Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = removal of NOx and soot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2678 KiB  
Review
A Review of Perovskite Catalysts for the Simultaneous Elimination of Soot and NOx Emissions from Diesel Engine
by Peng Chen, Jia Fang, Zinong Zuo, Chengzhuang Zhang, Kejian Wang, Zhiqiang Han and Wei Tian
Sustainability 2024, 16(23), 10793; https://doi.org/10.3390/su162310793 - 9 Dec 2024
Cited by 1 | Viewed by 1976
Abstract
The problem of removing NOx and carbon particle emissions from diesel engines has been a challenge in the field of environmental protection, which is prompting people to actively explore ways to improve the efficiency of pollutant emission treatment. Due to the high [...] Read more.
The problem of removing NOx and carbon particle emissions from diesel engines has been a challenge in the field of environmental protection, which is prompting people to actively explore ways to improve the efficiency of pollutant emission treatment. Due to the high price of precious metals, developing an alternative catalytic material with high catalytic activity and stability is a difficult task. Perovskite, with its stable and flexibly variable crystal structure, has become a research hotspot in the field of catalysis. This paper discusses the structure of perovskite catalysts and the mechanism behind the simultaneous catalytic oxidation of diesel engine soot and NOx. Meanwhile, it provides a comprehensive review of the preparation methods and A/B site modification strategies, establishing a foundation for the synthesis and A/B site modification of perovskite catalysts capable of catalyzing the oxidation of soot and NOx simultaneously. Additionally, this article offers an outlook on the challenges and future development of perovskite catalysts in this field. Full article
(This article belongs to the Special Issue Control of Traffic-Related Emissions to Improve Air Quality)
Show Figures

Figure 1

13 pages, 8530 KiB  
Article
The Effect of Potassium Inclusion in a Silver Catalyst for N2O-Mediated Oxidation of Soot in Oxidising Exhaust Gases
by Anna Cooper, Stan Golunski and Stuart H. Taylor
Catalysts 2022, 12(7), 753; https://doi.org/10.3390/catal12070753 - 7 Jul 2022
Cited by 1 | Viewed by 1853
Abstract
It has previously been shown that an Ag/CZA catalyst can simultaneously remove NOx and soot from an oxygen-rich exhaust gas at low temperatures, by utilising the N2O generated preferentially during incomplete NOx reduction. Here, we examine the effect of reformulating the [...] Read more.
It has previously been shown that an Ag/CZA catalyst can simultaneously remove NOx and soot from an oxygen-rich exhaust gas at low temperatures, by utilising the N2O generated preferentially during incomplete NOx reduction. Here, we examine the effect of reformulating the catalyst to include potassium, which is a known promoter of soot combustion. On including 2 wt% K, NOx-reduction occurs both in the absence and presence of soot, but the N2O formed does not play a part in the oxidation of soot. At higher K loadings (5, 10 and 15 wt%), NOx reduction is almost completely disabled, and only contributes to the activity of the catalyst containing 5 wt% K when tested in the presence of soot. At a loading of 20 wt% K, the potassium phase segregates, leaving NO and NH3 adsorption sites exposed. In the absence of soot, this catalyst can remove NOx by reduction on the Ag/CZA component and through nitration of the potassium phase. Although the presence of potassium lowers the onset temperature for soot oxidation to within the range of NOx reduction over Ag/CZA, the mobile K species prevents the desirable C+N2O reaction. Full article
(This article belongs to the Special Issue Environmental Catalysis for Air Pollution Applications)
Show Figures

Figure 1

30 pages, 33501 KiB  
Review
Aftertreatment Technologies for Diesel Engines: An Overview of the Combined Systems
by Ferenc Martinovic, Lidia Castoldi and Fabio Alessandro Deorsola
Catalysts 2021, 11(6), 653; https://doi.org/10.3390/catal11060653 - 21 May 2021
Cited by 41 | Viewed by 11086
Abstract
The abatement of the pollutants deriving from diesel engines in the vehicle sector still represents an interesting scientific and technological challenge due to increasingly limiting regulations. Meeting the stringent limits of NOx and soot emissions requires a catalytic system with great complexity, [...] Read more.
The abatement of the pollutants deriving from diesel engines in the vehicle sector still represents an interesting scientific and technological challenge due to increasingly limiting regulations. Meeting the stringent limits of NOx and soot emissions requires a catalytic system with great complexity, size of units, and number of units, as well as increased fuel consumption. Thus, an after-treatment device for a diesel vehicle requires the use of an integrated catalyst technology for a reduction in the individual emissions of exhaust gas. The representative technologies devoted to the reduction of NOx under lean-burn operation conditions are selective catalytic reduction (SCR) and the lean NOx trap (LNT), while soot removal is mainly performed by filters (DPF). These devices are normally used in sequence, or a combination of them has been proposed to overcome the drawbacks of the individual devices. This review summarizes the current state of NOx and soot abatement strategies. The main focus of this review is on combined technologies for NOx removal (i.e., LNT–SCR) and for the simultaneous removal of NOx and soot, like SCR-on-Filter (SCRoF), in series LNT/DPF and SCR/DPF, and LNT/DPF and SCR/DPF hybrid systems. Full article
(This article belongs to the Special Issue Selective Catalytic Reduction of NOx by NH3)
Show Figures

Figure 1

56 pages, 6435 KiB  
Review
A Review about the Recent Advances in Selected NonThermal Plasma Assisted Solid–Gas Phase Chemical Processes
by Vincenzo Palma, Marta Cortese, Simona Renda, Concetta Ruocco, Marco Martino and Eugenio Meloni
Nanomaterials 2020, 10(8), 1596; https://doi.org/10.3390/nano10081596 - 14 Aug 2020
Cited by 58 | Viewed by 7919
Abstract
Plasma science has attracted the interest of researchers in various disciplines since the 1990s. This continuously evolving field has spawned investigations into several applications, including industrial sterilization, pollution control, polymer science, food safety and biomedicine. nonthermal plasma (NTP) can promote the occurrence of [...] Read more.
Plasma science has attracted the interest of researchers in various disciplines since the 1990s. This continuously evolving field has spawned investigations into several applications, including industrial sterilization, pollution control, polymer science, food safety and biomedicine. nonthermal plasma (NTP) can promote the occurrence of chemical reactions in a lower operating temperature range, condition in which, in a conventional process, a catalyst is generally not active. The aim, when using NTP, is to selectively transfer electrical energy to the electrons, generating free radicals through collisions and promoting the desired chemical changes without spending energy in heating the system. Therefore, NTP can be used in various fields, such as NOx removal from exhaust gases, soot removal from diesel engine exhaust, volatile organic compound (VOC) decomposition, industrial applications, such as ammonia production or methanation reaction (Sabatier reaction). The combination of NTP technology with catalysts is a promising option to improve selectivity and efficiency in some chemical processes. In this review, recent advances in selected nonthermal plasma assisted solid–gas processes are introduced, and the attention was mainly focused on the use of the dielectric barrier discharge (DBD) reactors. Full article
Show Figures

Figure 1

34 pages, 4168 KiB  
Review
An Overview on the Catalytic Materials Proposed for the Simultaneous Removal of NOx and Soot
by Lidia Castoldi
Materials 2020, 13(16), 3551; https://doi.org/10.3390/ma13163551 - 12 Aug 2020
Cited by 23 | Viewed by 3687
Abstract
Vehicular pollution has become a major problem in urban areas due to the exponential increase in the number of automobiles. Typical exhaust emissions, which include nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), soot, and particulate matter (PM), doubtless have important [...] Read more.
Vehicular pollution has become a major problem in urban areas due to the exponential increase in the number of automobiles. Typical exhaust emissions, which include nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), soot, and particulate matter (PM), doubtless have important negative effects on the environment and human health, including cardiovascular effects such as cardiac arrhythmias and heart attacks, and respiratory effects such as asthma attacks and bronchitis. The mitigation measures comprise either the use of clean alternative fuels or the use of innovative technologies. Several existing emission control technologies have proven effective at controlling emissions individually, such as selective catalytic reduction (SCR) and lean NOx trap (LNT) to reduce NOx and diesel particulate filter (DPF) specifically for PM abatement. These after-treatment devices are the most profitable means to reduce exhaust emissions to acceptable limits (EURO VI norms) with very little or no impact on the engine performances. Additionally, the relative lack of physical space in which to install emissions-control equipment is a key challenge for cars, especially those of small size. For this reason, to reduce both volume and cost of the after-treatment devices integrated catalytic systems (e.g., a sort of a “single brick”) have been proposed, reducing both NOx and PM simultaneously. This review will summarize the currently reported materials for the simultaneous removal of NOx and soot, with particular attention to their nature, properties, and performances. Full article
(This article belongs to the Special Issue Nanocatalysts for Oxidation and Combustion)
Show Figures

Figure 1

12 pages, 2985 KiB  
Article
New Experiment of Diesel Exhaust Treatment by Atmospheric Pressure Plasma–Wood Fiber Combination
by Xiurong Guo, Khanh Hop Ha and Danfeng Du
Catalysts 2020, 10(5), 577; https://doi.org/10.3390/catal10050577 - 21 May 2020
Cited by 9 | Viewed by 3653
Abstract
Herein, a novel process of diesel exhaust purification by non-thermal plasma combined with wood fiber has been investigated to understand the effect of purification efficiency on the emission. The dielectric barrier discharge (DBD) and wood fiber (WF) improved removal efficiency of nitrogen oxide [...] Read more.
Herein, a novel process of diesel exhaust purification by non-thermal plasma combined with wood fiber has been investigated to understand the effect of purification efficiency on the emission. The dielectric barrier discharge (DBD) and wood fiber (WF) improved removal efficiency of nitrogen oxide (NOx) owing to the positive activity of oxygen-containing functional groups (such as O–H groups or C–O groups) on the wood surface, which promoted the removal of NOx by 10%–13%. The mechanism to remove NOx in the presence of wood fibers was also deduced through FTIR spectra. When carbon black was loaded on the wood fiber, there was simultaneous removal of carbon soot and NOX. Although complete purification was not achieved, a high purification efficiency was obtained under the conditions of room temperature and no catalysts. These advantages highlight the importance of use of wood and non-thermal plasma (NTP), and this research work opens new avenues in the field of emissions treatment. Full article
Show Figures

Figure 1

13 pages, 4633 KiB  
Article
Influence of the Preparation Method of Ag-K/CeO2-ZrO2-Al2O3 Catalysts on Their Structure and Activity for the Simultaneous Removal of Soot and NOx
by Anna Cooper, Thomas E. Davies, David J. Morgan, Stan Golunski and Stuart H. Taylor
Catalysts 2020, 10(3), 294; https://doi.org/10.3390/catal10030294 - 4 Mar 2020
Cited by 12 | Viewed by 3688
Abstract
Ag/CeO2-ZrO2-Al2O3, a known catalyst for the simultaneous removal of NOx and soot, was modified by the addition of K, and was prepared using various techniques: wet impregnation, incipient wetness, and chemical vapor impregnation at different [...] Read more.
Ag/CeO2-ZrO2-Al2O3, a known catalyst for the simultaneous removal of NOx and soot, was modified by the addition of K, and was prepared using various techniques: wet impregnation, incipient wetness, and chemical vapor impregnation at different temperatures. The effect of the preparation method on catalyst activity was studied. It was found that catalysts prepared via wet impregnation, incipient wetness, and chemical vapor impregnation at 80 °C were able to utilize in situ formed N2O at low temperatures, to simultaneously remove NOx and soot. The difference in preparation method affected the catalyst’s ability to produce and use N2O as an oxidant for soot. The temperature at which chemical vapor impregnation was performed greatly influenced the catalyst’s ability to oxidize soot. The introduction of K to the Ag/CeO2-ZrO2-Al2O3 vastly improved the soot oxidation activity, particularly for the catalyst prepared via wet impregnation. However, the incorporation of K had an adverse effect on the reduction of NOx. Full article
Show Figures

Figure 1

16 pages, 2643 KiB  
Article
Hybrid Technology for DeNOxing by LNT-SCR System for Efficient Diesel Emission Control: Influence of Operation Parameters in H2O + CO2 Atmosphere
by Marina Cortés-Reyes, Concepción Herrera, María Ángeles Larrubia and Luis J. Alemany
Catalysts 2020, 10(2), 228; https://doi.org/10.3390/catal10020228 - 14 Feb 2020
Cited by 10 | Viewed by 3518
Abstract
The behavior and operation parameters were analyzed for the hybrid LNT-SCR (Lean NOx-Trap–Selective Catalytic Reduction) system with advanced catalyst formulations. Pt-Ba-K/Al2O3 was used as an NSR (NOx Storage and Reduction) or LNT catalyst effective in NOx [...] Read more.
The behavior and operation parameters were analyzed for the hybrid LNT-SCR (Lean NOx-Trap–Selective Catalytic Reduction) system with advanced catalyst formulations. Pt-Ba-K/Al2O3 was used as an NSR (NOx Storage and Reduction) or LNT catalyst effective in NOx and soot simultaneous removal whereas Cu-SAPO-34 with 2 wt.% of copper inside the structure was the small pore zeolite employed as the SCR catalyst. Under alternating and cyclic wet conditions, feeding volumetric concentrations of 1000 ppm of NO, 3% of O2, 1.5% of water, 0.3% of CO2, and H2 as a reductant, the NOx-conversion values were above 95% and a complete mineralization to nitrogen was registered using θ ≤ 3 (20 s of regeneration) and a hydrogen content between 10,000 and 2000 ppm in the whole temperature range tested. An excess of hydrogen fed (above 1% v/v) during the rich phase is unnecessary. In addition, in the low temperature range below 250 °C, the effect is more noticeable due to the further ammonia production and its possible slip. These results open the way to the scale up of the coupled catalytic technologies for its use in real conditions while controlling the influence of the operation map. Full article
Show Figures

Figure 1

25 pages, 10999 KiB  
Review
Perovskite-Based Catalysts as Efficient, Durable, and Economical NOx Storage and Reduction Systems
by Jon A. Onrubia-Calvo, Beñat Pereda-Ayo and Juan R. González-Velasco
Catalysts 2020, 10(2), 208; https://doi.org/10.3390/catal10020208 - 9 Feb 2020
Cited by 24 | Viewed by 6256
Abstract
Diesel engines operate under net oxidizing environment favoring lower fuel consumption and CO2 emissions than stoichiometric gasoline engines. However, NOx reduction and soot removal is still a technological challenge under such oxygen-rich conditions. Currently, NOx storage and reduction (NSR), also [...] Read more.
Diesel engines operate under net oxidizing environment favoring lower fuel consumption and CO2 emissions than stoichiometric gasoline engines. However, NOx reduction and soot removal is still a technological challenge under such oxygen-rich conditions. Currently, NOx storage and reduction (NSR), also known as lean NOx trap (LNT), selective catalytic reduction (SCR), and hybrid NSR–SCR technologies are considered the most efficient control after treatment systems to remove NOx emission in diesel engines. However, NSR formulation requires high platinum group metals (PGMs) loads to achieve high NOx removal efficiency. This requisite increases the cost and reduces the hydrothermal stability of the catalyst. Recently, perovskites-type oxides (ABO3) have gained special attention as an efficient, economical, and thermally more stable alternative to PGM-based formulations in heterogeneous catalysis. Herein, this paper overviews the potential of perovskite-based formulations to reduce NOx from diesel engine exhaust gases throughout single-NSR and combined NSR–SCR technologies. In detail, the effect of the synthesis method and chemical composition over NO-to-NO2 conversion, NOx storage capacity, and NOx reduction efficiency is addressed. Furthermore, the NOx removal efficiency of optimal developed formulations is compared with respect to the current NSR model catalyst (1–1.5 wt % Pt–10–15 wt % BaO/Al2O3) in the absence and presence of SO2 and H2O in the feed stream, as occurs in the real automotive application. Main conclusions are finally summarized and future challenges highlighted. Full article
Show Figures

Graphical abstract

14 pages, 2233 KiB  
Article
Plasma-Assisted Selective Catalytic Reduction for Low-Temperature Removal of NOx and Soot Simulant
by Van Toan Nguyen, Duc Ba Nguyen, Iljeong Heo and Young Sun Mok
Catalysts 2019, 9(10), 853; https://doi.org/10.3390/catal9100853 - 13 Oct 2019
Cited by 20 | Viewed by 4503
Abstract
The challenge that needs to be overcome regarding the removal of nitrogen oxides (NOx) and soot from exhaust gases is the low activity of the selective catalytic reduction of NOx at temperatures fluctuating from 150 to 350 °C. The primary [...] Read more.
The challenge that needs to be overcome regarding the removal of nitrogen oxides (NOx) and soot from exhaust gases is the low activity of the selective catalytic reduction of NOx at temperatures fluctuating from 150 to 350 °C. The primary goal of this work was to enhance the conversion of NOx and soot simulant by employing a Ag/α-Al2O3 catalyst coupled with dielectric barrier discharge plasma. The results demonstrated that the use of a plasma-catalyst process at low operating temperatures increased the removal of both NOx and naphthalene (soot simulant). Moreover, the soot simulant functioned as a reducing agent for NOx removal, but with low NOx conversion. The high efficiency of NOx removal required the addition of hydrocarbon fuel. In summary, the combined use of the catalyst and plasma (specific input energy, SIE ≥ 60 J/L) solved the poor removal of NOx and soot at low operating temperatures or during temperature fluctuations in the range of 150–350 °C. Specifically, highly efficient naphthalene removal was achieved with low-temperature adsorption on the catalyst followed by the complete decomposition by the plasma-catalyst at 350 °C and SIE of 90 J/L. Full article
Show Figures

Graphical abstract

19 pages, 6237 KiB  
Article
High Performance of Mn-Doped MgAlOx Mixed Oxides for Low Temperature NOx Storage and Release
by Chenchen Cui, Junwei Ma, Zhongpeng Wang, Wei Liu, Wenxu Liu and Liguo Wang
Catalysts 2019, 9(8), 677; https://doi.org/10.3390/catal9080677 - 9 Aug 2019
Cited by 13 | Viewed by 3581
Abstract
NOx storage-reduction (NSR) is a potential approach for the effective removal of NOx under the lean conditions in lean-burn engines. Herein, manganese-doped mixed oxides (Mn/MgAlOx) with high performance for low temperature NOx storage and release were derived from [...] Read more.
NOx storage-reduction (NSR) is a potential approach for the effective removal of NOx under the lean conditions in lean-burn engines. Herein, manganese-doped mixed oxides (Mn/MgAlOx) with high performance for low temperature NOx storage and release were derived from hydrotalcites precursors prepared by a facile coprecipitation method. The catalysts were characterized by X-ray diffraction (XRD), SEM, N2 adsorption-desorption, H2-TPR, FT-IR, and X-ray photoelectron spectroscopy (XPS) techniques. The Mn-doped MgAlOx catalysts exhibited high NOx storage capacity (NSC) at low temperature range (150–300 °C), which was related to their increased surface area, improved reducibility and higher surface Mn3+ content. The largest NSC measured, 426 μmol/g, was observed for NOx adsorption at 200 °C on Mn15 catalyst (the sample containing 15 wt% of Mn). The in situ DRIFTS spectra of NOx adsorption proved that the Mn-doped hydrotalcite catalysts are preferred for low temperature NOx storage and release due to their ability to store NOx mainly in the form of thermally labile nitrites. NSR cycling tests revealed the NOx removal rate of Mn15 sample can reach above 70% within the wide temperature range of 150–250 °C. Besides, the influence of CO2, soot, H2O and SO2 on NOx storage performance of Mn15 catalyst was also studied. In all, owning to their excellent NOx storage capacity, NSR cycling performance, and resistance to CO2, soot, SO2 and H2O, the Mn-doped MgAlOx NSR catalysts have broad application prospects in NOx control at low temperatures. Full article
(This article belongs to the Special Issue Catalysis for the Removal of Gas-Phase Pollutants)
Show Figures

Figure 1

16 pages, 1534 KiB  
Article
Alumina-Supported Manganese Catalysts for Soot Combustion Prepared by Thermal Decomposition of KMnO4
by Maria-Eugenia Becerra, Nayda-Patricia Arias, Oscar-Hernan Giraldo, Franz-Edwin López-Suárez, Maria-Jose Illán-Gómez and Agustin Bueno-López
Catalysts 2012, 2(3), 352-367; https://doi.org/10.3390/catal2030352 - 11 Sep 2012
Cited by 21 | Viewed by 12004
Abstract
Alumina-supported manganese catalysts with cryptomelane and/or birnessite structure have been prepared using a simple method based on the thermal decomposition of potassium permanganate. The samples have been characterized by XRD, FTIR, TGA, DSC, N2 adsorption at −196 °C, SEM, H2-TPR [...] Read more.
Alumina-supported manganese catalysts with cryptomelane and/or birnessite structure have been prepared using a simple method based on the thermal decomposition of potassium permanganate. The samples have been characterized by XRD, FTIR, TGA, DSC, N2 adsorption at −196 °C, SEM, H2-TPR and XPS, and their catalytic activity for soot combustion has been tested and compared to that of a reference Pt/alumina catalyst. The thermal decomposition of alumina-supported KMnO4 yields a mixture of supported birnessite and potassium manganate which is the most effective, among those prepared, to lower the soot combustion temperature. However, this material is not useful for soot combustion because the accelerating effect is not based on a catalytic process but on the oxidation of soot by potassium manganate. A suitable soot combustion catalyst is obtained after potassium manganate is removed by water washing, yielding only the birnessite phase on the γ-Al2O3 support. This birnessite phase can be transformed into cryptomelane by calcination at 600 °C. These two samples, γ-Al2O3-supported birnessite and cryptomelane are suitable catalysts for soot combustion in NOx/O2 mixtures, as their catalytic activity is based on the NO2-assited mechanism, that is, both catalysts accelerate the oxidation of NO to NO2 and NO2 promotes soot oxidation. The soot combustion temperatures obtained with these birnessite/cryptomelane alumina-supported catalysts are similar to that obtained with the reference Pt/alumina catalyst. Full article
Show Figures

Figure 1

Back to TopTop