Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = repeat-mediated gene silencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7598 KB  
Article
Study of Function and Regulatory Factors of CaPEX3 in the Regulation of Pollen Viability in Pepper (Capsicum annuum L.)
by Qiao-Lu Zang, Lu Liu, Meng Wang and Xiao-Mei Zheng
Plants 2025, 14(22), 3441; https://doi.org/10.3390/plants14223441 - 10 Nov 2025
Cited by 1 | Viewed by 510
Abstract
The vitality of pollen significantly influences the efficiency of pollination and microspore embryogenesis. Mining genes associated with pollen vitality will help accelerate pepper (Capsicum annuum L.) breeding progress via genetic engineering. PEX (pollen extensin-like), a member of the LRX (leucine-rich [...] Read more.
The vitality of pollen significantly influences the efficiency of pollination and microspore embryogenesis. Mining genes associated with pollen vitality will help accelerate pepper (Capsicum annuum L.) breeding progress via genetic engineering. PEX (pollen extensin-like), a member of the LRX (leucine-rich repeat extensin) family, is predominantly expressed in pollen and participates in regulating pollen vitality. However, its function and regulatory factors in pepper remain elusive. In this study, GUS histochemical staining results revealed that pepper CaPEX3 could be expressed in petals, sepals, anthers, and pollens of transgenic tomato (Solanum lycopersicum L.) lines expressing CaPEX3 promoter::GUS. Moreover, inhibition of the CaPEX3 by virus-induced gene silencing (VIGS) in pepper resulted in reduced pollen germination rate and viability, while overexpression of CaPEX3 in tomato significantly enhanced germination rate and pollen viability. In addition, TRANSPARENT TESTA GLABRA 1 (CaTTG1) and Nuclear transcription factor Y subunit C9 (CaNFYC9) were screened out and identified as the upstream regulatory transcription factors of CaPEX3 through yeast one-hybrid (Y1H) screening and dual-luciferase reporter (Dual-LUC) assays. Taken together, the identification of transcription factors may reveal a more comprehensive mechanism underlying CaPEX3-mediated enhancement of pepper pollen viability. This study not only provides genetic resources for pollen viability research but also establishes a theoretical foundation for pepper breeding. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

14 pages, 2579 KB  
Article
Targeted Delivery of VEGF-siRNA to Glioblastoma Using Orientation-Controlled Anti-PD-L1 Antibody-Modified Lipid Nanoparticles
by Ayaka Matsuo-Tani, Makoto Matsumoto, Takeshi Hiu, Mariko Kamiya, Longjian Geng, Riku Takayama, Yusuke Ushiroda, Naoya Kato, Hikaru Nakamura, Michiharu Yoshida, Hidefumi Mukai, Takayuki Matsuo and Shigeru Kawakami
Pharmaceutics 2025, 17(10), 1298; https://doi.org/10.3390/pharmaceutics17101298 - 4 Oct 2025
Cited by 1 | Viewed by 1549
Abstract
Background/Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor with limited therapeutic options despite multimodal treatment. Small interfering RNA (siRNA)-based therapeutics can silence tumor-promoting genes, but achieving efficient and tumor-specific delivery remains challenging. Lipid nanoparticles (LNPs) are promising siRNA carriers; however, conventional [...] Read more.
Background/Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor with limited therapeutic options despite multimodal treatment. Small interfering RNA (siRNA)-based therapeutics can silence tumor-promoting genes, but achieving efficient and tumor-specific delivery remains challenging. Lipid nanoparticles (LNPs) are promising siRNA carriers; however, conventional antibody conjugation can impair antigen recognition and complicate manufacturing. This study aimed to establish a modular Fc-binding peptide (FcBP)-mediated post-insertion strategy to enable PD-L1-targeted delivery of VEGF-siRNA via LNPs for GBM therapy. Methods: Preformed VEGF-siRNA-loaded LNPs were functionalized with FcBP–lipid conjugates, enabling non-covalent anchoring of anti-PD-L1 antibodies through Fc interactions. Particle characteristics were analyzed using dynamic light scattering and encapsulation efficiency assays. Targeted cellular uptake and VEGF gene silencing were evaluated in PD-L1-positive GL261 glioma cells. Anti-tumor efficacy was assessed in a subcutaneous GL261 tumor model following repeated intratumoral administration using tumor volume and bioluminescence imaging as endpoints. Results: FcBP post-insertion preserved LNP particle size (125.2 ± 1.3 nm), polydispersity, zeta potential, and siRNA encapsulation efficiency. Anti-PD-L1–FcBP-LNPs significantly enhanced cellular uptake (by ~50-fold) and VEGF silencing in PD-L1-expressing GL261 cells compared to controls. In vivo, targeted LNPs reduced tumor volume by 65% and markedly suppressed bioluminescence signals without inducing weight loss. Final tumor weight was reduced by 63% in the anti-PD-L1–FcBP–LNP group (656.9 ± 125.4 mg) compared to the VEGF-siRNA LNP group (1794.1 ± 103.7 mg). The FcBP-modified LNPs maintained antibody orientation and binding activity, enabling rapid functionalization with targeting antibodies. Conclusions: The FcBP-mediated post-insertion strategy enables site-specific, modular antibody functionalization of LNPs without compromising physicochemical integrity or antibody recognition. PD-L1-targeted VEGF-siRNA delivery demonstrated potent, selective anti-tumor effects in GBM murine models. This platform offers a versatile approach for targeted nucleic acid therapeutics and holds translational potential for treating GBM. Full article
Show Figures

Graphical abstract

18 pages, 5903 KB  
Article
Oxidative Stress Mediates the Dual Regulatory Effects of Bovine Uterine ECM Remodeling Through the TGF-β1/Smad3 Pathway: Molecular Mechanisms of MMPs and COL-IV Imbalances
by Jiamei Tan, Zongjie Wang, Mingmao Yang, Ruihang Zhang, Zhongqiang Xue, Dong Zhou, Aihua Wang, Pengfei Lin and Yaping Jin
Animals 2025, 15(13), 1847; https://doi.org/10.3390/ani15131847 - 23 Jun 2025
Cited by 1 | Viewed by 1100
Abstract
Bovine endometritis is a common endocrine and reproductive disorder in postpartum dairy cows, closely associated with elevated systemic oxidative stress. This disease can lead to delayed uterine involution, repeated breeding failure, and significant economic losses in the dairy industry. Studies suggest that oxidative [...] Read more.
Bovine endometritis is a common endocrine and reproductive disorder in postpartum dairy cows, closely associated with elevated systemic oxidative stress. This disease can lead to delayed uterine involution, repeated breeding failure, and significant economic losses in the dairy industry. Studies suggest that oxidative stress may contribute to the pathological progression of endometritis by regulating ECM remodeling, but the specific molecular mechanisms remain unclear. ECM homeostasis relies on the coordinated action of matrix metalloproteinases (e.g., MMP2, MMP9) and collagen (e.g., type IV collagen, COL-IV), while the TGFβ1/Smad3 signaling pathway is implicated in ECM metabolic regulation. Therefore, elucidating the regulatory mechanisms of oxidative-stress-mediated TGFβ1/Smad3 signaling on ECM remodeling is crucial for understanding the pathogenesis of endometritis. This study investigates postpartum bovine uterine tissues, comparing inflammatory cytokines (IL-1β, IL-6, TNF-α) and oxidative-stress-related factors (GPx, SOD, CAT) between healthy and endometritis groups. Additionally, the differences in ECM-remodeling-associated proteins (MMP2, MMP9, COL-IV) and TGFβ1/Smad3 pathway activity are analyzed. To further validate the mechanisms, an oxidative stress model is established in vitro by treating bovine endometrial epithelial cells (bEECs) with 200 μM H2O2 for 4 h, followed by the valuation of the same indicators. Furthermore, gene silencing to downregulate Smad3 expression or inhibitor-mediated suppression of TGFβ1/Smad3 pathway activity is performed to observe their regulatory effects on MMP2, MMP9, and COL-IV. The results demonstrate that oxidative-stress-mediated endometritis significantly upregulates MMP2, MMP9, and the TGFβ1/Smad3 pathway activity, while suppressing COL-IV expression. Functional genetic experiments further reveal the dual regulatory role of the TGFβ1/Smad3 pathway in ECM remodeling: (1) pathway activation promotes MMP2/MMP9 expression, accelerating COL-IV degradation; (2) Smad3 positively regulates COL-IV synthesis. These findings provide a theoretical basis for targeting the TGFβ1/Smad3 pathway to mitigate the pathological progression of endometritis. Full article
(This article belongs to the Special Issue Physiology and Pathology of Bovine Reproduction)
Show Figures

Figure 1

17 pages, 3160 KB  
Article
Methylation-Mediated Silencing of miR-124-3 Regulates LRRC1 Expression and Promotes Oral Cancer Progression
by Shin-Wei Liao, Xiao-Hui Liao, Shao-Huang Wu, Yu-Fen Li, Pin-Yi Chen, Yi-Ling Wang, Yin-Che Lu and Chien-Kuo Tai
Cancers 2025, 17(7), 1136; https://doi.org/10.3390/cancers17071136 - 28 Mar 2025
Cited by 1 | Viewed by 1291
Abstract
Background: Epigenetic alterations, including DNA methylation, play a crucial role in the development of oral squamous cell carcinoma (OSCC) by regulating the expression of tumor suppressor genes and oncogenes. This study investigated the methylation status of miR-124-3 and its role in OSCC progression. [...] Read more.
Background: Epigenetic alterations, including DNA methylation, play a crucial role in the development of oral squamous cell carcinoma (OSCC) by regulating the expression of tumor suppressor genes and oncogenes. This study investigated the methylation status of miR-124-3 and its role in OSCC progression. Methods: This study applied the Illumina Infinium MethylationEPIC BeadChip assay to profile >850,000 CpG sites in paired OSCC and normal tissues. The methylation data were validated by further analyzing the methylation level of miR-124-3 by using a bisulfite pyrosequencing assay. We investigated whether miR-124-3 acts as a tumor suppressor by establishing miR-124-3-overexpressing OSCC cells and subjecting them to cell proliferation, colony formation, and migration assays. Dual-luciferase reporter assay was used to validate the target genes of miR-124-3 in OSCC cells. Results: The Infinium MethylationEPIC BeadChip and bisulfite pyrosequencing assays consistently identified hypermethylation of miR-124-3 in OSCC tissues relative to normal oral tissues. It was especially notable that miR-124-3 methylation levels were markedly higher in late-stage tumors than in early-stage, and differed significantly between early-stage tumor and normal tissues, indicating that miR-124-3 methylation is an early event in OSCC development. Methylation of miR-124-3 contributes markedly to the downregulation of the gene, leading to the increased expression of its target gene, leucine-rich repeat-containing 1 (LRRC1), which is considered to be positively associated with cancer progression. Moreover, overexpression of miR-124-3 suppressed the proliferation and migration of OSCC cells, while silencing the expression of LRRC1 produced similar tumor-suppressive effects. Luciferase reporter assays confirmed that miR-124-3 directly targets the 3′ untranslated region of LRRC1 to downregulate LRRC1 expression. Conclusions: Hypermethylation-mediated downregulation of miR-124-3 results in increased LRRC1 expression, which drives OSCC progression. These findings highlight DNA methylation of miR-124-3 as a potential biomarker for the early detection of OSCC and a therapeutic target for OSCC treatments. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
Show Figures

Figure 1

11 pages, 1391 KB  
Article
DNA Demethylase ROS1 Interferes with DNA Methylation and Activates Stress Response Genes in Plants Infected with Beet Severe Curly Top Virus
by Taicheng Jin, Yushuo Li, Xu Sun, Yidi Li, Zhuyi Xiao, Weiyan Wang, Jiaxue Yu and Liping Yang
Int. J. Mol. Sci. 2025, 26(6), 2807; https://doi.org/10.3390/ijms26062807 - 20 Mar 2025
Cited by 3 | Viewed by 1373
Abstract
DNA methylation is one mechanism of epigenetic regulation in plants. Small interfering RNAs (siRNAs) targeted endogenous genes and caused the promoters to be hypermethylated, namely RNA-directed DNA methylation (RdDM). Repressor of silencing 1 (ROS1) is an active DNA demethylase involved in the regulation [...] Read more.
DNA methylation is one mechanism of epigenetic regulation in plants. Small interfering RNAs (siRNAs) targeted endogenous genes and caused the promoters to be hypermethylated, namely RNA-directed DNA methylation (RdDM). Repressor of silencing 1 (ROS1) is an active DNA demethylase involved in the regulation of DNA methylation. This study indicates that ROS1-mediated DNA demethylation plays important roles in regulating the expression of these stress response genes and in response to biotic stresses. Further experiments confirmed that the expression level of the ROS1 gene was significantly upregulated in A. thaliana plants infected with beet severe curly top virus (BSCTV). Moreover, the DNA sequencing results demonstrated that ROS1 interferes with DNA methylation of repeat regions in the promoters of ACD6, GSTF14, and ACO3 in A. thaliana plants infected with BSCTV. These findings reveal the epigenetic mechanisms by which ROS1 regulates the expression of the stress response genes, thereby improving the adaptability of plants to biotic stresses. Full article
Show Figures

Figure 1

22 pages, 16663 KB  
Article
Gene-Silencing Therapeutic Approaches Targeting PI3K/Akt/mTOR Signaling in Degenerative Intervertebral Disk Cells: An In Vitro Comparative Study Between RNA Interference and CRISPR–Cas9
by Masao Ryu, Takashi Yurube, Yoshiki Takeoka, Yutaro Kanda, Takeru Tsujimoto, Kunihiko Miyazaki, Hiroki Ohnishi, Tomoya Matsuo, Naotoshi Kumagai, Kohei Kuroshima, Yoshiaki Hiranaka, Ryosuke Kuroda and Kenichiro Kakutani
Cells 2024, 13(23), 2030; https://doi.org/10.3390/cells13232030 - 9 Dec 2024
Cited by 3 | Viewed by 2699
Abstract
The mammalian target of rapamycin (mTOR), a serine/threonine kinase, promotes cell growth and inhibits autophagy. The following two complexes contain mTOR: mTORC1 with the regulatory associated protein of mTOR (RAPTOR) and mTORC2 with the rapamycin-insensitive companion of mTOR (RICTOR). The phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR [...] Read more.
The mammalian target of rapamycin (mTOR), a serine/threonine kinase, promotes cell growth and inhibits autophagy. The following two complexes contain mTOR: mTORC1 with the regulatory associated protein of mTOR (RAPTOR) and mTORC2 with the rapamycin-insensitive companion of mTOR (RICTOR). The phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR signaling pathway is important in the intervertebral disk, which is the largest avascular, hypoxic, low-nutrient organ in the body. To examine gene-silencing therapeutic approaches targeting PI3K/Akt/mTOR signaling in degenerative disk cells, an in vitro comparative study was designed between small interfering RNA (siRNA)-mediated RNA interference (RNAi) and clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein 9 (Cas9) gene editing. Surgically obtained human disk nucleus pulposus cells were transfected with a siRNA or CRISPR–Cas9 plasmid targeting mTOR, RAPTOR, or RICTOR. Both of the approaches specifically suppressed target protein expression; however, the 24-h transfection efficiency differed by 53.8–60.3% for RNAi and 88.1–89.3% for CRISPR–Cas9 (p < 0.0001). Targeting mTOR, RAPTOR, and RICTOR all induced autophagy and inhibited apoptosis, senescence, pyroptosis, and matrix catabolism, with the most prominent effects observed with RAPTOR CRISPR–Cas9. In the time-course analysis, the 168-h suppression ratio of RAPTOR protein expression was 83.2% by CRISPR–Cas9 but only 8.8% by RNAi. While RNAi facilitates transient gene knockdown, CRISPR–Cas9 provides extensive gene knockout. Our findings suggest that RAPTOR/mTORC1 is a potential therapeutic target for degenerative disk disease. Full article
Show Figures

Figure 1

24 pages, 10202 KB  
Article
The White Clover TrMYB33-TrSAMS1 Module Contributes to Drought Tolerance by Modulation of Spermidine Biosynthesis via an ABA-Dependent Pathway
by Youzhi Zhang, Xiaofang Qin, Zhirui He, Yan Zhang, Zhou Li, Gang Nie, Junming Zhao, Guangyan Feng and Yan Peng
Int. J. Mol. Sci. 2024, 25(13), 6974; https://doi.org/10.3390/ijms25136974 - 26 Jun 2024
Cited by 4 | Viewed by 2042
Abstract
Spermidine is well known to accumulate in plants exposed to drought, but the regulatory network associated with its biosynthesis and accumulation and the underlying molecular mechanisms remain unclear. Here, we demonstrated that the Trifolium repens TrMYB33 relayed the ABA signal to modulate drought-induced [...] Read more.
Spermidine is well known to accumulate in plants exposed to drought, but the regulatory network associated with its biosynthesis and accumulation and the underlying molecular mechanisms remain unclear. Here, we demonstrated that the Trifolium repens TrMYB33 relayed the ABA signal to modulate drought-induced spermidine production by directly regulating the expression of TrSAMS1, which encodes an S-adenosylmethionine synthase. This gene was identified by transcriptome and expression analysis in T. repens. TrSAMS1 overexpression and its pTRV-VIGS-mediated silencing demonstrated that TrSAMS1 is a positive regulator of spermidine synthesis and drought tolerance. TrMYB33 was identified as an interacting candidate through yeast one-hybrid library screening with the TrSAMS1 promoter region as the bait. TrMYB33 was confirmed to bind directly to the predicted TAACCACTAACCA (the TAACCA MYB binding site is repeated twice in tandem) within the TrSAMS1 promoter and to act as a transcriptional activator. Additionally, TrMYB33 contributed to drought tolerance by regulating TrSAMS1 expression and modulating spermidine synthesis. Additionally, we found that spermidine accumulation under drought stress depended on ABA and that TrMYB33 coordinated ABA-mediated upregulation of TrSAMS1 and spermidine accumulation. This study elucidated the role of a T. repens MYB33 homolog in modulating spermidine biosynthesis. The further exploitation and functional characterization of the TrMYB33–TrSAMS1 regulatory module can enhance our understanding of the molecular mechanisms responsible for spermidine accumulation during drought stress. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress)
Show Figures

Figure 1

20 pages, 2449 KB  
Article
RANKL, but Not R-Spondins, Is Involved in Vascular Smooth Muscle Cell Calcification through LGR4 Interaction
by Sara Fernández-Villabrille, Julia Martín-Vírgala, Beatriz Martín-Carro, Francisco Baena-Huerta, Nerea González-García, Helena Gil-Peña, Minerva Rodríguez-García, Jesús María Fernández-Gómez, José Luis Fernández-Martín, Cristina Alonso-Montes, Manuel Naves-Díaz, Natalia Carrillo-López and Sara Panizo
Int. J. Mol. Sci. 2024, 25(11), 5735; https://doi.org/10.3390/ijms25115735 - 24 May 2024
Cited by 7 | Viewed by 2099
Abstract
Vascular calcification has a global health impact that is closely linked to bone loss. The Receptor Activator of Nuclear Factor Kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, fundamental for bone metabolism, also plays an important role in vascular calcification. The Leucine-rich repeat-containing G-protein-coupled [...] Read more.
Vascular calcification has a global health impact that is closely linked to bone loss. The Receptor Activator of Nuclear Factor Kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, fundamental for bone metabolism, also plays an important role in vascular calcification. The Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a novel receptor for RANKL, regulates bone remodeling, and it appears to be involved in vascular calcification. Besides RANKL, LGR4 interacts with R-spondins (RSPOs), which are known for their roles in bone but are less understood in vascular calcification. Studies were conducted in rats with chronic renal failure fed normal or high phosphorus diets for 18 weeks, with and without control of circulating parathormone (PTH) levels, resulting in different degrees of aortic calcification. Additionally, vascular smooth muscle cells (VSMCs) were cultured under non-calcifying (1 mM phosphate) and calcifying (3 mM phosphate) media with different concentrations of PTH. To explore the role of RANKL in VSMC calcification, increasing concentrations of soluble RANKL were added to non-calcifying and calcifying media. The effects mediated by RANKL binding to its receptor LGR4 were investigated by silencing the LGR4 receptor in VSMCs. Furthermore, the gene expression of the RANK/RANKL/OPG system and the ligands of LGR4 was assessed in human epigastric arteries obtained from kidney transplant recipients with calcification scores (Kauppila Index). Increased aortic calcium in rats coincided with elevated systolic blood pressure, upregulated Lgr4 and Rankl gene expression, downregulated Opg gene expression, and higher serum RANKL/OPG ratio without changes in Rspos gene expression. Elevated phosphate in vitro increased calcium content and expression of Rankl and Lgr4 while reducing Opg. Elevated PTH in the presence of high phosphate exacerbated the increase in calcium content. No changes in Rspos were observed under the conditions employed. The addition of soluble RANKL to VSMCs induced genotypic differentiation and calcification, partly prevented by LGR4 silencing. In the epigastric arteries of individuals presenting vascular calcification, the gene expression of RANKL was higher. While RSPOs show minimal impact on VSMC calcification, RANKL, interacting with LGR4, drives osteogenic differentiation in VSMCs, unveiling a novel mechanism beyond RANKL-RANK binding. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

18 pages, 3912 KB  
Article
NLRX1 Inhibits LPS-Induced Microglial Death via Inducing p62-Dependent HO-1 Expression, Inhibiting MLKL and Activating PARP-1
by Yu-Ling Huang, Duen-Yi Huang, Vladlen Klochkov, Chi-Ming Chan, Yuan-Shen Chen and Wan-Wan Lin
Antioxidants 2024, 13(4), 481; https://doi.org/10.3390/antiox13040481 - 17 Apr 2024
Cited by 4 | Viewed by 4494
Abstract
The activation of microglia and the production of cytokines are key factors contributing to progressive neurodegeneration. Despite the well-recognized neuronal programmed cell death regulated by microglial activation, the death of microglia themselves is less investigated. Nucleotide-binding oligomerization domain, leucine-rich repeat-containing X1 (NLRX1) functions [...] Read more.
The activation of microglia and the production of cytokines are key factors contributing to progressive neurodegeneration. Despite the well-recognized neuronal programmed cell death regulated by microglial activation, the death of microglia themselves is less investigated. Nucleotide-binding oligomerization domain, leucine-rich repeat-containing X1 (NLRX1) functions as a scaffolding protein and is involved in various central nervous system diseases. In this study, we used the SM826 microglial cells to understand the role of NLRX1 in lipopolysaccharide (LPS)-induced cell death. We found LPS-induced cell death is blocked by necrostatin-1 and zVAD. Meanwhile, LPS can activate poly (ADP-ribose) polymerase-1 (PARP-1) to reduce DNA damage and induce heme oxygenase (HO)-1 expression to counteract cell death. NLRX1 silencing and PARP-1 inhibition by olaparib enhance LPS-induced SM826 microglial cell death in an additive manner. Less PARylation and higher DNA damage are observed in NLRX1-silencing cells. Moreover, LPS-induced HO-1 gene and protein expression through the p62-Keap1-Nrf2 axis are attenuated by NLRX1 silencing. In addition, the Nrf2-mediated positive feedback regulation of p62 is accordingly reduced by NLRX1 silencing. Of note, NLRX1 silencing does not affect LPS-induced cellular reactive oxygen species (ROS) production but increases mixed lineage kinase domain-like pseudokinase (MLKL) activation and cell necroptosis. In addition, NLRX1 silencing blocks bafilomycin A1-induced PARP-1 activation. Taken together, for the first time, we demonstrate the role of NLRX1 in protecting microglia from LPS-induced cell death. The underlying protective mechanisms of NLRX1 include upregulating LPS-induced HO-1 expression via Nrf2-dependent p62 expression and downstream Keap1-Nrf2 axis, mediating PARP-1 activation for DNA repair via ROS- and autophagy-independent pathway, and reducing MLKL activation. Full article
(This article belongs to the Special Issue Oxidative Stress and Nrf2-Mediated Cellular Inflammation)
Show Figures

Graphical abstract

25 pages, 1923 KB  
Review
Unwrap RAP1’s Mystery at Kinetoplastid Telomeres
by Bibo Li
Biomolecules 2024, 14(1), 67; https://doi.org/10.3390/biom14010067 - 4 Jan 2024
Viewed by 3877
Abstract
Although located at the chromosome end, telomeres are an essential chromosome component that helps maintain genome integrity and chromosome stability from protozoa to mammals. The role of telomere proteins in chromosome end protection is conserved, where they suppress various DNA damage response machineries [...] Read more.
Although located at the chromosome end, telomeres are an essential chromosome component that helps maintain genome integrity and chromosome stability from protozoa to mammals. The role of telomere proteins in chromosome end protection is conserved, where they suppress various DNA damage response machineries and block nucleolytic degradation of the natural chromosome ends, although the detailed underlying mechanisms are not identical. In addition, the specialized telomere structure exerts a repressive epigenetic effect on expression of genes located at subtelomeres in a number of eukaryotic organisms. This so-called telomeric silencing also affects virulence of a number of microbial pathogens that undergo antigenic variation/phenotypic switching. Telomere proteins, particularly the RAP1 homologs, have been shown to be a key player for telomeric silencing. RAP1 homologs also suppress the expression of Telomere Repeat-containing RNA (TERRA), which is linked to their roles in telomere stability maintenance. The functions of RAP1s in suppressing telomere recombination are largely conserved from kinetoplastids to mammals. However, the underlying mechanisms of RAP1-mediated telomeric silencing have many species-specific features. In this review, I will focus on Trypanosoma brucei RAP1’s functions in suppressing telomeric/subtelomeric DNA recombination and in the regulation of monoallelic expression of subtelomere-located major surface antigen genes. Common and unique mechanisms will be compared among RAP1 homologs, and their implications will be discussed. Full article
Show Figures

Figure 1

17 pages, 4607 KB  
Article
Impact of Intron and Retransformation on Transgene Expression in Leaf and Fruit Tissues of Field-Grown Pear Trees
by Vadim Lebedev
Int. J. Mol. Sci. 2023, 24(16), 12883; https://doi.org/10.3390/ijms241612883 - 17 Aug 2023
Cited by 1 | Viewed by 1978
Abstract
Stable and high expression of introduced genes is a prerequisite for using transgenic trees. Transgene stacking enables combining several valuable traits, but repeated transformation increases the risk of unintended effects. This work studied the stability and intron-mediated enhancement of uidA gene expression in [...] Read more.
Stable and high expression of introduced genes is a prerequisite for using transgenic trees. Transgene stacking enables combining several valuable traits, but repeated transformation increases the risk of unintended effects. This work studied the stability and intron-mediated enhancement of uidA gene expression in leaves and different anatomical parts of pear fruits during field trials over 14 years. The stability of reporter and herbicide resistance transgenes in retransformed pear plants, as well as possible unintended effects using high-throughput phenotyping tools, were also investigated. The activity of β-glucuronidase (GUS) varied depending on the year, but silencing did not occur. The uidA gene was expressed to a maximum in seeds, slightly less in the peel and peduncles, and much less in the pulp of pear fruits. The intron in the uidA gene stably increased expression in leaves and fruits by approximately twofold. Retransformants with the bar gene showed long-term herbicide resistance and exhibited no consistent changes in leaf size and shape. The transgenic pear was used as rootstock and scion, but grafted plants showed no transport of the GUS protein through the graft in the greenhouse and field. This longest field trial of transgenic fruit trees demonstrates stable expression under varying environmental conditions, the expression-enhancing effect of intron and the absence of unintended effects in single- and double-transformed woody plants. Full article
Show Figures

Figure 1

13 pages, 1617 KB  
Article
NAADP-Evoked Ca2+ Signaling Leads to Mutant Huntingtin Aggregation and Autophagy Impairment in Murine Astrocytes
by Cássia Arruda de Souza Pereira, Natalia de Castro Medaglia, Rodrigo Portes Ureshino, Claudia Bincoletto, Manuela Antonioli, Gian Maria Fimia, Mauro Piacentini, Gustavo José da Silva Pereira, Adolfo Garcia Erustes and Soraya Soubhi Smaili
Int. J. Mol. Sci. 2023, 24(6), 5593; https://doi.org/10.3390/ijms24065593 - 15 Mar 2023
Cited by 11 | Viewed by 3045
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disease characterized by mutations in the huntingtin gene (mHtt), causing an unstable repeat of the CAG trinucleotide, leading to abnormal long repeats of polyglutamine (poly-Q) in the N-terminal region of the huntingtin, which form abnormal conformations [...] Read more.
Huntington’s disease (HD) is a progressive neurodegenerative disease characterized by mutations in the huntingtin gene (mHtt), causing an unstable repeat of the CAG trinucleotide, leading to abnormal long repeats of polyglutamine (poly-Q) in the N-terminal region of the huntingtin, which form abnormal conformations and aggregates. Alterations in Ca2+ signaling are involved in HD models and the accumulation of mutated huntingtin interferes with Ca2+ homeostasis. Lysosomes are intracellular Ca2+ storages that participate in endocytic and lysosomal degradation processes, including autophagy. Nicotinic acid adenine dinucleotide phosphate (NAADP) is an intracellular second messenger that promotes Ca2+ release from the endo-lysosomal system via Two-Pore Channels (TPCs) activation. Herein, we show the impact of lysosomal Ca2+ signals on mHtt aggregation and autophagy blockade in murine astrocytes overexpressing mHtt-Q74. We observed that mHtt-Q74 overexpression causes an increase in NAADP-evoked Ca2+ signals and mHtt aggregation, which was inhibited in the presence of Ned-19, a TPC antagonist, or BAPTA-AM, a Ca2+ chelator. Additionally, TPC2 silencing revert the mHtt aggregation. Furthermore, mHtt has been shown co-localized with TPC2 which may contribute to its effects on lysosomal homeostasis. Moreover, NAADP-mediated autophagy was also blocked since its function is dependent on lysosomal functionality. Taken together, our data show that increased levels of cytosolic Ca2+ mediated by NAADP causes mHtt aggregation. Additionally, mHtt co-localizes with the lysosomes, where it possibly affects organelle functions and impairs autophagy. Full article
(This article belongs to the Special Issue Neurodegenerative Disease: From Molecular Basis to Therapy)
Show Figures

Graphical abstract

16 pages, 12982 KB  
Article
A Comprehensive Analysis Revealing FBXW9 as a Potential Prognostic and Immunological Biomarker in Breast Cancer
by Shiyi Yu, Zhengyan Liang, Zhehao Fan, Binjie Cao, Ning Wang, Rui Wu and Haibo Sun
Int. J. Mol. Sci. 2023, 24(6), 5262; https://doi.org/10.3390/ijms24065262 - 9 Mar 2023
Cited by 7 | Viewed by 3122
Abstract
The WD40 repeat-containing F-box proteins (FBXWs) family belongs to three major classes of F-box proteins. Consistent with the function of other F-box proteins, FBXWs are E3 ubiquitin ligases to mediate protease-dependent protein degradation. However, the roles of several FBXWs remain elusive. In the [...] Read more.
The WD40 repeat-containing F-box proteins (FBXWs) family belongs to three major classes of F-box proteins. Consistent with the function of other F-box proteins, FBXWs are E3 ubiquitin ligases to mediate protease-dependent protein degradation. However, the roles of several FBXWs remain elusive. In the present study, via integrative analysis of transcriptome profiles from The Cancer Genome Atlas (TCGA) datasets, we found that FBXW9 was upregulated in the majority of cancer types, including breast cancer. FBXW expression was correlated with the prognosis of patients with various types of cancers, especially for FBXW4, 5, 9, and 10. Moreover, FBXWs were associated with infiltration of immune cells, and expression of FBXW9 was associated with poor prognosis of patients receiving anti-PD1 therapy. We predicted several substrates of FBXW9, and TP53 was the hub gene in the list. Downregulation of FBXW9 increased the expression of p21, a target of TP53, in breast cancer cells. FBXW9 was also strongly correlated with cancer cell stemness, and genes correlated with FBXW9 were associated with several MYC activities according to gene enrichment analysis in breast cancer. Cell-based assays showed that silencing of FBXW9 inhibited cell proliferation and cell cycle progression in breast cancer cells. Our study highlights the potential role of FBXW9 as a biomarker and promising target for patients with breast cancer. Full article
(This article belongs to the Special Issue Advances in Molecular Imaging of Breast and Gynecologic Cancers)
Show Figures

Figure 1

16 pages, 5517 KB  
Article
A Conserved, Serine-Rich Protein Plays Opposite Roles in N-Mediated Immunity against TMV and N-Triggered Cell Death
by Qingling Zhang, Jubin Wang, Xi Zhang, Yingtian Deng and Feng Li
Viruses 2023, 15(1), 26; https://doi.org/10.3390/v15010026 - 21 Dec 2022
Cited by 7 | Viewed by 2614
Abstract
Plant nucleotide-binding, leucine-rich, repeat-containing proteins (NLRs) play important roles in plant immunity. NLR expression and function are tightly regulated by multiple mechanisms. In this study, a conserved serine/arginine-rich protein (SR protein) was identified through the yeast one-hybrid screening of a tobacco cDNA library [...] Read more.
Plant nucleotide-binding, leucine-rich, repeat-containing proteins (NLRs) play important roles in plant immunity. NLR expression and function are tightly regulated by multiple mechanisms. In this study, a conserved serine/arginine-rich protein (SR protein) was identified through the yeast one-hybrid screening of a tobacco cDNA library using DNA fragments from the N gene, an NLR that confers immunity to tobacco mosaic virus (TMV). This SR protein showed an interaction with a 3′ genomic regulatory sequence (GRS) and has a potential role in regulating the alternative splicing of N. Thus, it was named SR regulator for N, abbreviated SR4N. Further study showed that SR4N plays a positive role in N-mediated cell death but a negative role in N protein accumulation. SR4N also promotes multiple virus replications in co-expression experiments, and this enhancement may not function through RNA silencing suppression, as it did not enhance 35S-GFP expression in co-infiltration experiments. Bioinformatic and molecular studies revealed that SR4N belongs to the SR2Z subtype of the SR protein family, which was conserved in both dicots and monocots, and its roles in repressing viral immunity and triggering cell death were also conserved. Our study revealed new roles for SR2Z family proteins in plant immunity against viruses. Full article
(This article belongs to the Special Issue State-of-the-Art Plant Virus Research in China)
Show Figures

Figure 1

20 pages, 3769 KB  
Article
SlHSP17.7 Ameliorates Chilling Stress-Induced Damage by Regulating Phosphatidylglycerol Metabolism and Calcium Signal in Tomato Plants
by Yuanyuan Wu, Shuwen Lv, Yaran Zhao, Chenliang Chang, Wei Hong and Jing Jiang
Plants 2022, 11(14), 1865; https://doi.org/10.3390/plants11141865 - 18 Jul 2022
Cited by 6 | Viewed by 2923
Abstract
Tomatoes (Solanum lycopersicum L.) are sensitive to chilling temperatures between 0 °C and 12 °C owing to their tropical origin. SlHSP17.7, a cytoplasmic heat shock protein, interacts with cation/calcium exchanger 1-like (SlCCX1-like) protein and promotes chilling tolerance in tomato fruits (Zhang, et [...] Read more.
Tomatoes (Solanum lycopersicum L.) are sensitive to chilling temperatures between 0 °C and 12 °C owing to their tropical origin. SlHSP17.7, a cytoplasmic heat shock protein, interacts with cation/calcium exchanger 1-like (SlCCX1-like) protein and promotes chilling tolerance in tomato fruits (Zhang, et al., Plant Sci., 2020, 298, 1–12). The overexpression of SlHSP17.7 can also promote cold tolerance in tomato plants, but its specific mechanism remains unclear. In this study, we show that the overexpression of SlHSP17.7 in tomato plants enhances chilling tolerance with better activity of photosystem II (PSII). Metabolic analyses revealed that SlHSP17.7 improved membrane fluidity by raising the levels of polyunsaturated fatty acids. Transcriptome analyses showed that SlHSP17.7 activated Ca2+ signaling and induced the expression of C-repeat binding factor (CBF) genes, which in turn inhibited the production of reactive oxygen species (ROS). The gene coexpression network analysis showed that SlHSP17.7 is coexpressed with SlMED26b. SlMED26b silencing significantly lowered OE-HSP17.7 plants’ chilling tolerance. Thus, SlHSP17.7 modulates tolerance to chilling via both membrane fluidity and Ca2+-mediated CBF pathway in tomato plants. Full article
(This article belongs to the Special Issue Functional Genomics and Molecular Breeding of Crops)
Show Figures

Figure 1

Back to TopTop