Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,835)

Search Parameters:
Keywords = reflective indicators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4225 KiB  
Article
Comparative Nitrene-Transfer Chemistry to Olefins Mediated by First-Row Transition Metal Catalysts Supported by a Pyridinophane Macrocycle with N4 Ligation
by Himanshu Bhatia, Lillian P. Adams, Ingrid Cordsiemon, Suraj Kumar Sahoo, Amitava Choudhury, Thomas R. Cundari and Pericles Stavropoulos
Molecules 2025, 30(15), 3097; https://doi.org/10.3390/molecules30153097 (registering DOI) - 24 Jul 2025
Abstract
A 12-membered pyridinophane scaffold containing two pyridine and two tertiary amine residues is examined as a prototype ligand (tBuN4) for supporting nitrene transfer to olefins. The known [(tBuN4)MII(MeCN)2]2+ (M = Mn, Fe, Co, and [...] Read more.
A 12-membered pyridinophane scaffold containing two pyridine and two tertiary amine residues is examined as a prototype ligand (tBuN4) for supporting nitrene transfer to olefins. The known [(tBuN4)MII(MeCN)2]2+ (M = Mn, Fe, Co, and Ni) and [(tBuN4)CuI(MeCN)]+ cations are synthesized with the hexafluorophosphate counteranion. The aziridination of para-substituted styrenes with PhI=NTs (Ts = tosyl) in various solvents proved to be high yielding for the Cu(I) and Cu(II) reagents, in contrast to the modest efficacy of all other metals. For α-substituted styrenes, aziridination is accompanied by products of aziridine ring opening, especially in chlorinated solvents. Bulkier β-substituted styrenes reduce product yields, largely for the Cu(II) reagent. Aromatic olefins are more reactive than aliphatic congeners by a significant margin. Mechanistic studies (Hammett plots, KIE, and stereochemical scrambling) suggest that both copper reagents operate via sequential formation of two N–C bonds during the aziridination of styrene, but with differential mechanistic parameters, pointing towards two distinct catalytic manifolds. Computational studies indicate that the putative copper nitrenes derived from Cu(I) and Cu(II) are each associated with closely spaced dual spin states, featuring high spin densities on the nitrene N atom. The computed electrophilicity of the Cu(I)-derived nitrene reflects the faster operation of the Cu(I) manifold. Full article
Show Figures

Graphical abstract

30 pages, 453 KiB  
Article
Integrating Energy Justice and SDGs in Solar Energy Transition: Analysis of the State Solar Policies of India
by Bhavya Batra, Karina Standal, Solveig Aamodt, Gopal K. Sarangi and Manish Kumar Shrivastava
Energies 2025, 18(15), 3952; https://doi.org/10.3390/en18153952 (registering DOI) - 24 Jul 2025
Abstract
The transition to clean energy is not inherently positive or negative, and its impacts depend on the social context, power relations, and mechanisms to include marginalized voices. India, with its ambitious climate targets and commitment to the UN SDG Agenda, is a key [...] Read more.
The transition to clean energy is not inherently positive or negative, and its impacts depend on the social context, power relations, and mechanisms to include marginalized voices. India, with its ambitious climate targets and commitment to the UN SDG Agenda, is a key country for ensuring an inclusive and sustainable transition. This paper aims to understand whether India’s commitment to the SDG Agenda’s overarching principle of ‘leaving no one behind’ is reflected in the design of its domestic solar policies. It analyzes how energy justice concerns are addressed in state-level solar policies. To that end, a pragmatic framework was developed to identify key justice dimensions and indicators, linked to the SDG targets, that are essential for an inclusive transition. This research conducted a qualitative interpretive content analysis of 29 solar energy policies, using the three identified framework dimensions—income growth, enhancing inclusion, and equal opportunities. We found that the themes around energy access, employment, and skill development are reflected in policies, while those around the inclusion of the poor, women, and community remain limited. The findings indicate that the policies have focused on low-impact justice concerns, lacking structural transformation. To address these gaps, the study proposes targeted subsidies, community ownership, and gender-inclusive mechanisms. The framework offers a pragmatic tool for the evaluation of clean energy policies in the Global South, and the empirical results provide insights for the synergistic implementation of the climate and sustainable development agenda. Full article
Show Figures

Figure 1

18 pages, 2695 KiB  
Article
Environmentally Sustainable Functionalized WS2 Nanoparticles as Curing Promoters and Interface Modifiers in Epoxy Nanocomposites
by Lyazzat Tastanova, Amirbek Bekeshev, Sultan Nurlybay, Andrey Shcherbakov and Anton Mostovoy
Nanomaterials 2025, 15(15), 1145; https://doi.org/10.3390/nano15151145 - 24 Jul 2025
Abstract
This study investigates the effect of the surface functionalization of tungsten disulfide (WS2) nanoparticles with aminoacetic acid (glycine) on the structure, curing behavior, and mechanical performance of epoxy nanocomposites. Aminoacetic acid, as a non-toxic, bio-based modifier, enables a sustainable approach to [...] Read more.
This study investigates the effect of the surface functionalization of tungsten disulfide (WS2) nanoparticles with aminoacetic acid (glycine) on the structure, curing behavior, and mechanical performance of epoxy nanocomposites. Aminoacetic acid, as a non-toxic, bio-based modifier, enables a sustainable approach to producing more efficient nanofillers. Functionalization, as confirmed by FTIR, EDS, and XRD analyses, led to elevated surface polarity and greater chemical affinity between WS2 and the epoxy matrix, thereby promoting uniform nanoparticle dispersion. The strengthened interfacial bonding resulted in a notable decrease in the curing onset temperature—from 51 °C (for pristine WS2) to 43 °C—accompanied by an increase in polymerization enthalpy from 566 J/g to 639 J/g, which reflects more extensive crosslinking. The SEM examination of fracture surfaces revealed tortuous crack paths and localized plastic deformation zones, indicating superior fracture resistance. Mechanical testing showed marked improvements in flexural and tensile strength, modulus, and impact toughness at the optimal WS2 loading of 0.5 phr and a 7.5 wt% aminoacetic acid concentration. The surface-modified WS2 nanoparticles, which perform dual functions, not only reinforce interfacial adhesion and structural uniformity but also accelerate the curing process through chemical interaction with epoxy groups. These findings support the development of high-performance, environmentally sustainable epoxy nanocomposites utilizing amino acid-modified 2D nanofillers. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

17 pages, 18876 KiB  
Article
Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes
by Naz Iram, Yulian Ren, Run Zhao, Shui Zhao, Chunbo Dong, Yanfeng Han and Yanwei Zhang
Microorganisms 2025, 13(8), 1726; https://doi.org/10.3390/microorganisms13081726 - 24 Jul 2025
Abstract
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using [...] Read more.
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using both the five-point method and the S-shape method and explored their microbiota through high-throughput sequencing techniques. The data was used to investigate changes in the structural diversity and co-occurrence patterns of keystone microbial communities from peri-urban (agricultural land) to urban environments (hospitals, wastewater treatment plants, and zoos) across different regions. Using network analysis, we examined the structure and symbiosis of soil keystone taxa and their association with environmental factors during urbanization. Results revealed that some urban soils exhibited higher microbial diversity, network complexity, and community stability compared to peri-urban soil. Significant differences were observed in the composition, structure, and potential function of keystone microbial taxa between these environments. Correlation analysis showed a significant negative relationship between keystone taxa and mean annual precipitation (p < 0.05), and a strong positive correlation with soil nutrients, microbial diversity, and community stability (p < 0.05). These findings suggest that diverse keystone taxa are vital for sustaining microbial community stability and that urbanization-induced environmental changes modulate their composition. Shifts in keystone taxa composition reflect alterations in soil health and ecosystem functioning, emphasizing their role as indicators of soil quality during urban development. This study highlights the ecological importance of keystone taxa in shaping microbial resilience under urbanization pressure. Full article
(This article belongs to the Special Issue The Urban Microbiome)
Show Figures

Figure 1

19 pages, 2173 KiB  
Article
The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment
by Chunxiao Han, Zhizhi Zhang, Renlong Liu, Changyuan Tao and Xing Fan
Appl. Sci. 2025, 15(15), 8216; https://doi.org/10.3390/app15158216 - 24 Jul 2025
Abstract
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 [...] Read more.
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 (the application of slow-release fertilizer with the same fertility as T1). The effects of these treatments on garlic seedling yield, growth quality, chlorophyll content, photosynthetic characteristics, and the soil environment were investigated to evaluate the feasibility of replacing conventional fertilizers with slow-release formulations. The results showed that compared with CK, all three fertilized treatments (T1, T2, and T3) significantly increased the plant heights and stem diameters of the garlic sprouts (p < 0.05). Plant height increased by 14.85%, 17.81%, and 27.75%, while stem diameter increased by 9.36%, 8.83%, and 13.96%, respectively. Additionally, the chlorophyll content increased by 4.34%, 7.22%, and 8.05% across T1, T2, and T3, respectively. Among the treatments, T3 exhibited the best overall growth performance. Compared with those in the CK group, the contents of soluble sugars, soluble proteins, free amino acids, vitamin C, and allicin increased by 64.74%, 112.17%, 126.82%, 36.15%, and 45.43%, respectively. Furthermore, soil organic matter, available potassium, magnesium, and phosphorus increased by 109.02%, 886.25%, 91.65%, and 103.14%, respectively. The principal component analysis indicated that soil pH and exchangeable magnesium were representative indicators reflecting the differences in the soil’s chemical properties under different fertilization treatments. Compared with the CK group, the metal contents in the T1 group slightly increased, while those in T2 and T3 generally decreased, suggesting that the application of slow-release fertilizer exerts a certain remediation effect on soils contaminated with heavy metals. This may be attributed to the chemical precipitation and ion exchange capacities of phosphogypsum, as well as the high adsorption and cation exchange capacity of bentonite, which help reduce the leaching of soil metal ions. In summary, slow-release fertilizers not only promote garlic sprout growth but also enhance soil quality by regulating its chemical properties. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

21 pages, 3898 KiB  
Article
How Reliable Are the Spectral Vegetation Indices for the Assessment of Tree Condition and Mortality in European Temporal Forests?
by Kinga Kulesza, Paweł Hawryło, Jarosław Socha and Agata Hościło
Remote Sens. 2025, 17(15), 2549; https://doi.org/10.3390/rs17152549 - 23 Jul 2025
Abstract
The continuous monitoring of forest vegetation conditions is of the utmost importance. The commonly used tools for assessing vegetation conditions are the normalized difference vegetation index (NDVI) and its successor—the enhanced vegetation index (EVI). In this study, the NDVI and EVI were coupled [...] Read more.
The continuous monitoring of forest vegetation conditions is of the utmost importance. The commonly used tools for assessing vegetation conditions are the normalized difference vegetation index (NDVI) and its successor—the enhanced vegetation index (EVI). In this study, the NDVI and EVI were coupled with the data on the number of dead trees removed during sanitation felling in an area of 13,780 km2 during the period 2015–2022. In order to determine which satellite-borne index best represents the actual condition of vegetation in forests of the European temperate zone, the classes of the trend in changes in the NDVI and EVI were compared with the respective trends in the volume of dead trees, following the assumption that a positive trend in the spectral index values should be reflected by a negative trend in the volume of dead trees, and vice versa. The analyses were carried out for pixels within the all-species mask in the study area and for pixels representing individual tree species. NDVI is a good predictor of forest vegetation in the European temperate zone and is substantially better than EVI. Spatially, NDVI yields more pixels showing a negative slope for the trend in changes in the spectral index values, while EVI seems to overestimate the number of positive slopes. A larger number of negative slopes in the trend in changes in NDVI seems to agree with the increasing volume of dead trees in the analysed period. Comparing the detected trend class masks for spectral indices and the multi-annual course of dead trees, in 12 out of 16 cases, the slopes of the trend in changes in NDVI agree with the slopes of the trend in the volume of dead trees, while for EVI, this number is reduced to 9. In addition, NDVI reflects the condition of coniferous tree species, Scots pine and Norway spruce, substantially better. Full article
Show Figures

Figure 1

17 pages, 2104 KiB  
Article
Rotational Projection Errors in Coronal Knee Alignment on Weight-Bearing Whole-Leg Radiographs: A 3D CT Reference Across CPAK Morphotypes
by Igor Strahovnik, Andrej Strahovnik and Samo Karel Fokter
Bioengineering 2025, 12(8), 794; https://doi.org/10.3390/bioengineering12080794 - 23 Jul 2025
Abstract
Whole-leg radiographs (WLRs) are widely used to assess coronal alignment before total knee arthroplasty (TKA), but may be inaccurate in patients with atypical morphotypes or malrotation. This study evaluated the discrepancy between WLR and 3D computed tomography (CT) scans across coronal plane alignment [...] Read more.
Whole-leg radiographs (WLRs) are widely used to assess coronal alignment before total knee arthroplasty (TKA), but may be inaccurate in patients with atypical morphotypes or malrotation. This study evaluated the discrepancy between WLR and 3D computed tomography (CT) scans across coronal plane alignment of the knee (CPAK) morphotypes and introduced a novel projection index—the femoral notch projection ratio (FNPR). In CPAK III knees, 19% of cases exceeded a clinically relevant threshold (>3° difference), prompting investigation of underlying projection factors. In 187 knees, coronal angles—including the medial distal femoral angle (MDFA°), medial proximal tibial angle (MPTA°), femoral mechanical angle (FMA°), and arithmetic hip–knee–ankle angle (aHKA°)—were measured using WLR and CT. Rotational positioning on WLR was assessed using FNPR and the patellar projection ratio (PPR). CPAK classification was applied. WLR systematically underestimated alignment, with the greatest bias in CPAK III (MDFA° + 1.5° ± 2.0°, p < 0.001). FNPR was significantly higher in CPAK III and VI (+1.9° vs. −0.3°, p < 0.001), indicating a tendency toward internally rotated limb positioning during imaging. The PPR–FNPR mismatch peaked in CPAK III (4.1°, p < 0.001), suggesting patellar-based centering may mask rotational malprojection. Projection artifacts from anterior osteophytes contributed to outlier measurements but were correctable. Valgus morphotypes with oblique joint lines (CPAK III) were especially prone to projection error. FNPR more accurately reflected rotational malposition than PPR in morphotypes prone to patellar subluxation. A 3D method (e.g., CT) or repeated imaging may be considered in CPAK III to improve surgical planning. Full article
Show Figures

Figure 1

21 pages, 872 KiB  
Article
Willingness to Pay for Station Access Transport: A Mixed Logit Model with Heterogeneous Travel Time Valuation
by Varameth Vichiensan, Vasinee Wasuntarasook, Sathita Malaitham, Atsushi Fukuda and Wiroj Rujopakarn
Sustainability 2025, 17(15), 6715; https://doi.org/10.3390/su17156715 - 23 Jul 2025
Abstract
This study estimates a willingness-to-pay (WTP) space mixed logit model to evaluate user valuations of travel time, safety, and comfort attributes associated with common access modes in Bangkok, including walking, motorcycle taxis, and localized minibuses. The model accounts for preference heterogeneity by specifying [...] Read more.
This study estimates a willingness-to-pay (WTP) space mixed logit model to evaluate user valuations of travel time, safety, and comfort attributes associated with common access modes in Bangkok, including walking, motorcycle taxis, and localized minibuses. The model accounts for preference heterogeneity by specifying random parameters for travel time. Results indicate that users—exhibiting substantial variation in preferences—place higher value on reducing motorcycle taxi travel time, particularly in time-constrained contexts such as peak-hour commuting, whereas walking is more acceptable in less pressured settings. Safety and comfort attributes—such as helmet availability, smooth pavement, and seating—significantly influence access mode choice. Notably, the WTP for helmet availability is estimated at THB 8.04 per trip, equivalent to approximately 40% of the typical fare for station access, underscoring the importance of safety provision. Women exhibit stronger preferences for motorized access modes, reflecting heightened sensitivity to environmental and social conditions. This study represents one of the first applications of WTP-space modeling for valuing informal station access transport in Southeast Asia, offering context-specific and segment-level estimates. These findings support targeted interventions—including differentiated pricing, safety regulations, and service quality enhancements—to strengthen first-/last-mile connectivity. The results provide policy-relevant evidence to advance equitable and sustainable transport, particularly in rapidly urbanizing contexts aligned with SDG 11.2. Full article
(This article belongs to the Special Issue Sustainable Transport and Land Use for a Sustainable Future)
Show Figures

Figure 1

9 pages, 413 KiB  
Review
Co-Cultivation Assays for Detecting Infectious Human-Tropic Porcine Endogenous Retroviruses (PERVs)
by Joachim Denner
Int. J. Mol. Sci. 2025, 26(15), 7111; https://doi.org/10.3390/ijms26157111 - 23 Jul 2025
Abstract
Porcine endogenous retroviruses (PERVs) are integrated into the genome of all pigs. As they can be released as infectious virus particles capable of infecting human cells in vitro, they pose a potential risk for xenotransplantation involving pig cells or organs. To assess whether [...] Read more.
Porcine endogenous retroviruses (PERVs) are integrated into the genome of all pigs. As they can be released as infectious virus particles capable of infecting human cells in vitro, they pose a potential risk for xenotransplantation involving pig cells or organs. To assess whether pigs produce infectious human-tropic viruses, infection assays with human cells are required. There are three main types of assays. First is the incubation of human target cells with gamma-irradiated pig cells. This method ensures that viral transmission is assessed in the absence of replicating pig cells. However, gamma irradiation may alter gene expression in pig cells, potentially affecting the results. Second is the co-culture in a double-chamber system in which pig and human cells are separated by a porous membrane, preventing direct cell-to-cell contact. While this method allows for the detection of infection by free virus particles, it does not account for infection via cell-to-cell transmission, which is a common mode of retroviral infection. And third is the co-culture of pig cells with human cells expressing a resistance gene. The resistance gene allows selective elimination of pig cells upon the addition of a selection medium. This assay enables both free virus and cell-to-cell transmission as well as complete removal of pig cells, which may not be fully achieved in the first type of assay. The third assay best simulates the conditions of in vivo xenotransplantation. However, in all cases the selection of donor and recipient cells is crucial to the experimental outcome. Results only indicate whether a specific pig cell type releases PERVs and whether a specific human cell type is susceptible to infection. A negative infection result does not necessarily reflect the in vivo situation, in which a transplanted organ consists of multiple pig cell types interacting with a diverse range of human cells within a living organism. Knowledge of these limitations is important for authorities regulating clinical applications for xenotransplantation. Full article
(This article belongs to the Special Issue Microbial Infections and Novel Biological Molecules for Treatment)
Show Figures

Figure 1

24 pages, 5021 KiB  
Article
Enhanced Mechanical and Electromagnetic Shielding Properties of Mg Matrix Layered Composites Reinforced with Hybrid Graphene Nanosheet (GNS)–Carbon Nanotube (CNT) Networks
by Hailong Shi, Jiancheng Zhao, Zhenming Sun, Xiaojun Wang, Xiaoshi Hu, Xuejian Li, Chao Xu, Weimin Gan and Chao Ding
Materials 2025, 18(15), 3455; https://doi.org/10.3390/ma18153455 - 23 Jul 2025
Abstract
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of [...] Read more.
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of magnesium (Mg) matrix composites. Specifically, the GNS-CNT hybrid, which forms a three-dimensional interconnected network structure, was analyzed and compared to composites reinforced with only GNSs or CNTs. The objective was to determine the benefits of hybrid reinforcements on the mechanical strength and EMI shielding capability of the composites. The results indicated that the GNS-CNT/Mg composite, at a nanocarbon content of 0.5 wt.% and a GNS-CNT ratio of 1:2, achieved optimal performance, with a 55% increase in tensile strength and an EMI shielding effectiveness of 70 dB. The observed enhancements can be attributed to several key mechanisms: effective load transfer, which promotes tensile twinning, along with improved impedance matching and multiple internal reflections within the GNS-CNT network, which enhance absorption loss. These significant improvements position the composite as a promising candidate for advanced applications requiring high strength, toughness, and efficient electromagnetic shielding, providing valuable insights into the design of high-performance lightweight materials. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

21 pages, 2483 KiB  
Article
Relations of Insulin Resistance, Body Weight, Vitamin D Deficiency, SHBG and Androgen Levels in PCOS Patients
by Zsófi Balogh, Szilvia Csehely, Mónika Orosz, Harjit Pal Bhattoa, Zoárd Tibor Krasznai, Tamás Deli and Attila Jakab
Biomedicines 2025, 13(8), 1803; https://doi.org/10.3390/biomedicines13081803 - 23 Jul 2025
Abstract
Background: The most common female endocrinopathy is polycystic ovary syndrome (PCOS), affecting 10–20% of women of reproductive age. It is associated with a wide range of hormonal and biochemical abnormalities and long-term metabolic and cardiovascular risks. It is characterized by infertility due to [...] Read more.
Background: The most common female endocrinopathy is polycystic ovary syndrome (PCOS), affecting 10–20% of women of reproductive age. It is associated with a wide range of hormonal and biochemical abnormalities and long-term metabolic and cardiovascular risks. It is characterized by infertility due to chronic anovulation, hyperandrogenism, polycystic ovarian morphology, and is often associated with insulin resistance (IR) and obesity. Hyperinsulinemia further increases androgen production and reduces sex hormone-binding globulin (SHBG) levels, thereby aggravating symptoms. In addition, vitamin D deficiency is often present in PCOS patients, and increasing evidence suggests that it may also be associated with insulin resistance and hyperandrogenism. Objective: This study aimed to evaluate the relationships between insulin resistance, vitamin D deficiency, body mass index (BMI), and androgen levels in women with PCOS. Method: A cross-sectional study was conducted in which data from 195 women diagnosed with PCOS and not yet receiving therapy at a gynecologic endocrinology unit of a university-based tertiary clinical center, between 2019 and 2024, were analyzed. The parameters recorded were age, body mass index (BMI), 25(OH) vitamin D levels, androgen hormone levels (testosterone, androstenedione), glucose-insulin responses during a 3-point oral glucose tolerance test (OGTT). Statistical analyses, including linear regression, Pearson, and Spearman correlation tests were used to assess associations between variables. Results: The mean age of the patients was 24.8 years (18–42), and the mean BMI was 30.6 kg/m2 (17–51). Vitamin D deficiency was observed in 84.1% of patients, hyperandrogenism in 45.8%, and insulin resistance in 44.5%. A significant inverse correlation was found between BMI and vitamin D levels (r = −0.31, p =< 0.01) indicating that higher BMI is associated with lower vitamin D status. Similarly, BMI also showed a significant negative correlation with SHBG levels (r = –0.45, p < 0.01), suggesting that increasing body weight is linked to reduced SHBG concentrations. In addition, BMI was significantly positively correlated with 2 h insulin levels (r = 0.43, p =< 0.01) and with testosterone levels (r = 0.21, p = 0.01). These findings suggest that increased adiposity intensifies insulin resistance and is linked to both vitamin D deficiency and elevated androgen levels. Moreover, the combination of hyperinsulinemia and low vitamin D further disrupts hormonal balance by promoting ovarian androgen production and decreasing SHBG levels, thereby increasing the bioavailability of testosterone. A significant inverse correlation was found between vitamin D levels and 2 h insulin levels (r = −0.28, p =< 0.01), indicating that lower vitamin D status is associated with increased insulin resistance. Furthermore, 2 h insulin levels showed a significant positive correlation with testosterone levels (r = 0.32, p =< 0.01), suggesting that greater insulin resistance is linked to higher androgen production. Additionally, vitamin D levels were inversely correlated with testosterone (r = −0.18, p = 0.02), demonstrating that a lower vitamin D status may further contribute to the hyperandrogenic environment. Vitamin D levels also showed a significant positive correlation with SHBG concentrations (r = 0.29, p < 0.01), indicating that a higher vitamin D status may be associated with increased SHBG levels. In contrast, 2 h insulin levels were inversely correlated with SHBG (r = −0.43, p < 0.01), reflecting the suppressive effect of hyperinsulinemia on SHBG production. Conclusions: Insulin resistance, BMI, and vitamin D deficiency are closely related to each other and to the severity of PCOS, which is confirmed by the correlations with androgen levels. The revealed relationships draw attention to the special importance of vitamin D supplementation and the correction of carbohydrate metabolism in alleviating the symptoms of the disease and reducing long-term health risks. Full article
Show Figures

Figure 1

14 pages, 379 KiB  
Article
Overconfidence and Investment Loss Tolerance: A Large-Scale Survey Analysis of Japanese Investors
by Honoka Nabeshima, Mostafa Saidur Rahim Khan and Yoshihiko Kadoya
Risks 2025, 13(8), 142; https://doi.org/10.3390/risks13080142 - 23 Jul 2025
Abstract
Accepting a certain degree of investment loss risk is essential for long-term portfolio management. However, overconfidence bias within financial literacy can prompt excessively risky behavior and amplify susceptibility to other cognitive biases. These tendencies can undermine investment loss tolerance beyond the baseline level [...] Read more.
Accepting a certain degree of investment loss risk is essential for long-term portfolio management. However, overconfidence bias within financial literacy can prompt excessively risky behavior and amplify susceptibility to other cognitive biases. These tendencies can undermine investment loss tolerance beyond the baseline level shaped by sociodemographic, economic, psychological, and cultural factors. This study empirically examines the association between overconfidence and investment loss tolerance, which is measured by the point at which respondents indicate they would sell their investments in a hypothetical loss scenario. Using a large-scale dataset of 161,765 active investors from one of Japan’s largest online securities firms, we conduct ordered probit and ordered logit regression analyses, controlling for a range of sociodemographic, economic, and psychological variables. Our findings reveal that overconfidence is statistically significantly and negatively associated with investment loss tolerance, indicating that overconfident investors are more prone to prematurely liquidating assets during market downturns. This behavior reflects an impulse to avoid even modest losses. The findings suggest several possible practical strategies to mitigate the detrimental effects of overconfidence on long-term investment behavior. Full article
18 pages, 480 KiB  
Article
Effects of Creep Feeding from Birth to Suckling Period on Hanwoo Calves’ Growth Performance and Microbiota
by SoHee Lee, Young Lae Kim, Gi Hwal Son, Eui Kyung Lee, Nam Oh Kim, Chang Sik Choi, Kyung Hoon Lee, Hyeon Ji Cha, Jong-Suh Shin, Min Ji Kim and Byung Ki Park
Animals 2025, 15(15), 2169; https://doi.org/10.3390/ani15152169 - 23 Jul 2025
Abstract
This study evaluated the effects of early-life creep feeding with a high-protein, high-energy diet on growth performance, ruminal fermentation, and gut microbiota in Hanwoo calves (n = 10). Calves were assigned to control or treatment groups from birth to 6 months of age. [...] Read more.
This study evaluated the effects of early-life creep feeding with a high-protein, high-energy diet on growth performance, ruminal fermentation, and gut microbiota in Hanwoo calves (n = 10). Calves were assigned to control or treatment groups from birth to 6 months of age. No significant differences were observed in body weight, average daily gain (ADG), or feed conversion ratio (FCR), but ADG and dry matter intake (DMI) tended to be higher in the treatment group. Ruminal pH, NH3-N, and volatile fatty acid (VFA) concentrations showed no significant differences. Fecal VFA profiles exhibited numerical trends suggesting higher propionate at 3 months and lower acetate, butyrate, and total VFA at 6 months in the treatment group, potentially reflecting altered substrate availability or absorption capacity, though these mechanisms were not directly measured. Microbiota analysis indicated stable ruminal alpha diversity, with numerical increases in fecal Bacteroidetes and genera such as Fournierella and Flavonifractor in the treatment group. These results suggest that early creep feeding with high-nutrition diets can support intake and promote potential shifts in hindgut microbiota composition without compromising overall microbial stability. Further research with larger sample sizes is needed to confirm these trends and assess long-term impacts on calf health and productivity. Full article
Show Figures

Figure 1

26 pages, 807 KiB  
Article
Initial Development and Psychometric Validation of the Self-Efficacy Scale for Informational Reading Strategies in Teacher Candidates
by Talha Göktentürk, Yiğit Omay, Ali Fuat Arıcı, Emre Yazıcı and Sevgen Özbaşı
Behav. Sci. 2025, 15(8), 1002; https://doi.org/10.3390/bs15081002 - 23 Jul 2025
Abstract
Assessing teacher candidates’ self-efficacy in using reading strategies is essential for understanding their academic development. This study developed and validated the Teacher Candidates’ Self-Efficacy Scale for Informational Reading Strategies (TCSES-IRS) using a mixed-methods sequential exploratory design. Initial qualitative data from interviews with 33 [...] Read more.
Assessing teacher candidates’ self-efficacy in using reading strategies is essential for understanding their academic development. This study developed and validated the Teacher Candidates’ Self-Efficacy Scale for Informational Reading Strategies (TCSES-IRS) using a mixed-methods sequential exploratory design. Initial qualitative data from interviews with 33 candidates and a literature review guided item generation. Lawshe’s method confirmed content validity. The scale was administered to 1176 teacher candidates. Exploratory (n = 496) and confirmatory factor analyses (n = 388) supported a five-factor structure—cognitive, note-taking, exploration and preparation, physical and process-based, and reflective and analytical strategies—explaining 63.71% of total variance, with acceptable fit indices (χ2/df = 2.64, CFI = 0.912, TLI = 0.900, RMSEA = 0.069). Internal consistency was high (α = 0.899 total; subscales α = 0.708–0.906). An additional sample of 294 participants was used for nomological network validation. Convergent validity was demonstrated by significant item-total correlations and strong factor loadings. Discriminant validity was evidenced by moderate inter-factor correlations. Criterion-related validity was confirmed via significant group differences and meaningful correlations with an external self-efficacy measure. The TCSES-IRS emerges as a psychometrically sound tool for assessing informational reading self-efficacy, supporting research and practice in educational psychology. Full article
(This article belongs to the Section Educational Psychology)
Show Figures

Figure 1

20 pages, 2336 KiB  
Article
Microbial DNA-Based Monitoring of Underground Crude Oil Storage Bases Using Water-Sealed Rock-Cavern Tanks
by Ayae Goto, Shunichi Watanabe, Katsumasa Uruma, Yuki Momoi, Takuji Oomukai and Hajime Kobayashi
Water 2025, 17(15), 2197; https://doi.org/10.3390/w17152197 - 23 Jul 2025
Abstract
Strategic petroleum reserves are critical for energy security. In Japan, 0.5 million kiloliters of crude oil (12% of the state-owned reserves) is stored using underground rock-cavern tanks, which comprise unlined horizontal tunnels bored into bedrock. Crude oil is held within the tank by [...] Read more.
Strategic petroleum reserves are critical for energy security. In Japan, 0.5 million kiloliters of crude oil (12% of the state-owned reserves) is stored using underground rock-cavern tanks, which comprise unlined horizontal tunnels bored into bedrock. Crude oil is held within the tank by water inside the tank, the pressure of which is kept higher than that of the crude oil by natural groundwater and irrigation water. This study applied microbial DNA-based monitoring to assess the water environments in and around national petroleum-stockpiling bases (the Kuji, Kikuma, and Kushikino bases) using the rock-cavern tanks. Forty-five water samples were collected from the rock-cavern tanks, water-supply tunnels, and observation wells. Principal-component analysis and hierarchical clustering indicated that microbial profiles of the water samples reflect the local environments of their origins. Particularly, the microbial profiles of water inside the rock-cavern tanks were distinct from other samples, revealing biological conditions and hence environmental characteristics within the tanks. Moreover, the clustering analysis indicated distinct features of water samples that have not been detected by other monitoring methods. Thus, microbial DNA-based monitoring provides valuable information on the in situ environments of rock-cavern tanks and can serve as an extremely sensitive measurement to monitor the underground oil storage. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

Back to TopTop