB  
Article
Investigating the Geothermal Potentiality of Hail Granites, Northern KSA: The Preliminary Results
by Aref Lashin, Oussama Makhlouf, Faisal K. Zaidi and Abdulmalek Amin Noman
Sustainability 2025, 17(10), 4656; https://doi.org/10.3390/su17104656 - 19 May 2025
Viewed by 617
Abstract
The work aims to give a preliminary investigation of the geothermal potentiality of the hot dry granitic rocks in the Hail area, Northern KSA. The Hail area is characterized by a massive exposed belt of radioactive granitic rocks in the southern part, while [...] Read more.
The work aims to give a preliminary investigation of the geothermal potentiality of the hot dry granitic rocks in the Hail area, Northern KSA. The Hail area is characterized by a massive exposed belt of radioactive granitic rocks in the southern part, while the northern part is covered by a sedimentary section. A comprehensive methodology utilizing different categories of mineralogical petrographic, geochemical, geophysical well logging and, radiometry datasets, was used to assess the radiogenic heat production capacity of this granite. The measured data are integrated and interpreted to quantify the potential geothermal capacity of the granite and estimate its possible power production. The radioactivity and radiogenic heat production (RHP) of the Hail granites are among the highest recorded values in Saudi Arabia. Land measurements indicate uranium, thorium, potassium, and RHP values of 17.80 ppm, 90.0 ppm, 5.20%, and 11.93 µW/m3, respectively. The results indicated the presence of a reasonable subsurface geothermal reservoir condition with heat flow up to 99.87 mW/M2 and a reservoir temperature of 200 °C (5 km depth). Scenarios for energy production through injecting water and high-pressure CO2 in the naturally/induced fractured rock are demonstrated. Reserve estimate revealed that at a 2% heat recovery level, the Hail granites could generate about 3.15 × 1016 MWe, contributing to an average figure of 3.43 × 1012 kWh/y, for annual energy per capita Saudi share. The results of this study emphasized the potential contribution of the Hail granite in the future of the energy mix of KSA, as a new renewable and sustainable resource. It is recommended to enhance the surface geophysical survey in conjunction with a detailed thermo-mechanical laboratory investigation to delineate the subsurface orientation and geometry of the granite and understand its behavior under different temperature and pressure conditions. Full article
Show Figures

Figure 1

20 pages, 5964 KiB  
Article
Study on Spatial and Temporal Evolution of Carbon Stock in East Coastal Area of Zhejiang Based on InVEST and GIS Modeling
by Chen Fang and Zhiyu Wang
Land 2025, 14(5), 1060; https://doi.org/10.3390/land14051060 - 13 May 2025
Cited by 1 | Viewed by 442
Abstract
Global climate change, driven by increasing carbon emissions, poses a significant challenge to sustainable development, yet regional studies on carbon stock dynamics in rapidly urbanizing coastal areas remain limited. Utilizing the InVEST model and GIS spatial analysis methods, this research examines the spatiotemporal [...] Read more.
Global climate change, driven by increasing carbon emissions, poses a significant challenge to sustainable development, yet regional studies on carbon stock dynamics in rapidly urbanizing coastal areas remain limited. Utilizing the InVEST model and GIS spatial analysis methods, this research examines the spatiotemporal dynamics of carbon stock in the eastern coastal regions of Zhejiang from 2000 to 2020. The primary findings are outlined as follows: (1) Between 2000 and 2020, various land use categories experienced notable shifts, with the plow land area decreasing by 18.12%, the building site area expanding by 143.52%, the woodland area reducing by 0.08%, and the total land transfer area growing by 10.96% over the 20-year timespan. (2) Carbon stocks for the years 2000, 2005, 2010, 2015, and 2020 were 55.996 × 106 t, 55.550 × 106 t, 55.223 × 106 t, 55.399 × 106 t, and 55.656 × 106 t, respectively, displaying a pattern of initial decline followed by a recovery, with a net reduction of 0.34 × 106 t. The shifts in carbon stock were mainly driven by conversions between land use types, with woodlands serving as the predominant carbon reservoir. (3) Global spatial correlation analysis reveals that carbon stocks across the five periods exhibit a distinct spatial convergence and clustering pattern; local spatial correlation analysis indicates that high-high agglomeration zones account for 4.48% of the study area, predominantly located in the mountainous regions of western Taizhou City, while low-low agglomeration zones range from 12.91% to 11.54% of the total study area, primarily situated in the urban centers of Jiaxing City and Ningbo City, areas characterized by dense populations and extensive building sites. This study provides a solid empirical basis for implementing China’s dual-carbon strategy, supporting the systematic assessment of existing carbon reserves and sink capacities, and promoting the expedited realization of carbon peaking and neutrality goals. Full article
Show Figures

Figure 1

33 pages, 3548 KiB  
Article
Analysis of ESAC-Net/EARS-Net Data from 29 EEA Countries for Spatiotemporal Associations Between Antimicrobial Use and Resistance—Implications for Antimicrobial Stewardship?
by James C. McSorley
Antibiotics 2025, 14(4), 399; https://doi.org/10.3390/antibiotics14040399 - 13 Apr 2025
Viewed by 1340
Abstract
Background/Objectives: Antimicrobial resistance is one of the foremost global health concerns of today, and it could offset much of the progress accrued in healthcare over the last century. Excessive antibiotic use accelerates this problem, but it is recognised that specific agents differ in [...] Read more.
Background/Objectives: Antimicrobial resistance is one of the foremost global health concerns of today, and it could offset much of the progress accrued in healthcare over the last century. Excessive antibiotic use accelerates this problem, but it is recognised that specific agents differ in their capacity to promote resistance, a concept recently promoted by the World Health Organisation in the form of its Access, Watch, Reserve (AWaRe) schema. Which, if any, agents should be construed as having a high proclivity for selection of resistance has been contested. The European Antimicrobial Resistance Surveillance Network (EARS-NET) and European Surveillance of Antimicrobial Consumption Network (ESAC-NET) curate population level data over time and throughout the European Economic Area (EEA). EARS-NET monitors resistance to antimicrobials amongst invasive isolates of sentinel pathogens whereas ESAC-NET tracks usage of systemic antimicrobials. Together, data from these networks were interrogated to delineate correlations between antimicrobial consumption and resistance. Methods: Using univariate and multivariate regression analyses, spatiotemporal associations between the use of specific antimicrobial classes and 14 key resistance phenotypes in five sentinel pathogens were assessed methodically for 29 EEA countries. Results: Use of second and third generation cephalosporins, extended spectrum penicillin/β-lactamase inhibitor combinations, carbapenems, fluoroquinolones, nitroimidazoles and macrolides strongly correlated with key resistance phenotypes, as did overall antimicrobial consumption. Conclusions: The data obtained mostly support the WHO AWaRe schema with critical caveats. They have the potential to inform antimicrobial stewardship initiatives in the EEA, highlighting obstacles and shortcomings which may be modified in future to minimise positive selection for problematic resistance. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

25 pages, 4525 KiB  
Review
Advancement in Research on Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
by Binbin Jin, Liwei Liao, Xinyi Shen, Zhe Mei, Qingcheng Du, Liying Liang, Bingxin Lei and Jun Du
Metals 2025, 15(4), 386; https://doi.org/10.3390/met15040386 - 29 Mar 2025
Cited by 2 | Viewed by 3651
Abstract
Silicon stands out as an exceptionally viable anode material, distinguished by its substantial capacity, plentiful natural reserves, eco-friendliness, and favorable low working potential. Nonetheless, the material’s pronounced volume fluctuations readily induce particle fragmentation, detachment of active components, and repeated disruption of the solid [...] Read more.
Silicon stands out as an exceptionally viable anode material, distinguished by its substantial capacity, plentiful natural reserves, eco-friendliness, and favorable low working potential. Nonetheless, the material’s pronounced volume fluctuations readily induce particle fragmentation, detachment of active components, and repeated disruption of the solid electrolyte interphase (SEI) layer. These factors contribute to a shortened cycle life and rapid capacity fading, thus hindering its practical application. The carbon composite approach can efficiently counteract these issues by capitalizing on silicon’s high capacity and employing carbon as a cushioning agent to diminish volume swelling, thus enhancing the deployment of silicon-based anode materials. This paper offers an exhaustive examination of the lithiation processes involved in Si/C anodes and delves into the strategic utilization of diverse carbon materials, including graphite, graphene, graphdiyne, carbon nanotubes, carbon fibers, MXenes, pitch, heteroatom-doped polymers, biomass-derived carbon, carbon-containing gas-derived carbon, MOFs, and g-C3N4 to advance the application of silicon in lithium-ion battery (LIB) anodes. Overall, this paper concentrates on summarizing the current research status and technological advancement and juxtaposes the merits and demerits of various carbon sources in Si/C anodes, thus providing a comprehensive assessment and forward-looking perspective on their future development. Full article
Show Figures

Figure 1

Back to TopTop