Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,095)

Search Parameters:
Keywords = regional imbalances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 355 KiB  
Review
Comprehensive Review of Life Cycle Carbon Footprint in Edible Vegetable Oils: Current Status, Impact Factors, and Mitigation Strategies
by Shuang Zhao, Sheng Yang, Qi Huang, Haochen Zhu, Junqing Xu, Dan Fu and Guangming Li
Waste 2025, 3(3), 26; https://doi.org/10.3390/waste3030026 - 6 Aug 2025
Abstract
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and [...] Read more.
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and transportation. It reveals the differential impacts of fertilizer application, energy structures, and regional policies. Unlike previous reviews that focus on single crops or regions, this study uniquely integrates global data across major edible oils, identifying three critical gaps: methodological inconsistency (60% of studies deviate from the requirements and guidelines for LCA); data imbalance (80% concentrated on soybean/rapeseed); weak policy-technical linkage. Key findings: fertilizer emissions dominate cultivation (40–60% of total footprint), while renewable energy substitution in processing reduces emissions by 35%. Future efforts should prioritize multidisciplinary integration, enhanced data infrastructure, and policy scenario analysis to provide scientific insights for the low-carbon transformation of the global edible oil industry. Full article
21 pages, 4331 KiB  
Article
Research on Lightweight Tracking of Small-Sized UAVs Based on the Improved YOLOv8N-Drone Architecture
by Yongjuan Zhao, Qiang Ma, Guannan Lei, Lijin Wang and Chaozhe Guo
Drones 2025, 9(8), 551; https://doi.org/10.3390/drones9080551 - 5 Aug 2025
Abstract
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To [...] Read more.
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To tackle these issues, this paper presents an enhanced YOLOv8N-Drone-based algorithm for improved target tracking of small UAVs. Firstly, a novel module named C2f-DSFEM (Depthwise-Separable and Sobel Feature Enhancement Module) is designed, integrating Sobel convolution with depthwise separable convolution across layers. Edge detail extraction and multi-scale feature representation are synchronized through a bidirectional feature enhancement mechanism, and the discriminability of target features in complex backgrounds is thus significantly enhanced. For the feature confusion problem, the improved lightweight Context Anchored Attention (CAA) mechanism is integrated into the Neck network, which effectively improves the system’s adaptability to complex scenes. By employing a position-aware weight allocation strategy, this approach enables adaptive suppression of background interference and precise focus on the target region, thereby improving localization accuracy. At the level of loss function optimization, the traditional classification loss is replaced by the focal loss (Focal Loss). This mechanism effectively suppresses the contribution of easy-to-classify samples through a dynamic weight adjustment strategy, while significantly increasing the priority of difficult samples in the training process. The class imbalance that exists between the positive and negative samples is then significantly mitigated. Experimental results show the enhanced YOLOv8 boosts mean average precision (Map@0.5) by 12.3%, hitting 99.2%. In terms of tracking performance, the proposed YOLOv8 N-Drone algorithm achieves a 19.2% improvement in Multiple Object Tracking Accuracy (MOTA) under complex multi-scenario conditions. Additionally, the IDF1 score increases by 6.8%, and the number of ID switches is reduced by 85.2%, indicating significant improvements in both accuracy and stability of UAV tracking. Compared to other mainstream algorithms, the proposed improved method demonstrates significant advantages in tracking performance, offering a more effective and reliable solution for small-target tracking tasks in UAV applications. Full article
Show Figures

Figure 1

17 pages, 3208 KiB  
Article
The Spatiotemporal Evolution Characteristics of the Water Use Structure in Shandong Province, Northern China, Based on the Gini Coefficient
by Caihong Liu, Mingyuan Fan, Yongfeng Yang, Kairan Wang and Haijiao Liu
Water 2025, 17(15), 2315; https://doi.org/10.3390/w17152315 - 4 Aug 2025
Viewed by 15
Abstract
The spatiotemporal evolution of the regional water use structure holds significant theoretical value for optimizing regional water resource allocation, adjusting industrial structures, and achieving sustainable water resource development. Shandong Province, located at the lowest reach of the Yellow River Basin in China, is [...] Read more.
The spatiotemporal evolution of the regional water use structure holds significant theoretical value for optimizing regional water resource allocation, adjusting industrial structures, and achieving sustainable water resource development. Shandong Province, located at the lowest reach of the Yellow River Basin in China, is a major economic, agricultural, and populous province, as well as a region with one of the most prominent water supply–demand imbalances in the country. As a result, exploring how water use patterns change over time and space in this region has become crucial. Using analytical methods like the Lorenz curve, Gini coefficient, cluster analysis, and spatial statistics, we examine shifts in Shandong’s water use structure from 2001 to 2023. We find that while agriculture remained the largest water consumer over this period, industrial, household, and ecological water use steadily increased, signaling a move toward more balanced resource distribution. Across Shandong’s 16 regions (cities), the water use patterns varied considerably, particularly in terms of agriculture, industry, and ecological needs. Among these, agricultural, industrial, and domestic water use were distributed relatively evenly, whereas ecological water use showed greater regional disparities. These results may have the potential to guide policymakers in refining water allocation strategies, improving industrial planning, and boosting the water use efficiency in Shandong and the country ore broadly. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

17 pages, 4929 KiB  
Article
Assessment of Grassland Carrying Capacity and Grass–Livestock Balance in the Three River Headwaters Region Under Different Scenarios
by Wenjing Li, Qiong Luo, Zhe Chen, Yanlin Liu, Zhouyuan Li and Wenying Wang
Biology 2025, 14(8), 978; https://doi.org/10.3390/biology14080978 (registering DOI) - 1 Aug 2025
Viewed by 170
Abstract
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, [...] Read more.
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, MODIS Net Primary Productivity (NPP) data, and artificial supplementary feeding data to analyze grassland CC and explore changes in the grass–livestock balance across various scenarios. The results showed that the theoretical CC of edible forage under complete grazing conditions was much lower than that of crude protein under nutritional carrying conditions. Furthermore, without increasing the grazing intensity of natural grasslands, artificial supplementary feeding reduced overstocking areas by 21%. These results suggest that supplementary feeding effectively addresses the imbalance between forage supply and demand, serving as a key measure for achieving sustainable grassland livestock husbandry. Despite the effective mitigation of grassland degradation in the TRHR due to strict grass–livestock balance policies and ecological restoration projects, the actual livestock CC exceeded the theoretical capacity, leading to overgrazing in some areas. To achieve desired objectives, more effective grassland management strategies must be implemented in the future to minimize spatiotemporal conflicts between grasses and livestock and ensure the health and stability of grassland ecosystems. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

11 pages, 219 KiB  
Article
Altitude-Linked Distribution Patterns of Serum and Hair Mineral Elements in Healthy Yak Calves from Ganzi Prefecture
by Chenglong Xia, Yao Pan, Jianping Wu, Dengzhu Luorong, Qingting Yu, Zhicai Zuo, Yue Xie, Xiaoping Ma, Lan Lan and Hongrui Guo
Vet. Sci. 2025, 12(8), 718; https://doi.org/10.3390/vetsci12080718 - 31 Jul 2025
Viewed by 165
Abstract
Mineral imbalances in livestock can critically impair growth, immunity, and productivity. Yaks inhabiting the Qinghai–Tibetan Plateau face unique environmental challenges, including high-altitude-induced nutrient variability. This study investigated the status of mineral elements and their correlations with altitude in healthy yak calves across five [...] Read more.
Mineral imbalances in livestock can critically impair growth, immunity, and productivity. Yaks inhabiting the Qinghai–Tibetan Plateau face unique environmental challenges, including high-altitude-induced nutrient variability. This study investigated the status of mineral elements and their correlations with altitude in healthy yak calves across five regions in Ganzi Prefecture, located at elevations ranging from 3100 to 4100 m. Hair and serum samples from 35 calves were analyzed for 11 essential elements (Na, K, Ca, Mg, S, Cu, Fe, Mn, Zn, Co, and Se). The results revealed widespread deficiencies. Key deficiencies were identified: hair Na and Co were significantly below references value (p < 0.05), and Se was consistently deficient across all regions, with deficiency rates ranging from 35.73% to 56.57%. Serum Mg and Cu were generally deficient (Mg deficiency > 26% above 3800 m). S, Mn (low detection), and Co were also suboptimal. Serum selenium deficiency was notably severe in lower-altitude areas (≤59.07%). Significant correlations with altitude were observed: hair sodium levels decreased with increasing altitude (r = −0.72), while hair manganese (r = 0.88) and cobalt (r = 0.65) levels increased. Serum magnesium deficiency became more pronounced at higher elevations (r = 0.58), whereas selenium deficiency in serum was more severe at lower altitudes (r = −0.61). These findings indicate prevalent multi-element deficiencies in yak calves that are closely linked to altitude and are potentially influenced by soil mineral composition and feeding practices, as suggested by previous studies. The study underscores the urgent need for region-specific nutritional standards and altitude-adapted mineral supplementation strategies to support optimal yak health and development. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
16 pages, 5304 KiB  
Article
Regional Youth Population Prediction Using LSTM
by Jaejun Seo, Sunwoong Yoon, Jiwoo Kim and Kyusang Kwon
Sustainability 2025, 17(15), 6905; https://doi.org/10.3390/su17156905 - 29 Jul 2025
Viewed by 453
Abstract
Regional shrinkage, driven by declining birth rates, an aging population, and population concentration in the capital region, has become an increasingly serious issue in South Korea, threatening the long-term sustainability of local communities. Among various factors, youth out-migration is a key driver, undermining [...] Read more.
Regional shrinkage, driven by declining birth rates, an aging population, and population concentration in the capital region, has become an increasingly serious issue in South Korea, threatening the long-term sustainability of local communities. Among various factors, youth out-migration is a key driver, undermining the economic resilience and vitality of local areas. This study aims to predict youth population trends across 229 municipalities by incorporating diverse regional socioeconomic factors and providing a foundation for policy implementation to mitigate demographic disparities. To this end, a long short-term memory (LSTM) model, based on a direct approach that independently forecasts each future time point, was employed. The model was trained using the youth population data from 2003 to 2022 and socioeconomic variables, including employment, education, housing, and infrastructure. The results reveal a persistent nationwide decline in the youth population, with significantly sharper decreases in local areas than in the capital region. These findings underscore the deepening spatial imbalance and highlight the urgent need for region-specific demographic policies to address the accelerating risk of regional population decline. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

25 pages, 687 KiB  
Article
Inter-Municipal Planning as a Framework for Managing Policies for Inner Areas: Insights from the Italian Context
by Alessio Floris and Sergio Serra
Sustainability 2025, 17(15), 6896; https://doi.org/10.3390/su17156896 - 29 Jul 2025
Viewed by 161
Abstract
The socio-economic geography of the Italian territory is framed by strong imbalances in the settlement development, with consequent inequalities in terms of accessibility to essential services. These challenges are most critical in the ‘inner areas’, which are remote from metropolitan and urban centers [...] Read more.
The socio-economic geography of the Italian territory is framed by strong imbalances in the settlement development, with consequent inequalities in terms of accessibility to essential services. These challenges are most critical in the ‘inner areas’, which are remote from metropolitan and urban centers and affected by chronic demographic decline and depopulation. Both European and national policies have relied primarily on financial interventions, often implemented with limited integration into comprehensive urban and territorial planning frameworks. Using a case study methodology, this research examines the area-based strategies of the 72 pilot areas designated under the 2014–2020 program-ming cycle of the National Strategy for Inner Areas (SNAI). The main research question guiding this study is as follows: how does economic planning intersect with territorial governance in Italy’s inner areas, and what is the specific role of local autonomies and the management of core functions, particularly in relation to urban and regional planning? Through this lens, this study proposes a conceptual reframing of the inter-municipal ad-ministrative scale as a strategic framework for promoting more effective territorial policies. Full article
Show Figures

Figure 1

24 pages, 4858 KiB  
Article
Exploring the Spatial Coupling Characteristics and Influence Mechanisms of Built Environment and Green Space Pattern: The Case of Shanghai
by Rongxiang Chen, Zhiyuan Chen, Mingjing Xie, Rongrong Shi, Kaida Chen and Shunhe Chen
Sustainability 2025, 17(15), 6828; https://doi.org/10.3390/su17156828 - 27 Jul 2025
Viewed by 569
Abstract
Urban expansion will squeeze the green space system and cause ecological fragmentation. The question of how to expand cities more scientifically and build eco-cities has become an important topic of sustainable urban construction. This paper takes Shanghai as a research case. A deep [...] Read more.
Urban expansion will squeeze the green space system and cause ecological fragmentation. The question of how to expand cities more scientifically and build eco-cities has become an important topic of sustainable urban construction. This paper takes Shanghai as a research case. A deep neural network combined with an attention mechanism model measures the comprehensive level of the built environment and green space pattern of urbanization and quantitatively analyzes the coordinated relationship between the two using the coupled degree of coordination model. Subsequently, the K-Means clustering model was used for spatial clustering to determine the governance and construction directions for different spatial areas and was, finally, combined with the LightGBM model plus SHAP to analyze the importance and threshold effect of the indicators on the degree of coupled coordination. The results of the study show that (1) the core area of the city shows a high state of coordination, indicating that Shanghai has a better green space construction in the central city, but the periphery shows different imbalances; (2) three different kinds of areas are identified, and different governance measures as well as the direction of urbanization are proposed according to the characteristics of the different areas; and (3) this study finds that the structural indicators of the built environment, such as Average Compactness, Weighted Average Height, and Land Use Diversity, have a significant influence on the coupling coordination degree and have different response thresholds. The results of the study provide theoretical support for regional governance and suggestions for the direction of urban expansion for sustainable urbanization. Full article
(This article belongs to the Special Issue Urban Planning and Sustainable Land Use—2nd Edition)
Show Figures

Figure 1

55 pages, 1629 KiB  
Review
Serotonin Modulation of Dorsoventral Hippocampus in Physiology and Schizophrenia
by Charalampos L. Kandilakis and Costas Papatheodoropoulos
Int. J. Mol. Sci. 2025, 26(15), 7253; https://doi.org/10.3390/ijms26157253 - 27 Jul 2025
Viewed by 778
Abstract
The serotonergic system, originating in the raphe nuclei, differentially modulates the dorsal and ventral hippocampus, which are implicated in cognition and emotion, respectively. Emerging evidence from rodent models (e.g., neonatal ventral hippocampal lesion, pharmacological NMDA receptor antagonist exposure) and human postmortem studies indicates [...] Read more.
The serotonergic system, originating in the raphe nuclei, differentially modulates the dorsal and ventral hippocampus, which are implicated in cognition and emotion, respectively. Emerging evidence from rodent models (e.g., neonatal ventral hippocampal lesion, pharmacological NMDA receptor antagonist exposure) and human postmortem studies indicates dorsoventral serotonergic alterations in schizophrenia. These data include elevated 5-HT1A receptor expression in the dorsal hippocampus, linking serotonergic hypofunction to cognitive deficits, and hyperactive 5-HT2A/3 receptor signaling and denser serotonergic innervation in the ventral hippocampus driving local hyperexcitability associated with psychosis and stress responsivity. These dorsoventral serotonergic alterations are shown to disrupt the excitation–inhibition balance, impair synaptic plasticity, and disturb network oscillations, as established by in vivo electrophysiology and functional imaging. Synthesizing these multi-level findings, we propose a novel “dorsoventral serotonin imbalance” model of schizophrenia, in which ventral hyperactivation predominantly contributes to psychotic symptoms and dorsal hypoactivity underlies cognitive deficits. We further highlight promising preclinical evidence that selective targeting of region- and receptor-specific targeting, using both pharmacological agents and emerging delivery technologies, may offer novel therapeutic opportunities enabling symptom-specific strategies in schizophrenia. Full article
Show Figures

Figure 1

17 pages, 36180 KiB  
Article
Geomorphological Features and Formation Process of Abyssal Hills and Oceanic Core Complexes Linked to the Magma Supply in the Parece Vela Basin, Philippine Sea: Insights from Multibeam Bathymetry Analysis
by Xiaoxiao Ding, Junjiang Zhu, Yuhan Jiao, Xinran Li, Zhengyuan Liu, Xiang Ao, Yihuan Huang and Sanzhong Li
J. Mar. Sci. Eng. 2025, 13(8), 1426; https://doi.org/10.3390/jmse13081426 - 26 Jul 2025
Viewed by 299
Abstract
Based on the new high-resolution multibeam bathymetry data collected by the “Dongfanghong 3” vessel in 2023 in the Parece Vela Basin (PVB) and previous magnetic anomaly data, we systematically analyze the seafloor topographical changes of abyssal hills and oceanic core complexes (OCCs) in [...] Read more.
Based on the new high-resolution multibeam bathymetry data collected by the “Dongfanghong 3” vessel in 2023 in the Parece Vela Basin (PVB) and previous magnetic anomaly data, we systematically analyze the seafloor topographical changes of abyssal hills and oceanic core complexes (OCCs) in the “Chaotic Terrain” region, and the revised seafloor spreading model is constructed in the PVB. Using detailed analysis of the seafloor topography, we identify typical geomorphological features associated with seafloor spreading, such as regularly aligned abyssal hills and OCCs in the PVB. The direction variations of seafloor spreading in the PVB are closely related to mid-ocean ridge rotation and propagation. The formation of OCCs in the “Chaotic Terrain” can be explained by links to the continuous and persistent activity of detachment faults and dynamic adjustments controlled by variations of deep magma supply in the different segments in the PVB. We use 2D discrete Fourier image analysis of the seafloor topography to calculate the aspect ratio (AR) values of abyssal hills in the western part of the PVB. The AR value variations reveal a distinct imbalance in magma supply across various regions during the basin spreading process. Compared to the “Chaotic Terrain” area, the region with abyssal hills indicates a higher magma supply and greater linearity on seafloor topography. AR values fluctuated between 2.1 and 1.7 of abyssal hills in the western segment, while in the “Chaotic Terrain”, they dropped to 1.3 due to the lower magma supply. After the formation of the OCC-1, AR values increased to 1.9 in the eastern segment, and this shows the increase in magma supply. Based on changes in seafloor topography and variations in magma supply across different segments of the PVB, we propose that the seafloor spreading process in the magnetic anomaly linear strip 9-6A of the PVB mainly underwent four formation stages: ridge rotation, rift propagation, magma-poor supply, and the maturation period of OCCs. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

30 pages, 2922 KiB  
Article
Interaction Mechanism and Coupling Strategy of Higher Education and Innovation Capability in China Based on Interprovincial Panel Data from 2010 to 2022
by Shaoshuai Duan and Fang Yin
Sustainability 2025, 17(15), 6797; https://doi.org/10.3390/su17156797 - 25 Jul 2025
Viewed by 475
Abstract
The sustainable development of higher education exhibits a strong and measurable association with the level of regional innovation capacity. Drawing on panel data covering 31 provincial-level administrative regions in China from 2010 to 2022, we construct evaluation frameworks for both higher education and [...] Read more.
The sustainable development of higher education exhibits a strong and measurable association with the level of regional innovation capacity. Drawing on panel data covering 31 provincial-level administrative regions in China from 2010 to 2022, we construct evaluation frameworks for both higher education and regional innovation capacity using the entropy weight method. These are complemented by kernel density estimation, spatial autocorrelation analysis, Dagum Gini coefficient decomposition, and the Obstacle Degree Model. Together, these tools enable a comprehensive investigation into the spatiotemporal evolution and driving mechanisms of coupling coordination dynamics between the two systems. The results indicate the following: (1) Both higher education and regional innovation capacity indices exhibit steady growth, accompanied by a clear temporal gradient differentiation. (2) The coupling coordination degree shows an overall upward trend, with significant inter-regional disparities, notably “higher in the east and low in the west”. (3) The spatial distribution of the coupling coordination degree reveals positive spatial autocorrelation, with provinces exhibiting similar levels tending to form spatial clusters, most commonly of the low–low or high–high type. (4) The spatial heterogeneity is pronounced, with inter-regional differences driving overall imbalance. (5) Key obstacles hindering regional innovation include inadequate R&D investment, limited trade openness, and weak technological development. In higher education sectors, limitations stem from insufficient social service benefits and efficiency of flow. This study recommends promoting the synchronized advancement of higher education and regional innovation through region-specific development strategies, strengthening institutional infrastructure, and accurately identifying and addressing key barriers. These efforts are essential to fostering high-quality, coordinated regional development. Full article
Show Figures

Figure 1

26 pages, 2576 KiB  
Review
Exploring Cirrhosis: Insights into Advances in Therapeutic Strategies
by Magdalena Wiacek, Anna Adam, Rafał Studnicki and Igor Z. Zubrzycki
Int. J. Mol. Sci. 2025, 26(15), 7226; https://doi.org/10.3390/ijms26157226 - 25 Jul 2025
Viewed by 217
Abstract
Cirrhosis remains a significant global health burden, responsible for nearly 4% of annual deaths worldwide. Despite progress in antiviral therapies and public health measures, its prevalence has plateaued, particularly in regions affected by viral hepatitis, alcohol misuse, and metabolic syndrome. This review presents [...] Read more.
Cirrhosis remains a significant global health burden, responsible for nearly 4% of annual deaths worldwide. Despite progress in antiviral therapies and public health measures, its prevalence has plateaued, particularly in regions affected by viral hepatitis, alcohol misuse, and metabolic syndrome. This review presents a comprehensive synthesis of the multifactorial drivers of cirrhosis, including hepatocyte injury, liver stellate cell activation, and immune-mediated inflammation. The emphasis is on the central role of metabolic dysfunction, characterized by mitochondrial impairment, altered lipid and glucose metabolism, hormonal imbalance, and systemic inflammation, in exacerbating disease progression. While current therapies may slow the progression of early-stage disease, they are very often ineffective in reversing established fibrosis. Emerging molecular strategies offer promising alternatives by targeting key pathogenic pathways. These include AMPK activators (e.g., metformin, AICAR), FGF21 analogs, and mitochondria-targeted agents (e.g., MitoQ, urolithin A, NAD+ precursors) to restore bioenergetic balance and reduce oxidative stress. Other approaches, such as mesenchymal stem cell therapy, inflammasome inhibition, and hormonal modulation, aim to suppress fibrogenesis and restore liver homeostasis. The integration of systems biology and multi-omics profiling supports patient stratification and precision medicine. This review highlights a shift toward mechanism-based interventions that have the potential to alter cirrhosis outcomes and improve patient survival. Full article
(This article belongs to the Special Issue Cirrhosis: From Molecular Mechanisms to Therapeutic Strategies)
Show Figures

Graphical abstract

19 pages, 2201 KiB  
Article
Spatiotemporal Evolution and Driving Factors of Agricultural Digital Transformation in China
by Jinli Wang, Jun Wen, Jie Lin and Xingqun Li
Agriculture 2025, 15(15), 1600; https://doi.org/10.3390/agriculture15151600 - 25 Jul 2025
Viewed by 273
Abstract
With the digital economy continuing to integrate deeply into the agricultural sector, agricultural digital transformation has emerged as a pivotal driver of rural revitalization and the development of a robust agricultural economy. Although existing studies have affirmed the positive role of agricultural digital [...] Read more.
With the digital economy continuing to integrate deeply into the agricultural sector, agricultural digital transformation has emerged as a pivotal driver of rural revitalization and the development of a robust agricultural economy. Although existing studies have affirmed the positive role of agricultural digital transformation in promoting rural development and enhancing agricultural efficiency, its spatiotemporal evolution patterns, regional disparities, and underlying driving factors have not yet been systematically and thoroughly investigated. This study seeks to fill that gap. Based on provincial panel data from China spanning 2011 to 2023, this study employs the Theil index, kernel density estimation, Moran’s index, and quantile regression to systematically assess the spatiotemporal dynamics and driving factors of agricultural digital transformation at both national and regional levels. The results reveal a steady overall improvement in agricultural digital transformation, yet regional development imbalances remain prominent, with a shift from inter-regional disparities to intra-regional disparities over time. The four major regions exhibit a stratified evolutionary trajectory marked by internal differentiation: the eastern region retains its lead, while central and western regions show potential for catch-up, and the northeastern region faces a “balance trap.” Economic development foundation, human capital quality, and policy environment support are identified as the core driving forces of transformation, while other factors demonstrate pronounced regional and phase-specific variability. This study not only deepens theoretical understanding of the uneven development and driving logic of agricultural digital transformation but also provides empirical evidence to support policy optimization and promote more balanced and sustainable development in the agricultural sector. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

25 pages, 5543 KiB  
Article
Geospatial Drivers of China’s Nature Reserves: Implications for Sustainable Agricultural Development
by Shasha Ouyang and Jun Wen
Agriculture 2025, 15(15), 1596; https://doi.org/10.3390/agriculture15151596 - 24 Jul 2025
Viewed by 286
Abstract
The establishment and management of nature reserves play a crucial role in protecting biodiversity and supporting sustainable agriculture. This study focuses on 2538 nature reserves in 22 provinces, 5 autonomous regions and 4 municipalities directly under the central government in mainland China. Integrating [...] Read more.
The establishment and management of nature reserves play a crucial role in protecting biodiversity and supporting sustainable agriculture. This study focuses on 2538 nature reserves in 22 provinces, 5 autonomous regions and 4 municipalities directly under the central government in mainland China. Integrating GIS spatial statistics, imbalance index, and geodetector models, we reveal critical insights: (1) Pronounced spatial inequity is observed, where a small number of eastern provinces dominate the total reserve count, highlighting significant regional disparities in ecological resource allocation. The sparse kernel density in western regions, indicating sparse reserve coverage. The Standard Deviation Ellipse highlights directional dispersion and human-ecological conflicts in high-density zones. (2) Key sustainability indicators driving reserve distribution include: total water resources, water resources per capita, forest area. (3) The spatial distribution of China’s nature reserves, along with factors such as altitude, river distribution, and transportation infrastructure, plays a crucial role in their development. This research provides theoretical support for the scientific planning and policy-making of nature reserves in China and offers practical guidance for optimizing and adjusting sustainable agricultural development. The study emphasizes the vital functions of nature reserves in maintaining ecosystem balance, enhancing regional climate resilience, and serving as biodiversity reservoirs. This research offers strategic insights for integrating nature reserve spatial planning with sustainable agricultural development policies, providing a scientific basis for optimizing the eco-agricultural interface in China. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

17 pages, 1192 KiB  
Article
A Power Monitor System Cybersecurity Alarm-Tracing Method Based on Knowledge Graph and GCNN
by Tianhao Ma, Juan Yu, Binquan Wang, Maosheng Gao, Zhifang Yang, Yajie Li and Mao Fan
Appl. Sci. 2025, 15(15), 8188; https://doi.org/10.3390/app15158188 - 23 Jul 2025
Viewed by 157
Abstract
Ensuring cybersecurity in power monitoring systems is of paramount importance to maintain the operational safety and stability of modern power grids. With the rapid expansion of grid infrastructure and increasing sophistication of cyber threats, existing manual alarm-tracing methods face significant challenges in handling [...] Read more.
Ensuring cybersecurity in power monitoring systems is of paramount importance to maintain the operational safety and stability of modern power grids. With the rapid expansion of grid infrastructure and increasing sophistication of cyber threats, existing manual alarm-tracing methods face significant challenges in handling the massive volume of security alerts, leading to delayed responses and potential system vulnerabilities. Current approaches often lack the capability to effectively model complex relationships among alerts and are hindered by imbalanced data distributions, which degrade tracing accuracy. To this end, this paper proposes a power monitor system cybersecurity alarm-tracing method based on the knowledge graph (KG) and graph convolutional neural networks (GCNN). Specifically, a cybersecurity KG is constituted based on the historical alert, accurately representing the entities and relationships in massive alerts. Then, a GCNN with attention mechanisms is applied to sufficiently extract the topological features along alarms in KG so that it can precisely and effectively trace the massive alarms. Most importantly, to mitigate the influence of imbalanced alarms for tracing, a specialized data process and model ensemble strategy by adaptively weighted imbalance sample is proposed. Finally, based on 70,000 alarm information from a regional power grid, by applying the method proposed in this paper, an alarm traceability accuracy rate of 96.59% was achieved. Moreover, compared with the traditional manual method, the traceability efficiency was improved by more than 80%. Full article
(This article belongs to the Special Issue Design, Optimization and Control Strategy of Smart Grids)
Show Figures

Figure 1

Back to TopTop