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Abstract: Refrigerant charge faults, which occur frequently, increase the energy loss and may fatally
damage the system. Refrigerant leakage is difficult to detect and diagnose until the fault has reached
a severe degree. Various techniques have been developed to predict the refrigerant charge amount
based on steady-state operation; however, steady-state experiments used to develop prediction mod-
els for the refrigerant charge amount are expensive and time-consuming. In this study, a prediction
model was established with dynamic experimental data to overcome these deficiencies. The dynamic
models for the condensation temperature, degree of subcooling, compressor discharge temperature,
and power consumption were developed with a regression support vector machine (r-SVM) model
and start-up experimental data. The dynamic models for the condensation temperature and degree
of subcooling can predict the distinct start-up characteristics depending on the refrigerant charge
amount. Moreover, the estimated root mean square error (RMSE) of the condensation temperature
and degree of subcooling of the test data are 0.53 and 0.84 ◦C, respectively. The refrigerant charge is
one of the predictors that defines the dynamic characteristics. The refrigerant charge can be estimated
by minimizing the RMSE of the predicted values of the dynamic models and experimental data.
When the dynamic characteristics of the two predictor variables, “condensation temperature” and
“degree of subcooling” are used together, the average prediction error of the test data is 2.54%. The
proposed method, which uses the dynamic model during start-up operation, is an effective technique
for predicting the refrigerant charge amount.

Keywords: vapor–compression air-conditioner; start-up; refrigerant charge; dynamic characteristics;
r-SVM (regression support vector machine)

1. Introduction

In response to global warming and climate change, governments worldwide have im-
plemented related policies and technical efforts that include the use of renewable energies
and the increase in the energy efficiency to reduce energy consumption and greenhouse
gas (GHG) emissions.

In the United States in 2015, approximately 40% of the total consumed energy was used
in commercial and residential buildings [1]. Approximately 41% of the energy consumed
in the building sector was used for heating and cooling, and between 15% and 30% was
wasted owing to poor maintenance or inadequate control [2]. To operate and maintain
air conditioning systems efficiently, the energy efficiency should be maximized through
optimal control and with fault diagnosis technology.

Faults in air conditioning systems can be classified into hard and soft faults. Hard
faults that lead to system halt can be easily detected and diagnosed. By contrast, soft faults
such as refrigerant leakage and heat exchanger fouling are difficult to detect and diagnose
before the faults reaches a severe degree; this can lead to energy loss and a damaged system.
Refrigerant charge fault is the next most costly fault among the different types of heat pump
faults, except for electrical fault; the former are mainly caused by refrigerant leakage [3].
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The refrigerant charge amount is one of the main parameters that affect the perfor-
mance and energy consumption of heat pumps [4–7]. When the refrigerant charge exceeds
90% of the rated charge, the effect on the COP and cooling capacity is small. The re-
frigeration capacity and COP decrease if the initial charge of the system is low or if the
charge decreases owing to leakage during operation. Even under an overcharge, the COP
decreases owing to the increasing compression work; however, the performance of the
air conditioner is more severely degraded under undercharging than under overcharg-
ing [8]. Refrigerant charge faults occur frequently owing to refrigerant leakage, equipment
relocation, the installation of piping systems, and incorrect initial charging. Direct emis-
sion and performance degradation by refrigerant leakage will have an impact on global
warming [9]. Accordingly, many research studies have been conducted to detect refrigerant
charge faults [10–16].

Several researchers have predicted the refrigerant charge amount by monitoring air
conditioning systems in real time [14–16]. For instance, Grace et al. implemented a rel-
atively inexpensive leak detection system with the degree of superheat and subcooling
as detection parameters [14]. In addition, G. Li and H. Li tried to monitor continuously
the refrigerant charge level by constructing a monitoring system with a virtual refriger-
ant charge sensor [14–16]. Since variable speed compressors are commonly adopted in
high-efficiency air conditioners, researchers have studied the dynamic characteristics and
modeling of refrigeration cycles for the stable control of systems equipped with variable
speed compressors [17–21]. Accordingly, research studies of the detection of the refriger-
ant charge amount have been extended to VRF (Variable Refrigerant Flow) systems with
complex physical structures such as variable speed compressors, electric expansion valve
(EEVs), and heat recovery devices [14,18–22]. Liu et al. proposed a relatively simple model
that can be developed in a short time with a statistical method belonging to the category of
history-based method [22].

These studies have been based on steady-state operating data. To develop a model for
the prediction of the refrigerant charge amount, experimental data that reflect the charac-
teristics of a system under steady-state conditions are required; the related experiments,
which are conducted to increase the prediction performance of the model, are expensive
and time-consuming. In addition, because the actual operation continuously fluctuates
according to the changes in the outdoor temperature and cooling load, the extraction of
steady-state data for predicting the refrigerant charge amount requires a long operation
period, which may reduce the accuracy of the predictions.

In this paper, a prediction model based on dynamic experimental data for overcoming
these deficiencies is proposed. Dynamic experimental data for the model development are
easy and fast to obtain; thus, the acquisition time is reduced. In the study of the dynamic
characteristics of refrigeration systems, physical and data-based models are applied [14–17].
Moreover, more and more researchers study dynamic models with machine learning owing
to the improved computational speed [23–30]. In this study, the dynamic behavior of
a refrigeration system was modeled with a regression support vector machine (r-SVM,
which is a data-based model). The model was used to confirm that the initial dynamic
characteristics of the refrigeration system vary according to the refrigerant charge amount,
which enables the prediction of the latter.

2. Experiment
2.1. Experimental Setup

To present the start-up characteristics of an air conditioner, Figure 1 shows a schematic
diagram of the experimental apparatus. The split-type air conditioner with a rated cooling
capacity of 3.6 kW consists of a variable speed compressor, an electronic expansion valve,
an evaporator, and a condenser. The indoor and outdoor units of the air conditioner are
installed in a thermal chamber with two rooms that can simulate indoor and outdoor
temperature and humidity conditions. The air and refrigerant temperatures at the inlet and
outlet of the main components of the system were measured with T-type thermocouples
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(uncertainty: 0.5 ◦C, range: −250 to 350 ◦C); the refrigerant temperature was measured by
a thermocouple attached to the outer wall surface of the tube. In addition, the compressor
suction and discharge pressures were measured with pressure transducers (uncertainty:
0.25%, range: 0 to 3500 kPa) at the inlet and outlet of the compressor. The power consump-
tion was measured with a power meter (accuracy: 0.5% of reading, range: 0 to 3 kW), the
frequency of compressor input power was obtained by FFT (Fast Fourier Transform) of the
measured voltage of power.

Figure 1. Schematic diagram of experimental equipment.

The thermocouples were installed at the points in Figure 2 to investigate the state
changes of the refrigerant in the condenser and evaporator during initial operation. The
condenser has eight temperature measurement points (in numerical order) between the
inlet and outlet in one circuit, and the evaporator has six thermocouples between the inlet
and outlet. The measurement values were recorded at intervals of 1 s and stored with a
data logger. The 20 measured variables are listed in Table 1.

Figure 2. Positions of thermocouples for measuring heat exchanger temperature; (a) Condenser,
(b) Evaporator.
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Table 1. Measured parameters.

Variable Description Unit

Ref Refrigerant charge amount g
Fcomp Frequency of compressor input power Hz
TID,in Indoor unit—inlet air temperature ◦C
TOD,in Outdoor unit—inlet air temperature ◦C

W Power consumption kW
Psuc Compressor suction pressure kPa
Pdis Compressor discharge pressure kPa

TID,out Indoor unit—outlet air temperature ◦C
TOD,out Outdoor unit—outlet air temperature ◦C

Tsuc Compressor suction refrigerant temperature ◦C
Tdis Compressor discharge refrigerant temperature ◦C

Tex,in EEV refrigerant inlet temperature ◦C
Tex,out EEV refrigerant outlet temperature ◦C
Tc,in Condenser refrigerant inlet temperature ◦C
Tc,sat Condensation temperature ◦C
Tc,out Condenser refrigerant outlet temperature ◦C
∆Tsc Degree of subcooling (Tc,sat − Tc,out) ◦C
Te,in Evaporator refrigerant inlet temperature ◦C
Te,sat Evaporation temperature ◦C
Te,out Evaporator refrigerant outlet temperature ◦C

2.2. Experimental Method and Condition

The experiment was conducted 47 times; 35 of the data were used as training data,
and 12 were used as test data. The experiment started when the initial indoor and outdoor
temperatures reached the conditions in Table 2. The maximum deviation of outdoor
temperature in the chamber was±0.5 ◦C during each test. When the air conditioner started
to run, the indoor temperature began to decrease. Each experiment was conducted for 600 s,
and the experimental data were measured for 600 s at 1 s intervals. After each experiment,
the equipment was suspended for 2 h to achieve uniform initial conditions.

Table 2. Experimental condition.

No. Outdoor
Temperature

Initial Indoor
Temperature

Refrigerant Charge
Amount (g)

Charge
Uncertainty (%) Type

1 30 28 550 0.91 Training
2 35 28 550 0.91 Training
3 40 28 550 0.91 Training
4 45 28 550 0.91 Training
5 35 35 550 0.91 Training
6 40 35 550 0.91 Training
7 45 35 550 0.91 Training
8 35 35 600 0.83 Test
9 40 35 600 0.83 Test

10 45 35 600 0.83 Test
11 30 28 650 1.09 Training
12 35 28 650 1.09 Training
13 40 28 650 1.09 Training
14 45 28 650 1.09 Training
15 35 35 650 1.09 Training
16 40 35 650 1.09 Training
17 45 35 650 1.09 Training
18 35 35 700 1.01 Test
19 40 35 700 1.01 Test
20 45 35 700 1.01 Test
21 30 28 750 1.33 Training
22 35 28 750 1.33 Training
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Table 2. Cont.

No. Outdoor
Temperature

Initial Indoor
Temperature

Refrigerant Charge
Amount (g)

Charge
Uncertainty (%) Type

23 40 28 750 1.33 Training
24 45 28 750 1.33 Training
25 35 35 750 1.33 Training
26 40 35 750 1.33 Training
27 45 35 750 1.33 Training
28 35 35 800 1.25 Test
29 40 35 800 1.25 Test
30 45 35 800 1.25 Test
31 30 28 850 1.44 Training
32 35 28 850 1.44 Training
33 40 28 850 1.44 Training
34 45 28 850 1.44 Training
35 35 35 850 1.44 Training
36 40 35 850 1.44 Training
37 45 35 850 1.44 Training
38 35 35 900 1.36 Test
39 40 35 900 1.36 Test
40 45 35 900 1.36 Test
41 30 28 950 1.49 Training
42 35 28 950 1.49 Training
43 40 28 950 1.49 Training
44 45 28 950 1.49 Training
45 35 35 950 1.49 Training
46 40 35 950 1.49 Training
47 45 35 950 1.49 Training

The refrigerant used in the experiment was R-410A, and the rated charge amount was
850 g. The air conditioner was charged from 550 to 950 g for training data and 600 to 900 g
for test data, with charge steps of 100 g. Refrigerant charge was carried out subsequently,
being the measuring error of the balance of 0.05% of reading. Charge uncertainty is
estimated as shown in Table 2.

3. Start-Up Characteristics
3.1. Start-Up Characteristics with Rated Refrigerant Charge

The dynamic characteristics during the start-up and shutdown of the air conditioner
can be described based on the refrigerant movement inside the system [18]. When the
compressor starts, the refrigerant is drawn from the evaporator and suction line and
discharged into the condenser by the compressor. In the early stage of the compressor
operation, the amount of refrigerant that condenses in the condenser is insufficient, and
the refrigerant exits the condenser with the gas mixture; thus, the refrigerant entering
the evaporator is insufficient for replacing the refrigerant that has been sucked out of the
evaporator by the compressor. Consequently, the mass of the refrigerant in the evaporator
decreases continuously, and the pressure and temperature change rapidly. The compressor
continuously draws the refrigerant from the evaporator outlet and discharges it into the
condenser; thus, the mass of the refrigerant in the condenser increases, and the refrigerant
vapor gradually condenses. As the refrigerant at the outlet of the condenser becomes
subcooled, the fluctuations of the pressure and temperature slow down.

The results in this study are very similar to those of the study described above [18].
Figures 3 and 4 present the dynamic characteristics of the main components of the system
at a rated refrigerant charge and outdoor and initial indoor temperatures of 35 ◦C. Figure 3
shows the change in the discharge and suction pressures of the compressor according to
the elapsed time during the initial operation of the air conditioner. The discharge pressure
rapidly increased until 70 s owing to the operation of the compressor; subsequently, its
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slope decreased, and the discharge pressure converged to the steady-state value. The
suction pressure greatly decreased in the first 80 s and then increased again until 100 s.
Afterward, the pressure increased gradually and tended to converge to a steady-state value.

Figure 3. Variation in compressor suction and discharge pressure with rated refrigerant charge.

Figure 4. Temperature distribution in heat exchanger with rated refrigerant charge; (a) Condenser, (b) Evaporator.

The temperature distributions in the flow direction of the refrigerant in the condenser
and evaporator at several time points after the start-up are shown in Figure 4. Before
operation, the internal temperature of the condenser was uniform; it can be inferred that
most of the condenser was occupied by superheated vapor. As the compressor started to
run, the overall temperature of the condenser increased, and the refrigerant condensed
and became subcooled at the outlet. After 230 s, three distinct phases appeared in the
condenser; the occurrence of superheated refrigerant at the inlet and subcooled refrigerant
at the exit can be clearly confirmed.

In addition, the temperature of the evaporator was uniform before the operation of the
air conditioner. As shown in Figure 3, the evaporation pressure decreased sharply owing
to the operation of the compressor; thus, the temperature of the refrigerant at the inlet of
the evaporator decreased at first. Subsequently, the superheating point shifted to the exit,
and the saturated refrigerant section gradually increased. The evaporation temperature
decreased rapidly at the beginning and then gradually increased over time.

3.2. Start-Up Characteristics with Refrigerant Charge

The start-up characteristics were investigated according to the refrigerant charge at
outdoor and indoor temperatures of 35 ◦C. Figure 5 presents the change in the condensation
temperature for five refrigerant charges at the beginning of operation. The condensation
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temperature increased rapidly when the compressor started operating. After approximately
120 s, the condensation temperature varied depending on the refrigerant charge amount;
in addition, the condensation temperature increased more rapidly with the increasing
refrigerant charge amount. Under overcharging conditions, the dynamic characteristics
were similar to the rated charge amount until 220 s and then showed small deviations.
After 220 s, the condensation temperature approached the steady-state values for 850 and
750 g; in the 950 and 650 g cases, it increased until approximately 580 s, and that of 550 g
kept increasing within the investigated time range (Figure 5).

Figure 5. Variation in condensation temperature over time with refrigerant charge amount.

The degree of superheat remained approximately constant, although the refrigerant
charge changed owing to the active control of the EEV opening. However, as the refrigerant
charge increased owing to the accumulation of refrigerant on the condenser, the conden-
sation pressure increased, which increased the degree of subcooling. Since the degree of
subcooling is sensitive to the refrigerant charge amount, it is widely used as a diagnostic
parameter to determine the refrigerant charge amount [15–17]. As shown in Figure 6, the
degree of subcooling exhibited a large increase with increasing refrigerant charge amount
after 120 s and slowly decreased after 600 s. The degree of subcooling was proportional
to the refrigerant charge amount; in addition, the degree of subcooling of 550 g was zero,
which indicates that subcooling did not occur in this case.

Figure 6. Variation in degree of subcooling over time with refrigerant charge amount.

As shown in Figure 7, the evaporation temperature rapidly decreased during the
initial 60 s of operation. The lower the refrigerant charge, the less refrigerant was in
the evaporator, and the more the evaporation temperature decreased. The evaporation
temperature decreased at approximately 30 s until it reached the minimum; afterward, it
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experienced repeated rebounds until 220 s and stabilized. However, distinguishing the
differences in the evaporation temperatures with respect to the refrigerant charge amount
was difficult.

Figure 7. Variation in evaporation temperature over time with refrigerant charge amount.

The compressor discharge temperature was affected by the compressor inlet and outlet
pressures, which tended to increase as the condensation temperature increased and the
evaporation temperature decreased. As shown in Figure 8, the discharge temperature of
the compressor increased more rapidly with the decreasing refrigerant charge amount
at the beginning of operation because the suction pressure was relatively low at the
beginning. After 120 s, the smaller the refrigerant charge, the more moderate the discharge
temperature increase because the condensation temperature or pressure was relatively
low. The condensation and evaporation temperatures increased with increasing refrigerant
charge according to Figures 5 and 7. These two temperature effects on the discharge
temperature offset each other; the cases with charge levels of 750 g or higher exhibited
similar dynamic characteristics.

Figure 8. Variation in compressor discharge temperature over time with refrigerant charge amount.

4. Model for Prediction of Dynamic Characteristics

The r-SVM model is a regression analysis model that extends the SVM theory; it has
been considered an effective prediction method [14,31–34]. The existing neural network
follows the empirical risk minimization (ERM) principle, whereas the SVM model follows
the structural risk minimization (SRM) principle. The ERM principle minimizes errors in
training data, whereas the SRM principle maintains a balance between the training data
and test data errors. Therefore, the SVM principle has a better generalization performance
in prediction problems [35].
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In this study, a dynamic model was developed based on the r-SVM machine learning
model. When the experimental data are {(x1, y1), . . . , (xm, ym)}, x consists of a multivariate
set of predictors with the response variable y. The r-SVM model has the maximal deviation
ε from the response variable y and tries to find the function f(x) as flat as if possible. In the
SVM principle, which is a nonparametric model, f(x) is defined as in Equation (1); < w,x >
is the dot product of w and x similar to Equation (2). w is the flatness, and b is the bias. To
allow an error higher than ε, f(x) can be obtained by introducing the slack variable ξi, ξi*
and the penalty constant C, thereby transforming it into a convex optimization problem, as
shown in Equation (3):

f(x) = < w,x > + b, (1)

‖ w ‖2 =< w, w >, (2)

Minimize 1
2‖ w ‖2 + C ∑n

i=1(ξi + ξ∗i ),

Subject to


yi− < w, xi > −b ≤ ε + ξi
< w, xi > +b− yi ≤ ε + ξ∗i

ξi, ξ∗i

for i = 1, 2, . . . , n .
(3)

The variables and ranges for the training data were selected by analyzing the dynamic
characteristics of the system according to the refrigerant charge amount (Section 3). The
dynamic models for the condensation temperature, degree of subcooling, compressor
discharge temperature, and power consumption were developed as response variables y
with the experimental data measured between 120 and 600 s at intervals of 1 s after the
compressor had been operated. As predictors, the variables x defining dynamic models,
refrigerant charge amount, compressor input frequency, and indoor and outdoor air inlet
temperature were basically selected, and the first time derivatives of the input frequency
of the compressor and target model parameter were added considering the transient
characteristics of the experimental data (Table 3).

Table 3. Parameters.

Response Variable Predictors

Tc,sat Ref, Fcomp, TOD,in, TID,in, dFcomp
dt , dTc,sat

dt
∆Tsc

(Tc,sat − Tc,out)
Ref, Fcomp, TOD,in, TID,in, dFcomp

dt , d∆Tsc
dt

Tdis Ref, Fcomp, TOD,in, TID,in, dFcomp
dt , dTdis

dt
W Ref, Fcomp, TOD,in, TID,in, dFcomp

dt , dW
dt

The model was optimized by searching for determining the hyper-parameters C and ε

that minimize the root mean square error (RMSE) with a grid search method and a K-fold
cross-validation method. The RMSE is defined as in Equation (4); ypred and ymeas are
the predicted and measured values, respectively. The grid search method determines the
optimal parameter by trying discrete values with appropriate intervals within a specified
range [36]. The K-fold cross-validation method evaluates a model by dividing the data
into K datasets, training the K-1 datasets as training data, and measuring the degree of
error with one prediction data piece [37]. Moreover, C (C > 0) is the penalty constant,
which determines the trade-off between the flatness of f(x) (decision boundary) and the
tolerance for error. The model searches for C and ε in the log-scale ranges [0.001 1000] and
[0.001 1000] × iqr(y)/13.49, respectively; iqr(y)/13.49 represents an estimate of a tenth of
the standard deviation for the interquartile range of the response variable y [38]. The param-
eter optimization results of the dynamic model for the predictor variables are summarized
in Table 4.
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Table 4. Optimized parameters of support vector machine (SVM) in grid search.

Kernel K-Fold
Response
Variable C ε

RMSE

Training Data Test Data

Linear 5

Tc,sat 0.509 0.101 0.51 ◦C 0.53 ◦C
∆Tsc 0.414 0.076 0.83 ◦C 0.84 ◦C
Tdis 0.461 0.301 3.76 ◦C 5.12 ◦C
W 20.3 29.8 5.54% 5.6%

In the training phase, the average RMSEs of the prediction models for the condensation
temperature and degree of subcooling were 0.51 and 0.83 ◦C, and the respective average
RMSEs of the test data were 0.53 and 0.84 ◦C, respectively. The trained models for the
prediction of the condensation temperature and degree of subcooling effectively predicted
new untrained data. However, the compressor discharge temperature had a relatively large
error, and the model prediction accuracy decreased owing to the increasing prediction
error. The accuracies of the power consumption prediction model for the training and test
data were 5.54% and 5.6%, respectively.

RMSE =

√√√√√ n

∑
i=1

(
ypred − ymeas

)2

n
. (4)

The prediction results of the dynamic models of the condensation temperature, degree
of subcooling, compressor discharge temperature, and power consumption developed in
this study are compared with the test data in Figure 9. The results correspond to outdoor
and initial indoor temperatures of 35 ◦C and 600, 700, 800, and 900 g refrigerant charge
amounts; the curves represent the predicted values of the developed model, while the
symbols represent the experimental test data.

Figure 9. Cont.
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Figure 9. Prediction results of dynamic characteristic for each parameter using test data: (a) condensation temperature; (b) degree of
subcooling; (c) compressor discharge temperature; (d) power sonsumption.

The predicted condensation temperature was lower than the experimental result under
undercharged conditions and higher under overcharged conditions. The predicted degree
of subcooling was lower for all refrigerant charge amounts. These prediction characteristics
can be exploited in the prediction of the refrigerant charge amount.

The predicted result of the compressor discharge temperature was poor under under-
charged conditions. Moreover, the predicted power consumption tended to be lower than
the actual experimental result; nevertheless, the predictions were relatively good and had
small errors.

5. Detection of Refrigerant Charge Amount
Detection Results of Refrigerant Charge Amount

The refrigerant charge is one of the predictors that define the dynamic characteristics
of response variables. When the refrigerant charge amount has not been specified, it can be
estimated by measuring whether the response values of the dynamic model can reflect the
experimental data well. The refrigerant charge amounts can be obtained by minimizing
the RMSEs of the response values and test data for each response variable (Figure 10 and
Table 5). For the four response variables in Table 5 and Figure 10, the refrigerant charge
amount cannot be predicted with the compressor discharge temperature model. As shown
in Figure 8, the dynamic characteristics at refrigerant charges of 750 g or more are not
greatly different. Thus, the compressor discharge temperature was excluded because of
the poor prediction, and a new combination including the condensation temperature and
degree of subcooling variables was added. When each of the four models is used for the test
data, the prediction results of the refrigerant charge amount are displayed with prediction
errors, which are defined as the relative error percentages with respect to the deviation
regarding the actual measured value and the predicted value.
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Figure 10. Detection results of refrigerant charge amount for each model using test data: (a) condensation tempera-
ture; (b) degree of subcooling; (c) power consumption; (d) combination of condensation temperature and degree of
subcooling models.

When the condensation temperature model was used, the prediction error of the
refrigerant charge amount was 3.3%; when the refrigerant charge amount was small, its
predicted value tended to be higher. In addition, the prediction error increased with
increasing refrigerant charge amount. When the degree of subcooling model was used, the
prediction error was 2.8%.

When the power consumption model was used, the prediction result for the refrigerant
charge amount was very poor. Its prediction was difficult at 800 and 900 g near the rated
refrigerant charge amounts because the dynamic characteristics of the power consumption
were similar at different charge levels.
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Table 5. Refrigerant charge detection accuracy.

Response
Variable

Refrigerant Charge Amount (g)
Error (%) Average

Error (%)Actual Detected

Tc,sat

600 625/632/645 5.7

3.32
700 703/724/726 2.5
800 794/827/831 2.7
900 875/881/935 2.9

∆Tsc

600 569/622/638 4.9

2.79
700 702/706/707 0.7
800 824/833/837 3.9
900 894/920/921 1.8

W

600 662/669/696 13.3

7.3
700 717/719/756 4.4
800 781/882/950 10.2
900 850/924/950 4.6

Tc,sat
and ∆Tsc

600 586/629/635 3.9

2.54
700 701/711/712 1.1
800 815/832/834 3.5
900 889/909/924 1.7

Moreover, the prediction errors of the condensation temperature and degree of subcool-
ing with respect to the refrigerant charge showed opposite trends. Thus, the condensation
temperature and degree of subcooling models were combined to estimate the refrigerant
charge. By using the RMSE in Equation (5), the refrigerant charge amount that minimizes
the RMSEs of the two response variables (i.e., the condensation temperature and degree of
subcooling) can be obtained (Figure 10d and Table 5):

RMSE =

√√√√
∑n

i=1

(
ypred,Tc,sat − ymeas

)2
+
(

ypred,∆Tsc − ymeas

)2

2n
. (5)

When the condensation temperature and degree of subcooling models were combined,
the prediction error was 2.54%; thus, the prediction performance was improved compared
to when the condensation temperature and subcooling models were used alone. In par-
ticular, the prediction error was reduced in the case of 600 g, which resulted in the lowest
prediction performance.

When developing a data-driven model using machine learning technique, a new
model should be developed depending on the target system or if the regulation parameters
of the system change in principle. However, it is expected that the SVM technique, variables
selection, and diagnosis methodology presented in this paper can be applied to similar air
conditioner systems.

6. Conclusions

In this study, the start-up characteristics of an air conditioner were analyzed according
to the refrigerant charge amount under various operating conditions. In addition, dynamic
models for the start-up characteristics were developed with r-SVM and used to create a
prediction method for the refrigerant charge amount. The following important results
were obtained:

1. The changes in the dynamic characteristics according to the refrigerant charge amount
during the start-up of an air conditioner can be monitored.

2. The dynamic models for the condensation temperature and degree of subcooling
can predict the distinct start-up characteristics that depend on the refrigerant charge
amount. The estimated RMSEs of the condensation temperature and degree of
subcooling of the test data are 0.53 and 0.84 ◦C, respectively.
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3. The refrigerant charge is one of predictors that define the dynamic characteristics of
response variables. The refrigerant charge can be estimated by minimizing the RMSEs
of the predicted values of the dynamic model and experimental data.

4. The proposed method, which uses the dynamic model during start-up operation,
is an effective technique for predicting the refrigerant charge amount. The average
prediction error for the test data is 2.54%.
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Nomenclature

Symbols
b bias (scalar parameter defining decision boundary position)
Fcomp frequency of compressor input power (Hz)
P pressure (kPa)
Ref refrigerant charge amount (g)
T temperature (◦C)
w flatness (vector parameter defining decision boundary position)
W power consumption (kW)
x multivariate set of predictor
y response variable
ε maximal width of x and the decision boundary (hyper-parameter of model)
ξ, ξ* slack variables (distance of the decision boundary and error data)
Abbreviations
C penalty constant (hyper-parameter of model)
COP coefficient of performance
c condenser
dis discharge
e evaporator
ex electric expansion valve (EEV)
HX heat exchanger
ID indoor unit
in inlet
iqr interquartile
m number of response variables
meas measured
n number of data sample
OD outdoor unit
pred prediction
RMSE root mean square error
r-SVM regression support vector machine
s saturation temperature
sat saturation
sc subcooling
suc suction
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