Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,394)

Search Parameters:
Keywords = renewable infrastructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 1090 KiB  
Review
Electric Vehicle Adoption in Egypt: A Review of Feasibility, Challenges, and Policy Directions
by Hilmy Awad, Michele De Santis and Ehab H. E. Bayoumi
World Electr. Veh. J. 2025, 16(8), 423; https://doi.org/10.3390/wevj16080423 - 28 Jul 2025
Abstract
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption [...] Read more.
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption disparities, lifecycle assessments of EV batteries, and sociocultural barriers, including gender dynamics and entrenched consumer preferences. Its primary contribution is an interdisciplinary framework that integrates technical aspects, such as grid resilience and climate-related battery degradation, with socioeconomic dimensions, providing a holistic overview of EV feasibility in Egypt tailored to Egypt’s context. Key findings reveal infrastructure limitations, inconsistent policy frameworks, and behavioral skepticism as major hurdles, and highlight the untapped potential of renewable energy integration, particularly through synergies between solar PV generation (e.g., Benban Solar Park) and EV charging infrastructure. Recommendations prioritize policy reforms (e.g., tax incentives, streamlined tariffs), solar-powered charging infrastructure expansion, public awareness campaigns, and local EV manufacturing to stimulate economic growth. The study underscores the urgency of stakeholder collaboration to transform EVs into a mainstream solution, positioning Egypt as a regional leader in sustainable mobility and equitable development. Full article
Show Figures

Figure 1

21 pages, 1558 KiB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

25 pages, 4048 KiB  
Article
Grid Stability and Wind Energy Integration Analysis on the Transmission Grid Expansion Planned in La Palma (Canary Islands)
by Raúl Peña, Antonio Colmenar-Santos and Enrique Rosales-Asensio
Processes 2025, 13(8), 2374; https://doi.org/10.3390/pr13082374 - 26 Jul 2025
Viewed by 171
Abstract
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and [...] Read more.
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and variable nature complicates grid stability management. To address this, Red Eléctrica de España—the transmission system operator of Spain—has planned several improvements in the Canary Islands, including the installation of new wind farms and a second transmission circuit on the island of La Palma. This new infrastructure will complement the existing one and ensure system stability in the event of N-1 contingencies. This article evaluates the stability of the island’s electrical network through dynamic simulations conducted in PSS®E, analyzing four distinct fault scenarios across three different grid configurations (current, short-term upgrade and long-term upgrade with wind integration). Generator models are based on standard dynamic parameters (WECC) and calibrated load factors using real data from the day of peak demand in 2021. Results confirm that the planned developments ensure stable system operation under severe contingencies, while the integration of wind power leads to a 33% reduction in diesel generation, contributing to improved environmental and operational performance. Full article
Show Figures

Figure 1

20 pages, 1034 KiB  
Article
System for the Acquisition and Analysis of Maintenance Data of Railway Traffic Control Devices
by Mieczysław Kornaszewski, Waldemar Nowakowski and Roman Pniewski
Appl. Sci. 2025, 15(15), 8305; https://doi.org/10.3390/app15158305 - 25 Jul 2025
Viewed by 116
Abstract
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, [...] Read more.
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, parameter measurements, and analysis of the working environment, followed by comparing the obtained information with the required parameters or permissible conditions. This activity also enables the formulation of a technical diagnosis regarding the current ability of the devices to perform its intended functions, taking into account the impact of its technical condition on railway traffic safety. This is especially important in the case of railway traffic control devices, as these devices are largely responsible for ensuring railway traffic safety. The collection of data on the condition of railway traffic control devices in the form of Big Data sets and diagnostic inference is an effective factor in making operational decisions for such devices. It enables the acquisition of complete information about the actual course of the exploitation process and allows for obtaining reliable information necessary to manage this process, particularly in the areas of diagnostics forecasting of devices conditions, renewal, and organization of maintenance and repair facilities. To support this, a service data acquisition and analysis system for railway traffic control devices (SADEK) was developed. This system can serve as a software platform for maintenance needs in the railway sector. Full article
(This article belongs to the Section Transportation and Future Mobility)
12 pages, 1597 KiB  
Article
Effects of Anthropogenic Vibratory Noise on Plant Development and Herbivory
by Estefania Velilla, Laura Bellato, Eleanor Collinson and Wouter Halfwerk
Acoustics 2025, 7(3), 45; https://doi.org/10.3390/acoustics7030045 - 25 Jul 2025
Viewed by 148
Abstract
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects [...] Read more.
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects plant development and, consequently, plant–insect interactions. Here, we examine the impact of windmill-like vibrational noise on the growth of Pisum sativum and its full-factorial interaction with the generalist herbivore Spodoptera exigua. Plants were exposed to either high or low vibrational noise from seed germination to the seed production stage. We recorded germination, flowering, fruiting time, and daily shoot length. Additionally, we measured herbivory intensity by Spodoptera exigua caterpillars placed on a subset of plants. Plants exposed to high vibrational noise grew significantly faster and taller than those in the low-noise treatment. Additionally, we found a marginally significant trend for earlier flowering in plants exposed to high noise. We did not find a significant effect of vibrational noise on herbivory. Our results suggest that underground vibrational noise can influence plant growth rates, which may potentially have ecological and agricultural implications. Faster growth may alter interspecific competition and shift trade-offs between growth and defense. Understanding these effects is important in assessing the broader ecological consequences of renewable energy infrastructure. Full article
Show Figures

Figure 1

16 pages, 4631 KiB  
Article
Hybrid Wind–Solar Generation and Analysis for Iberian Peninsula: A Case Study
by Jesús Polo
Energies 2025, 18(15), 3966; https://doi.org/10.3390/en18153966 - 24 Jul 2025
Viewed by 154
Abstract
Hybridization of solar and wind energy sources is a promising solution to enhance the dispatch capability of renewables. The complementarity of wind and solar radiation, as well as the sharing of transmission lines and other infrastructures, can notably benefit the deployment of renewable [...] Read more.
Hybridization of solar and wind energy sources is a promising solution to enhance the dispatch capability of renewables. The complementarity of wind and solar radiation, as well as the sharing of transmission lines and other infrastructures, can notably benefit the deployment of renewable power. Mapping of hybrid solar–wind potential can help identify new emplacements or existing power facilities where an extension with a hybrid system might work. This paper presents an analysis of a hybrid solar–wind potential by considering a reference power plant of 40 MW in the Iberian Peninsula and comparing the hybrid and non-hybrid energy generated. The generation of energy is estimated using SAM for a typical meteorological year, using PVGIS and ERA5 meteorological information as input. Modeling the hybrid plant in relation to individual PV and wind power plants minimizes the dependence on technical and economic input data, allowing for the expression of potential hybridization analysis in relative numbers through maps. Correlation coefficient and capacity factor maps are presented here at different time scales, showing the complementarity in most of the spatial domain. In addition, economic analysis in comparison with non-hybrid power plants shows a reduction of around 25–30% in the LCOE in many areas of interest. Finally, a sizing sensitivity analysis is also performed to select the most beneficial sharing between PV and wind. Full article
(This article belongs to the Special Issue Advances in Forecasting Technologies of Solar Power Generation)
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Green Hydrogen in Jordan: Stakeholder Perspectives on Technological, Infrastructure, and Economic Barriers
by Hussam J. Khasawneh, Rawan A. Maaitah and Ahmad AlShdaifat
Energies 2025, 18(15), 3929; https://doi.org/10.3390/en18153929 - 23 Jul 2025
Viewed by 219
Abstract
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured [...] Read more.
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured survey of 52 national stakeholders, including water scarcity, low electrolysis efficiency, limited grid compatibility, and underdeveloped transport infrastructure. Respondents emphasised that overcoming these challenges requires investment in smart grid technologies, seawater desalination, advanced electrolysers, and policy instruments such as subsidies and public–private partnerships. These findings are consistent with global assessments, which recognise similar structural and financial obstacles in scaling up green hydrogen across emerging economies. Despite the constraints, over 50% of surveyed stakeholders expressed optimism about Jordan’s potential to develop a competitive green hydrogen sector, especially for industrial and power generation uses. This paper provides empirical, context-specific insights into the conditions required to scale green hydrogen in developing economies. It proposes an integrated roadmap focusing on infrastructure modernisation, targeted financial mechanisms, and enabling policy frameworks. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

26 pages, 3954 KiB  
Article
Bi-Level Planning of Grid-Forming Energy Storage–Hydrogen Storage System Considering Inertia Response and Frequency Parameter Optimization
by Dongqi Huang, Pengwei Sun, Wenfeng Yao, Chang Liu, Hefeng Zhai and Yehao Gao
Energies 2025, 18(15), 3915; https://doi.org/10.3390/en18153915 - 23 Jul 2025
Viewed by 185
Abstract
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in [...] Read more.
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in performance, capacity, and cost-effectiveness. To tackle frequency regulation challenges in remote desert-based renewable energy hubs—where traditional power infrastructure is unavailable—this study introduces a planning framework for an electro-hydrogen energy storage system with grid-forming capabilities, designed to supply both inertia and frequency response. At the system design stage, a direct current (DC) transmission network is modeled, integrating battery and hydrogen storage technologies. Using this configuration, the capacity settings for both grid-forming batteries and hydrogen units are optimized. This study then explores how hydrogen systems—comprising electrolyzers, storage tanks, and fuel cells—and grid-forming batteries contribute to inertial support. Virtual inertia models are established for each technology, enabling precise estimation of the total synthetic inertia provided. At the operational level, this study addresses stability concerns stemming from renewable generation variability by introducing three security indices. A joint optimization is performed for virtual inertia constants, which define the virtual inertia provided by energy storage systems to assist in frequency regulation, and primary frequency response parameters within the proposed storage scheme are optimized in this model. This enhances the frequency modulation potential of both systems and confirms the robustness of the proposed approach. Lastly, a real-world case study involving a 13 GW renewable energy base in Northwest China, connected via a ±10 GW HVDC export corridor, demonstrates the practical effectiveness of the optimization strategy and system configuration. Full article
(This article belongs to the Special Issue Advanced Battery Management Strategies)
Show Figures

Figure 1

18 pages, 1453 KiB  
Article
Digital Twins for Climate-Responsive Urban Development: Integrating Zero-Energy Buildings into Smart City Strategies
by Osama Omar
Sustainability 2025, 17(15), 6670; https://doi.org/10.3390/su17156670 - 22 Jul 2025
Viewed by 462
Abstract
As climate change intensifies the frequency and severity of extreme weather events, the urgency for resilient and sustainable urban development becomes increasingly critical. This study investigates the role of digital twins in advancing climate-responsive urban strategies, with a focus on their integration into [...] Read more.
As climate change intensifies the frequency and severity of extreme weather events, the urgency for resilient and sustainable urban development becomes increasingly critical. This study investigates the role of digital twins in advancing climate-responsive urban strategies, with a focus on their integration into zero-energy buildings (ZEBs) and smart city frameworks. A systematic literature review was conducted following PRISMA guidelines, covering 1000 articles initially retrieved from Scopus and Web of Science between 2014 and 2024. After applying inclusion and exclusion criteria, 70 full-text articles were analyzed. Bibliometric analysis using VOSviewer revealed five key application areas of digital twins: energy efficiency optimization, renewable energy integration, design and retrofitting, real-time monitoring and control, and predictive maintenance. The findings suggest that digital twins can contribute to up to 30–40% improvement in building energy efficiency through enhanced performance monitoring and predictive modeling. This review synthesizes trends, identifies research gaps, and contextualizes the findings within the Middle Eastern urban landscape, where climate action and smart infrastructure development are strategic priorities. While offering strategic guidance for urban planners and policymakers, the study also acknowledges limitations, including the regional focus, lack of primary field data, and potential publication bias. Overall, this work contributes to advancing digital twin applications in climate-resilient, zero-energy urban development. Full article
Show Figures

Figure 1

24 pages, 3950 KiB  
Article
Dynamic Model Selection in a Hybrid Ensemble Framework for Robust Photovoltaic Power Forecasting
by Nakhun Song, Roberto Chang-Silva, Kyungil Lee and Seonyoung Park
Sensors 2025, 25(14), 4489; https://doi.org/10.3390/s25144489 - 19 Jul 2025
Viewed by 303
Abstract
As global electricity demand increases and concerns over fossil fuel usage intensify, renewable energy sources have gained significant attention. Solar energy stands out due to its low installation costs and suitability for deployment. However, solar power generation remains difficult to predict because of [...] Read more.
As global electricity demand increases and concerns over fossil fuel usage intensify, renewable energy sources have gained significant attention. Solar energy stands out due to its low installation costs and suitability for deployment. However, solar power generation remains difficult to predict because of its dependence on weather conditions and decentralized infrastructure. To address this challenge, this study proposes a flexible hybrid ensemble (FHE) framework that dynamically selects the most appropriate base model based on prediction error patterns. Unlike traditional ensemble methods that aggregate all base model outputs, the FHE employs a meta-model to leverage the strengths of individual models while mitigating their weaknesses. The FHE is evaluated using data from four solar power plants and is benchmarked against several state-of-the-art models and conventional hybrid ensemble techniques. Experimental results demonstrate that the FHE framework achieves superior predictive performance, improving the Mean Absolute Percentage Error by 30% compared to the SVR model. Moreover, the FHE model maintains high accuracy across diverse weather conditions and eliminates the need for preliminary validation of base and ensemble models, streamlining the deployment process. These findings highlight the FHE framework’s potential as a robust and scalable solution for forecasting in small-scale distributed solar power systems. Full article
(This article belongs to the Special Issue Energy Harvesting and Self-Powered Sensors)
Show Figures

Figure 1

28 pages, 1080 KiB  
Systematic Review
A Literature Review on Strategic, Tactical, and Operational Perspectives in EV Charging Station Planning and Scheduling
by Marzieh Sadat Aarabi, Mohammad Khanahmadi and Anjali Awasthi
World Electr. Veh. J. 2025, 16(7), 404; https://doi.org/10.3390/wevj16070404 - 18 Jul 2025
Viewed by 434
Abstract
Before the onset of global warming concerns, the idea of manufacturing electric vehicles on a large scale was not widely considered. However, electric vehicles offer several advantages that have garnered attention. They are environmentally friendly, with simpler drive systems compared to traditional fossil [...] Read more.
Before the onset of global warming concerns, the idea of manufacturing electric vehicles on a large scale was not widely considered. However, electric vehicles offer several advantages that have garnered attention. They are environmentally friendly, with simpler drive systems compared to traditional fossil fuel vehicles. Additionally, electric vehicles are highly efficient, with an efficiency of around 90%, in contrast to fossil fuel vehicles, which have an efficiency of about 30% to 35%. The higher energy efficiency of electric vehicles contributes to lower operational costs, which, alongside regulatory incentives and shifting consumer preferences, has increased their strategic importance for many vehicle manufacturers. In this paper, we present a thematic literature review on electric vehicles charging station location planning and scheduling. A systematic literature review across various data sources in the area yielded ninety five research papers for the final review. The research results were analyzed thematically, and three key directions were identified, namely charging station deployment and placement, optimal allocation and scheduling of EV parking lots, and V2G and smart charging systems as the top three themes. Each theme was further investigated to identify key topics, ongoing works, and future trends. It has been found that optimization methods followed by simulation and multi-criteria decision-making are most commonly used for EV infrastructure planning. A multistakeholder perspective is often adopted in these decisions to minimize costs and address the range anxiety of users. The future trend is towards the integration of renewable energy in smart grids, uncertainty modeling of user demand, and use of artificial intelligence for service quality improvement. Full article
Show Figures

Figure 1

25 pages, 4094 KiB  
Article
Risk–Cost Equilibrium for Grid Reinforcement Under High Renewable Penetration: A Bi-Level Optimization Framework with GAN-Driven Scenario Learning
by Feng Liang, Ying Mu, Dashun Guan, Dongliang Zhang and Wenliang Yin
Energies 2025, 18(14), 3805; https://doi.org/10.3390/en18143805 - 17 Jul 2025
Viewed by 305
Abstract
The integration of high-penetration renewable energy sources (RESs) into transmission networks introduces profound uncertainty that challenges traditional infrastructure planning approaches. Existing transmission expansion planning (TEP) models either rely on static scenario sets or over-conservative worst-case assumptions, failing to capture the operational stress triggered [...] Read more.
The integration of high-penetration renewable energy sources (RESs) into transmission networks introduces profound uncertainty that challenges traditional infrastructure planning approaches. Existing transmission expansion planning (TEP) models either rely on static scenario sets or over-conservative worst-case assumptions, failing to capture the operational stress triggered by rare but structurally impactful renewable behaviors. This paper proposes a novel bi-level optimization framework for transmission planning under adversarial uncertainty, coupling a distributionally robust upper-level investment model with a lower-level operational response embedded with physics and market constraints. The uncertainty space was not exogenously fixed, but instead dynamically generated through a physics-informed spatiotemporal generative adversarial network (PI-ST-GAN), which synthesizes high-risk renewable and load scenarios designed to maximally challenge the system’s resilience. The generator was co-trained using a composite stress index—combining expected energy not served, loss-of-load probability, and marginal congestion cost—ensuring that each scenario reflects both physical plausibility and operational extremity. The resulting bi-level model was reformulated using strong duality, and it was decomposed into a tractable mixed-integer structure with embedded adversarial learning loops. The proposed framework was validated on a modified IEEE 118-bus system with high wind and solar penetration. Results demonstrate that the GAN-enhanced planner consistently outperforms deterministic and stochastic baselines, reducing renewable curtailment by up to 48.7% and load shedding by 62.4% under worst-case realization. Moreover, the stress investment frontier exhibits clear convexity, enabling planners to identify cost-efficient resilience strategies. Spatial congestion maps and scenario risk-density plots further illustrate the ability of adversarial learning to reveal latent structural bottlenecks not captured by conventional methods. This work offers a new methodological paradigm, in which optimization and generative AI co-evolve to produce robust, data-aware, and stress-responsive transmission infrastructure designs. Full article
Show Figures

Figure 1

23 pages, 2079 KiB  
Article
Offshore Energy Island for Sustainable Water Desalination—Case Study of KSA
by Muhnad Almasoudi, Hassan Hemida and Soroosh Sharifi
Sustainability 2025, 17(14), 6498; https://doi.org/10.3390/su17146498 - 16 Jul 2025
Viewed by 355
Abstract
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework [...] Read more.
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework was developed to assess site feasibility based on renewable energy potential (solar, wind, and wave), marine traffic, site suitability, planned developments, and proximity to desalination facilities. Data was sourced from platforms such as Windguru and RETScreen, and spatial analysis was conducted using Inverse Distance Weighting (IDW) and Multi-Criteria Decision Analysis (MCDA). Results indicate that the central Red Sea region offers the most favorable conditions, combining high renewable resource availability with existing infrastructure. The estimated regional desalination energy demand of 2.1 million kW can be met using available renewable sources. Integrating these sources is expected to reduce local CO2 emissions by up to 43.17% and global desalination-related emissions by 9.5%. Spatial constraints for offshore installations were also identified, with land-based solar energy proposed as a complementary solution. The study underscores the need for further research into wave energy potential in the Red Sea, due to limited real-time data and the absence of a dedicated wave energy atlas. Full article
Show Figures

Figure 1

25 pages, 2968 KiB  
Article
Modernizing District Heating Networks: A Strategic Decision-Support Framework for Sustainable Retrofitting
by Reza Bahadori, Matthias Speich and Silvia Ulli-Beer
Energies 2025, 18(14), 3759; https://doi.org/10.3390/en18143759 - 16 Jul 2025
Viewed by 280
Abstract
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct [...] Read more.
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct strategies for retrofitting district heating grids and includes a portfolio analysis. This framework serves as a tool to guide DH operators and stakeholders in selecting well-founded modernization pathways by considering technical, economic, and social dimensions. The review identifies several promising measures, such as reducing operational temperatures at substations, implementing optimized substations, integrating renewable and waste heat sources, implementing thermal energy storage (TES), deploying smart metering and monitoring infrastructure, and expanding networks while addressing public concerns. Additionally, the review highlights the importance of stakeholder engagement and policy support in successfully implementing these strategies. The developed strategic decision-support framework helps practitioners select a tailored modernization strategy aligned with the local context. Furthermore, the findings show the necessity of adopting a comprehensive approach that combines technical upgrades with robust stakeholder involvement and supportive policy measures to facilitate the transition to sustainable urban heating solutions. For example, the development of decision-support tools enables stakeholders to systematically evaluate and select grid modernization strategies, directly helping to reduce transmission losses and lower greenhouse gas (GHG) emissions contributing to climate goals and enhancing energy security. Indeed, as shown in the reviewed literature, retrofitting high-temperature district heating networks with low-temperature distribution and integrating renewables can lead to near-complete decarbonization of the supplied heat. Additionally, integrating advanced digital technologies, such as smart grid systems, can enhance grid efficiency and enable a greater share of variable renewable energy thus supporting national decarbonization targets. Further investigation could point to the most determining context factors for best choices to improve the sustainability and efficiency of existing DH systems. Full article
Show Figures

Figure 1

Back to TopTop