Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = refrigerant charge amount

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 16364 KB  
Article
Performance and Economic Analysis of Two Types of High-Temperature Heat Pump Based on New Refrigerants
by Dahan Sun, Jiang Qin and Zhongyan Liu
Appl. Sci. 2024, 14(17), 7735; https://doi.org/10.3390/app14177735 - 2 Sep 2024
Viewed by 2585
Abstract
This paper proposes, for the first time, the research concept of comparing energy and economy between transcritical cycle high-temperature heat pumps and subcritical cycle high-temperature heat pumps with new refrigerants. Experiments and simulations are conducted to compare the system performance and economy of [...] Read more.
This paper proposes, for the first time, the research concept of comparing energy and economy between transcritical cycle high-temperature heat pumps and subcritical cycle high-temperature heat pumps with new refrigerants. Experiments and simulations are conducted to compare the system performance and economy of two heat pumps, and the effects of different factors on the performance of two heat pumps are analyzed. The results show that R744/R1234yf (90/10) and R515-1 are the preferred refrigerants for transcritical cycle heat pumps and subcritical cycle heat pumps, respectively. The COP of the R744/R1234yf (90/10) transcritical heat pump is generally higher than that of the R515B-1 subcritical heat pump, and compared to the R515B-1 subcritical heat pump, the cost recovery period of the R744/R1234yf (90/10) transcritical heat pump is about 9–15 years. Therefore, it is recommended that users who use heat pumps for a long time choose transcritical cycle heat pumps. Meanwhile, with the change of evaporation temperature, the system COP of the R515B-1 subcritical heat pump and R744/R1234yf (90/10) transcritical heat pump increases by 61.11% and 65.91%, respectively. In addition, the optimal charge amount for the R515B-1 subcritical heat pump is 81.8% of that of the R744/R1234yf (90/10) transcritical heat pump. Full article
(This article belongs to the Special Issue Energy Efficiency in Buildings and Its Sustainable Development)
Show Figures

Figure 1

16 pages, 2614 KB  
Article
Experimental Investigation of R404A Indirect Refrigeration System Applied Internal Heat Exchanger: Part 1—Coefficient of Performance Characteristics
by Min-Ju Jeon and Joon-Hyuk Lee
Energies 2024, 17(16), 4127; https://doi.org/10.3390/en17164127 - 19 Aug 2024
Cited by 1 | Viewed by 2118
Abstract
In this study, the performance characteristics of an R404A indirect refrigeration system (IRS) applied to an internal heat exchanger (IHX) is evaluated for supermarkets and hypermarkets. In a direct expansion system, R404A is the primary refrigerant and R744, a brine, is the secondary [...] Read more.
In this study, the performance characteristics of an R404A indirect refrigeration system (IRS) applied to an internal heat exchanger (IHX) is evaluated for supermarkets and hypermarkets. In a direct expansion system, R404A is the primary refrigerant and R744, a brine, is the secondary fluid. While there are abundant studies analyzing the theoretical performance of IRS, experimental research on IRS is lacking, and there are no papers that address the results of changes in the IHX in detail. In this study, the results achieved by modifying various parameters are experimentally evaluated to provide fundamental data for designing the optimal IRS. In the main results, looking at the trend of the increase in IHX efficiency, the change is very minimal when the efficiency is above 50%, so it is ideal to apply an IHX efficiency of about 50% considering economics and COP, etc. Applying the results in this study enables the operation and maintenance of IRSs as an eco-friendly system by achieving energy efficiency through optimizing the system coefficient of performance and securing economic feasibility by minimizing the R404A charging amount of the refrigeration cycle. To serve supermarkets and hypermarkets, R744 as a secondary fluid may help to realize an ecologically friendly, compact IRS system with a high heat transfer coefficient that can operate at low temperatures (−35 to 5 °C). Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

15 pages, 1141 KB  
Article
Vertical Takeoff and Landing for Distribution of Parcels to Hospitals: A Case Study about Industry 5.0 Application in Israel’s Healthcare Arena
by Michael Naor, Gavriel David Pinto, Pini Davidov, Yuval Cohen, Linor Izchaki, Mukarram Hadieh and Malak Ghaith
Sustainability 2024, 16(11), 4682; https://doi.org/10.3390/su16114682 - 31 May 2024
Cited by 9 | Viewed by 2983
Abstract
To gain a sustained competitive advantage, organizations such as UPS, Fedex, Amazon, etc., began to seek for industry 5.0 innovative autonomous delivery options for the last mile. Autonomous unmanned aerial vehicles are a promising alternative for the logistics industry. The fact that drones [...] Read more.
To gain a sustained competitive advantage, organizations such as UPS, Fedex, Amazon, etc., began to seek for industry 5.0 innovative autonomous delivery options for the last mile. Autonomous unmanned aerial vehicles are a promising alternative for the logistics industry. The fact that drones are propelled by green renewable energy source fits the companies’ need to become sustainable, replacing their fuel truck fleets, especially for traveling to remote rural locations to deliver small packages, but a major obstacle is the necessity for charging stations which is well documented in the literature. Therefore, the current research embarks on devising a novel yet practical piece of technology adopting the simplicity approach of direct flights to destinations. The analysis showcases the application for a network of warehouses and hospitals in Israel while controlling costs. Given the products in the case study are medical, direct flight has the potential to save lives when every moment counts. Hydrogen cell technology allows long-range flying without refueling, and it is both vibration-free which is essential for sensitive medical equipment and environmentally friendly in terms of air pollution and silence in urban areas. Importantly, hydrogen cells are lighter, with higher energy density than batteries, which makes them ideal for drone usage to reduce weight, maintain a longer life, and enable faster charging, all of which minimize downtime. Also, hydrogen sourcing is low-cost and unlimited compared to lithium-ion material which needs to be mined. The case study investigates an Israeli entrepreneurial company, Gadfin, which builds a vertical takeoff-and-landing-type of drone with folded wings that enable higher speed for the delivery of refrigerated medical cargo, blood, organs for transplant, and more to hospitals in partnership with the Israeli medical logistic conglomerate, SAREL. An analysis of shipping optimization (concerning the number and type of drone) is conducted using a mixed-integer linear programming technique based on various types of constraints such as traveling distance, parcel weight, the amount of flight controllers and daily number of flights allowed in order to not overcrowd the airspace. Importantly, the discussion assesses the ecosystem’s variety of risks and commensurate safety mechanisms for advancing a newly shaped landscape of drones in an Israeli tight airspace to establish a network of national routes for drone traffic. The conclusion of this research cautions limitations to overcome as the utilization of drones expand and offers future research avenues. Full article
(This article belongs to the Special Issue Smart Sustainable Techniques and Technologies for Industry 5.0)
Show Figures

Figure 1

13 pages, 2627 KB  
Article
Experimental Study of an Air-Conditioning System in an Electric Vehicle with R1234yf
by Jeonghyun Song, Seongyong Eom, Jaeseung Lee, Youngshin Chu, Jaewon Kim, Seohyun Choi, Minsung Choi, Gyungmin Choi and Yeseul Park
Energies 2023, 16(24), 8017; https://doi.org/10.3390/en16248017 - 12 Dec 2023
Cited by 5 | Viewed by 3155
Abstract
R134a, a vehicle refrigerant used in the vehicle heat pump system, is regulated according to the Montreal Protocol. Refrigerants such as R1234yf, R744, and R290 in vehicle heat pump systems are being investigated to identify their alternatives. Because developing a new system exclusively [...] Read more.
R134a, a vehicle refrigerant used in the vehicle heat pump system, is regulated according to the Montreal Protocol. Refrigerants such as R1234yf, R744, and R290 in vehicle heat pump systems are being investigated to identify their alternatives. Because developing a new system exclusively for new refrigerants is costly, an empirical test was conducted on the R1234yf refrigerant in a heat pump system designed for the R134a refrigerant in an actual vehicle system. The heating, cooling, and battery-cooling modes were tested for the amount of refrigerant charge, and operability tests were conducted for the compressor load; heating, ventilation, air conditioning (HVAC) air flow rate; coolant temperature; and flow rate of each mode. The optimal refrigerant charge in heating mode was 0.7 kg, and the optimal refrigerant charge in the cooling and battery-cooling modes was 0.9 kg. To yield the highest coefficient of performance of the system, the compressor load was 50%, the HVAC fan was 12 V, and the coolant flow rate was 10 LPM. The most efficient system operation was possible at a coolant temperature of 30 °C in the cooling and heating modes and at 20 °C in battery-cooling mode. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

21 pages, 3977 KB  
Article
A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO2-Based Bus Air Conditioning and Heat Pump System
by Yulong Song, Hongsheng Xie, Mengying Yang, Xiangyu Wei, Feng Cao and Xiang Yin
Energies 2023, 16(6), 2600; https://doi.org/10.3390/en16062600 - 9 Mar 2023
Cited by 3 | Viewed by 3346
Abstract
To mitigate the contemporary environmental challenges and to respect the regulations on the progressive ban of hydrofluorocarbons (HFC), natural fluid CO2 was selected as an ideal refrigerant alternative in the transportation domain. In this study, the optimal CO2 charging amount and [...] Read more.
To mitigate the contemporary environmental challenges and to respect the regulations on the progressive ban of hydrofluorocarbons (HFC), natural fluid CO2 was selected as an ideal refrigerant alternative in the transportation domain. In this study, the optimal CO2 charging amount and the refrigerant distribution in a bus air conditioning/heat pump system were analyzed in detail. The results showed that there was a plateau (so named by the best charging amount) of the CO2 charging amount in which the system performance reached an optimal value and maintained it nearly unchanged during this plateau while the performance declined on both sides of the plateau. In addition, the ambient temperature was found to have little effect on the determination of the refrigerant charging plateau, while the refrigerant distribution was affected by the ambient temperature to some extent. Due to the large thermal load and thermal inertia on a bus, the data and conclusions obtained are different from those of ordinary electric small passenger vehicles. This article aims to discover some quantitative parameters and lay a theoretical foundation in this field which is lacking relevant research. Through the research based on the GT-Suite simulation platform, we simulated the transcritical CO2 cycle applied on a bus, and the performance changes of the bus system (COP 1.2–2.2, refrigerating capacity 9.5–18 kW) under different charging rates (3–8 kg) were obtained. Full article
(This article belongs to the Special Issue Current Status on the Thermal Management of Electric Vehicles)
Show Figures

Figure 1

18 pages, 3595 KB  
Article
Measurement Method and Experimental Analysis of Liquid Entrainment for a Flooded Evaporator of a Water-Cooled Centrifugal Chiller Based on Energy Balance
by Xinghua Huang, Yunqian Zhang, Zuqiang Li and Yaolin Lin
Appl. Sci. 2021, 11(17), 8165; https://doi.org/10.3390/app11178165 - 2 Sep 2021
Cited by 1 | Viewed by 7068
Abstract
Liquid entrainment in a flooded evaporator has an important impact on the performance and safety of a water-cooled centrifugal chiller. In this paper, two methods for measuring the liquid entrainment factor in the evaporator of a centrifugal chiller based on energy balance are [...] Read more.
Liquid entrainment in a flooded evaporator has an important impact on the performance and safety of a water-cooled centrifugal chiller. In this paper, two methods for measuring the liquid entrainment factor in the evaporator of a centrifugal chiller based on energy balance are proposed. Method 1 involves only the heat exchange capacity of the evaporator and Method 2 involves both evaporator and condenser. The applicable conditions of the methods are discussed. Experimental measurements on the flooded evaporator of a single-stage water-cooled centrifugal chiller with refrigerant R134a show that, for a system with good thermal balance, there is little difference in the entrainment factor values obtained by the two methods. Method 2 was found to have slightly higher measurement accuracy, compared to Method 1. The uncertainty propagation analysis shows that for Method 2, the inlet and outlet water temperatures of the evaporator and condenser, motor input power, motor efficiency, transmission power loss and compressor suction and discharge temperatures are important factors. The experimental results show that the variation of the evaporator entrainment factor with refrigerant charge amount is different for different cooling capacity. At 700 and 800 refrigeration ton (RT), the entrainment factor of the test evaporator increases with the increase of refrigerant charge and the growth rate gradually accelerates. For the chiller tested, when the entrainment factor reaches 0.89% and 1.02%, respectively, at 700 ton and 800 ton, the rapid increase of the entrainment factor leads to a significant decrease in the coefficient of performance (COP) during the charging process. Based on the analysis of the experimental results, it is recommended that the maximum entrainment factor for efficient operation of the centrifugal chiller should be controlled within 1%. Full article
Show Figures

Figure 1

16 pages, 5604 KB  
Article
Refrigerant Charge Prediction of Vapor Compression Air Conditioner Based on Start-Up Characteristics
by Yechan Yun and Young Soo Chang
Appl. Sci. 2021, 11(4), 1780; https://doi.org/10.3390/app11041780 - 17 Feb 2021
Cited by 12 | Viewed by 5238
Abstract
Refrigerant charge faults, which occur frequently, increase the energy loss and may fatally damage the system. Refrigerant leakage is difficult to detect and diagnose until the fault has reached a severe degree. Various techniques have been developed to predict the refrigerant charge amount [...] Read more.
Refrigerant charge faults, which occur frequently, increase the energy loss and may fatally damage the system. Refrigerant leakage is difficult to detect and diagnose until the fault has reached a severe degree. Various techniques have been developed to predict the refrigerant charge amount based on steady-state operation; however, steady-state experiments used to develop prediction models for the refrigerant charge amount are expensive and time-consuming. In this study, a prediction model was established with dynamic experimental data to overcome these deficiencies. The dynamic models for the condensation temperature, degree of subcooling, compressor discharge temperature, and power consumption were developed with a regression support vector machine (r-SVM) model and start-up experimental data. The dynamic models for the condensation temperature and degree of subcooling can predict the distinct start-up characteristics depending on the refrigerant charge amount. Moreover, the estimated root mean square error (RMSE) of the condensation temperature and degree of subcooling of the test data are 0.53 and 0.84 °C, respectively. The refrigerant charge is one of the predictors that defines the dynamic characteristics. The refrigerant charge can be estimated by minimizing the RMSE of the predicted values of the dynamic models and experimental data. When the dynamic characteristics of the two predictor variables, “condensation temperature” and “degree of subcooling” are used together, the average prediction error of the test data is 2.54%. The proposed method, which uses the dynamic model during start-up operation, is an effective technique for predicting the refrigerant charge amount. Full article
(This article belongs to the Special Issue Sciences and Innovations in Heat Pump/Refrigeration: Volume II)
Show Figures

Figure 1

23 pages, 3376 KB  
Article
A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps
by Jun Kwon Hwang, Patrick Nzivugira Duhirwe, Geun Young Yun, Sukho Lee, Hyeongjoon Seo, Inhan Kim and Mat Santamouris
Sustainability 2020, 12(7), 2914; https://doi.org/10.3390/su12072914 - 6 Apr 2020
Cited by 11 | Viewed by 4046
Abstract
Improper refrigerant charge amount (RCA) is a recurring fault in electric heat pump (EHP) systems. Because EHP systems show their best performance at optimum charge, predicting the RCA is important. There has been considerable development of data-driven techniques for predicting RCA; however, the [...] Read more.
Improper refrigerant charge amount (RCA) is a recurring fault in electric heat pump (EHP) systems. Because EHP systems show their best performance at optimum charge, predicting the RCA is important. There has been considerable development of data-driven techniques for predicting RCA; however, the current data-driven approaches for estimating RCA suffer from poor generalization and overfitting. This study presents a hybrid deep neural network (DNN) model that combines both a basic DNN model and a thermodynamic model to counter the abovementioned challenges of existing data-driven approaches. The data for designing models were collected from two EHP systems with different specifications, which were used for the training and testing of models. In addition to the data obtained using the basic DNN model, the hybrid DNN model uses the thermodynamic properties as a thermodynamic model. The testing results show that the hybrid DNN model has a prediction performance of 93%, which is 21% higher than that of the basic DNN model. Furthermore, for model training and model testing, the hybrid DNN model has a 6% prediction performance difference, indicating its reliable generalization capabilities. To summarize, the hybrid DNN model improves data-driven approaches and can be used for designing efficient and energy-saving EHP systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

18 pages, 15266 KB  
Article
A Study of Optimal Refrigerant Charge Amount Determination for Air-Conditioning Heat Pump System in Electric Vehicles
by Kang Li, Jun Yu, Mingkang Liu, Dan Xu, Lin Su and Yidong Fang
Energies 2020, 13(3), 657; https://doi.org/10.3390/en13030657 - 4 Feb 2020
Cited by 15 | Viewed by 7336
Abstract
With regard to concerns about an electric vehicle’s driving range extension in a cold climate, an air-conditioning heat pump (ACHP) shows considerable advantage over thermoelectric heaters for battery energy conservation. The effect of refrigerant charge amount for cooling and heating performance of the [...] Read more.
With regard to concerns about an electric vehicle’s driving range extension in a cold climate, an air-conditioning heat pump (ACHP) shows considerable advantage over thermoelectric heaters for battery energy conservation. The effect of refrigerant charge amount for cooling and heating performance of the ACHP system is significant. The optimal charge, realizing the optimal system performance, is usually determined by experiments of cooling and heating performance. In this paper, the optimal charge determination process based on a newly designed ACHP applied in electric vehicles was introduced. Relationships of characteristics with charge in two modes were investigated by experimental and theoretical methods. Firstly, the performance of the ACHP system was respectively investigated at different charge amounts in cooling and heating operating conditions according to key parameters of system cycles. Secondly, the intersection platforms of subcooling and superheat variation curves with refrigerant charge amount were obtained for determining optimal charge amount of the system further by comprehensive analysis. Finally, the theoretical calculation of charge with three instructive and classical void friction correlation models were applied for better comparisons. It was found that charge amount calculated by the Hughmark model proved to be most consistent with the comprehensive experimental results. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

14 pages, 2808 KB  
Article
Influence of Refrigerant Charge Amount and EEV Opening on the Performance of a Transcritical CO2 Heat Pump Water Heater
by Ze Zhang, Xiaojun Dong, Zheng Ren, Tianwei Lai and Yu Hou
Energies 2017, 10(10), 1521; https://doi.org/10.3390/en10101521 - 3 Oct 2017
Cited by 20 | Viewed by 7235
Abstract
Besides compressor rotary speed and parameters of water flowing through gas cooler and evaporator, refrigerant charge amount and electronic expansion valve (EEV) opening are two important parameters that have significant effects on the performance of a transcritical CO2 heat pump system. In [...] Read more.
Besides compressor rotary speed and parameters of water flowing through gas cooler and evaporator, refrigerant charge amount and electronic expansion valve (EEV) opening are two important parameters that have significant effects on the performance of a transcritical CO2 heat pump system. In this study, the effects of refrigerant charge amount on the performance of a transcritical CO2 heat pump water heater were investigated experimentally at different EEV openings. An optimal coefficient of performance (COP) was found that corresponded to a specific refrigerant charge and a specific EEV opening. Based on the experiment, the COP peaked at charge of 1.8 kg when EEV opening was 40% of full opening. The heating capacity and the COP increased at first, reached peaks and then decreased with increase of charge amount. The COP decreased 14.95% as the CO2 charge amount was reduced by 22.2% from the optimal charge at 50% EEV opening. As EEV opening varied from 40% to 60% at the same charge amount, the heating capacity decreased more than 30%. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

12 pages, 1363 KB  
Article
Design and Cooling Performances of an Air Conditioning System with Two Parallel Refrigeration Cycles for a Special Purpose Vehicle
by Moo-Yeon
Appl. Sci. 2017, 7(2), 190; https://doi.org/10.3390/app7020190 - 15 Feb 2017
Cited by 4 | Viewed by 10832
Abstract
The objective of this study is to design and briefly investigate the cooling performances of an air conditioning system for a special purpose vehicle under various experimental conditions. An air conditioning system with two parallel refrigeration cycles consisting of two compressors and two [...] Read more.
The objective of this study is to design and briefly investigate the cooling performances of an air conditioning system for a special purpose vehicle under various experimental conditions. An air conditioning system with two parallel refrigeration cycles consisting of two compressors and two condensers for satisfying the required cooling performance of the special purpose vehicle was tested under extremely hot weather conditions and high thermal load conditions and then optimized by varying the refrigerant charge amount. The optimum refrigerant charge amount of the tested air conditioning system was 1200 g with the consideration of the cooling speed and cooling capacity. The indoor temperatures of the suggested air conditioning system at the refrigerant charge amounts of 1200 g, 1400 g, and 1600 g were 24.7 °C, 25.2 °C, and 26.4 °C, respectively, at the elapsed time of 300 s. The cooling time required to reach a 15.0°C inner temperature in the suggested air conditioning system increased by 13.3% with the decrease of the refrigerant charge amount from 1600 g to 1200 g. The cooling capacity and the coefficient of performance (COP) of the suggested air conditioning system increased by 37.9% and 10.9%, respectively, due to a decrease of the refrigerant charge amount from 1600 g to 1200 g. The observed cooling performance characteristics of the air conditioning system with two parallel refrigeration cycles means it could be suitable for cabin cooling of special purpose vehicles. In addition, the designed special air conditioning system with two parallel refrigeration cycles for a special purpose vehicle was built to ensure a sufficient cooling performance for equipped passengers. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

8 pages, 630 KB  
Article
Impact of passenger thermal comfort and electric devices temperature on range: a system simulation approach
by Lionel Broglia, Gabriel Autefage and Matthieu Ponchant
World Electr. Veh. J. 2012, 5(4), 1082-1089; https://doi.org/10.3390/wevj5041082 - 28 Dec 2012
Cited by 10 | Viewed by 1946
Abstract
The range of Electric Vehicles is highly influenced by the electric power consumed by auxiliaries, a huge part of this power being used for cabin heat-up and cool-down operations in order to ensure an acceptable level of thermal comfort for the passengers. Driving [...] Read more.
The range of Electric Vehicles is highly influenced by the electric power consumed by auxiliaries, a huge part of this power being used for cabin heat-up and cool-down operations in order to ensure an acceptable level of thermal comfort for the passengers. Driving range decreases with low temperatures in particular because cabin heating system requires an important amount of electric power. Range also decreases with high ambient temperatures because of the air conditioning system with electrically-driven compressor. At the same time, batteries and electric motors operates at their maximal efficiency in a certain range of temperature. The reduced EV driving range under real life operating cycles, which can be a barrier against market penetration, is an issue for further development in the future towards sophisticated cabin heating and cooling systems, as well as battery warmer. The aim of this paper is to highlight the benefits of a system simulation approach, based on LMS Imagine.Lab AMESim, in order to estimate the impact of various technologies of cabin heating and cooling on both the cabin temperature and the driving range. In this paper, a battery electric vehicle including a cabin heating with PTC device and a R134a refrigerant loop is simulated under various ambient temperatures on a given driving cycle with the same required cabin temperature target. Simulation outputs include the cabin temperature evolution, the battery state of charge and as a consequence the driving range. Full article
Back to TopTop