Co-Cultivation Assays for Detecting Infectious Human-Tropic Porcine Endogenous Retroviruses (PERVs)
Abstract
1. Introduction
2. Co-Cultivation with Pig Cells After Gamma Irradiation
3. Effects of Gamma Irradiation on Donor Pig Cells
4. Separation of Pig and Human Cells by Porous Membranes
5. Cell-to-Cell Transmission of Retroviruses
6. Use of Selection Marker-Resistant Human Cells
7. Infectivity Assessment Using High-Throughput Sequencing Technologies
8. What Do the Assays Tell Us?
9. Future Development
10. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CRISPR/Cas | Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated |
DPF | Designated pathogen-free |
DSB | Double strand breaks |
Env | Envelope |
F-MuLV | Friend murine leukemia virus |
HIV-1 | Human immunodeficiency virus type 1 |
HTLV-1 | Human T-cell lymphotropic virus type 1 |
NGS | Next-generation sequencing |
PBMCs | Peripheral blood mononuclear cells |
PERVs | Porcine endogenous retroviruses |
PK15 | Porcine kidney cells 15 |
ROS | Reactive oxygen species |
TPA | 12-O-tetradecanoyl-phorbol-13-acetate |
References
- Denner, J.; Tönjes, R.R. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin. Microbiol. Rev. 2012, 25, 318–343. [Google Scholar] [CrossRef] [PubMed]
- Patience, C.; Takeuchi, Y.; Weiss, R.A. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 1997, 3, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Specke, V.; Rubant, S.; Denner, J. Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology 2001, 285, 177–180. [Google Scholar] [CrossRef]
- Denner, J. Porcine endogenous retrovirus infection of human peripheral blood mononuclear cells. Xenotransplantation 2014, 22, 151–152. [Google Scholar] [CrossRef]
- Martin, U.; Winkler, M.E.; Id, M.; Radeke, H.; Arseniev, L.; Takeuchi, Y.; Simon, A.R.; Patience, C.; Haverich, A.; Steinhoff, G. Productive infection of primary human endothelial cells by pig endogenous retrovirus (PERV). Xenotransplantation 2000, 7, 138–142. [Google Scholar] [CrossRef]
- Martin, U.; Kiessig, V.; Blusch, J.H.; Haverich, A.; von der Helm, K.; Herden, T.; Steinhoff, G. Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. Lancet 1998, 352, 692–694. [Google Scholar] [CrossRef]
- Halecker, S.; Krabben, L.; Kristiansen, Y.; Krüger, L.; Möller, L.; Becher, D.; Laue, M.; Kaufer, B.; Reimer, C.; Denner, J. Rare isolation of human-tropic recombinant porcine endogenous retroviruses PERV-A/C from Gottingen minipigs. Virol. J. 2022, 19, 30. [Google Scholar] [CrossRef]
- Wilson, C.A.; Wong, S.; Muller, J.; Davidson, C.E.; Rose, T.M.; Burd, P. Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. Virol. J. 1998, 72, 3082–3087. [Google Scholar] [CrossRef]
- Wilson, C.A.; Wong, S.; VanBrocklin, M.; Federspiel, M.J. Extended analysis of the in vitro tropism of porcine endogenous retrovirus. Virol. J. 2000, 74, 49–56. [Google Scholar] [CrossRef]
- Harrison, I.; Takeuchi, Y.; Bartosch, B.; Stoye, J.P. Determinants of high titer in recombinant porcine endogenous retroviruses. Virol. J. 2004, 78, 13871–13879. [Google Scholar] [CrossRef]
- Denner, J.; Specke, V.; Thiesen, U.; Karlas, A.; Kurth, R. Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology 2003, 314, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Sensitive detection systems for infectious agents in xenotransplantation. Xenotransplantation 2020, e12594. [Google Scholar] [CrossRef] [PubMed]
- Godehardt, A.W.; Rodrigues Costa, M.; Tönjes, R.R. Review on porcine endogenous retrovirus detection assays--impact on quality and safety of xenotransplants. Xenotransplantation 2015, 22, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Gola, J.; Mazurek, U. Detection of porcine endogenous retrovirus in xenotransplantation. Reprod. Biol. 2014, 14, 68–73. [Google Scholar] [CrossRef]
- Kono, K.; Kataoka, K.; Yuan, Y.; Yusa, K.; Uchida, K.; Sato, Y. A highly sensitive method for the detection of recombinant PERV-A/C env RNA using next generation sequencing technologies. Sci. Rep. 2020, 10, 21935. [Google Scholar] [CrossRef]
- Denner, J. What does the PERV copy number tell us? Xenotransplantation 2022, 29, e12732. [Google Scholar] [CrossRef]
- Godehardt, A.W.; Fischer, N.; Rauch, P.; Gulich, B.; Boller, K.; Church, G.M.; Tönjes, R.R. Characterization of porcine endogenous retrovirus particles released by the CRISPR/Cas9 inactivated cell line PK15 clone 15. Xenotransplantation 2020, 27, e12563. [Google Scholar] [CrossRef]
- Zhao, H.; Zhuang, Y.; Li, R.; Liu, Y.; Mei, Z.; He, Z.; Zhou, F.; Zhou, Y. Effects of different doses of X-ray irradiation on cell apoptosis, cell cycle, DNA damage repair and glycolysis in HeLa cells. Oncol. Lett. 2019, 17, 42–54. [Google Scholar] [CrossRef]
- Lomax, M.E.; Folkes, L.K.; O’Neill, P. Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Clin. Oncol. (R Coll. Radiol.) 2013, 25, 578–585. [Google Scholar] [CrossRef]
- Delso-Vallejo, M.; Kollet, J.; Koehl, U.; Huppert, V. Influence of Irradiated Peripheral Blood Mononuclear Cells on Both Ex Vivo Proliferation of Human Natural Killer Cells and Change in Cellular Property. Front. Immunol. 2017, 8, 854. [Google Scholar] [CrossRef]
- Lee, H.; Kang, S.H.; Jeong, G.H.; Lee, S.S.; Chung, B.Y.; Kim, G.J.; Bai, H.W. Gamma irradiation-engineered macrophage-derived exosomes as potential immunomodulatory therapeutic agents. PLoS ONE 2024, 19, e0303434. [Google Scholar] [CrossRef]
- Garkavenko, O.; Wynyard, S.; Nathu, D.; Muzina, M.; Muzina, Z.; Scobie, L.; Hector, R.D.; Croxson, M.C.; Tan, P.; Elliott, B.R. Porcine endogenous retrovirus transmission characteristics from a designated pathogen-free herd. Transplant. Proc. 2008, 40, 590–593. [Google Scholar] [CrossRef]
- Semaan, M.; Rotem, A.; Barkai, U.; Bornstein, S.; Denner, J. Screening pigs for xenotransplantation: Prevalence and expression of porcine endogenous retroviruses in Gottingen minipigs. Xenotransplantation 2013, 20, 148–156. [Google Scholar] [CrossRef]
- Rodrigues Costa, M.; Fischer, N.; Gulich, B.; Tönjes, R.R. Comparison of porcine endogenous retroviruses infectious potential in supernatants of producer cells and in cocultures. Xenotransplantation 2014, 21, 162–173. [Google Scholar] [CrossRef]
- Irgang, M.; Karlas, A.; Laue, C.; Specke, V.; Tacke, S.J.; Kurth, R.; Schrezenmeir, J.; Denner, J. Porcine endogenous retroviruses PERV-A and PERV-B infect neither mouse cells in vitro nor SCID mice in vivo. Intervirology 2005, 48, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Jolly, C. Cell-to-cell transmission of retroviruses: Innate immunity and interferon-induced restriction factors. Virology 2011, 411, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Calado, M.; Pires, D.; Conceição, C.; Ferreira, R.; Santos-Costa, Q.; Anes, E.; Azevedo-Pereira, J.M. Cell-to-Cell Transmission of HIV-1 and HIV-2 from Infected Macrophages and Dendritic Cells to CD4+ T Lymphocytes. Viruses 2023, 15, 1030. [Google Scholar] [CrossRef]
- Ivanusic, D.; Madela, K.; Bannert, N.; Denner, J. The large extracellular loop of CD63 interacts with gp41 of HIV-1 and is essential for establishing the virological synapse. Sci. Rep. 2021, 11, 10011. [Google Scholar] [CrossRef] [PubMed]
- Sherer, N.M.; Lehmann, M.J.; Jimenez-Soto, L.F.; Horensavitz, C.; Pypaert, M.; Mothes, W. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat. Cell Biol. 2007, 9, 310–315. [Google Scholar] [CrossRef]
- Jin, J.; Sherer, N.M.; Heidecker, G.; Derse, D.; Mothes, W. Assembly of the murine leukemia virus is directed towards sites of cell-cell contact. PLoS Biol. 2009, 7, e1000163. [Google Scholar] [CrossRef]
- Sherer, N.M.; Jin, J.; Mothes, W. Directional spread of surface-associated retroviruses regulated by differential virus-cell interactions. Virol. J. 2010, 84, 3248–3258. [Google Scholar] [CrossRef]
- Zhong, P.; Agosto, L.M.; Munro, J.B.; Mothes, W. Cell-to-cell transmission of viruses. Curr. Opin. Virol. 2013, 3, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Sewald, X.; Gonzalez, D.G.; Haberman, A.M.; Mothes, W. In vivo imaging of virological synapses. Nat. Commun. 2012, 3, 1320. [Google Scholar] [CrossRef] [PubMed]
- Vile, R. Selectable markers for eukaryotic cells. Methods Mol. Biol. 1992, 8, 49–60. [Google Scholar] [PubMed]
- Irgang, M.; Laue, C.; Velten, F.; Kurth, K.; Schrezenmeier, J.; Denner, J. No evidence for PERV release by islet cells from German landrace pigs. Ann. Transplant. 2008, 13, 59–66. [Google Scholar]
- Kono, K.; Kataoka, K.; Yuan, Y.; Yusa, K.; Uchida, K.; Sato, Y. Infectivity assessment of porcine endogenous retrovirus using high-throughput sequencing technologies. Biologicals 2021, 71, 1. [Google Scholar] [CrossRef]
- Denner, J. How Active Are Porcine Endogenous Retroviruses (PERVs)? Viruses 2016, 8, 215. [Google Scholar] [CrossRef]
- Krüger, L.; Kristiansen, Y.; Reuber, E.; Möller, L.; Laue, M.; Reimer, C.; Denner, J. A Comprehensive Strategy for Screening for Xenotransplantation-Relevant Viruses in a Second Isolated Population of Göttingen Minipigs. Viruses 2019, 12, 38. [Google Scholar] [CrossRef]
- Tacke, S.J.; Specke, V.; Denner, J. Differences in release and determination of subtype of porcine endogenous retroviruses produced by stimulated normal pig blood cells. Intervirology 2003, 46, 17–24. [Google Scholar] [CrossRef]
- Dieckhoff, B.; Kessler, B.; Jobst, D.; Kues, W.; Petersen, B.; Pfeifer, A.; Kurth, R.; Niemann, H.; Wolf, E.; Denner, J. Distribution and expression of porcine endogenous retroviruses in multi-transgenic pigs generated for xenotransplantation. Xenotransplantation 2009, 16, 64–73. [Google Scholar] [CrossRef]
- Denner, J.; Schuurman, H.J. High Prevalence of Recombinant Porcine Endogenous Retroviruses (PERV-A/Cs) in Minipigs: A Review on Origin and Presence. Viruses 2021, 13, 1869. [Google Scholar] [CrossRef] [PubMed]
- Oldmixon, B.A.; Wood, J.C.; Ericsson, T.A.; Wilson, C.A.; White-Scharf, M.E.; Andersson, G.; Greenstein, J.L.; Schuurman, H.J.; Patience, C. Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. Virol. J. 2002, 76, 3045–3048. [Google Scholar] [CrossRef]
- Piroozmand, A.; Yamamoto, Y.; Khamsri, B.; Fujita, M.; Uchiyama, T.; Adachi, A. Generation and characterization of APOBEC3G-positive 293T cells for HIV-1 Vif study. J. Med. Invest. 2007, 54, 154–158. [Google Scholar] [CrossRef]
- Fuchs, N.V.; Loewer, S.; Daley, G.Q.; Izsvák, Z.; Löwer, J.; Löwer, R. Human endogenous retrovirus K (HML-2) RNA and protein expression is a marker for human embryonic and induced pluripotent stem cells. Retrovirology 2013, 10, 115. [Google Scholar] [CrossRef]
- Mattiuzzo, G.; Matouskova, M.; Takeuchi, Y. Differential resistance to cell entry by porcine endogenous retrovirus subgroup A in rodent species. Retrovirology 2007, 4, 93. [Google Scholar] [CrossRef]
- Mattiuzzo, G.; Takeuchi, Y. Suboptimal porcine endogenous retrovirus infection in non-human primate cells: Implication for preclinical xenotransplantation. PLoS ONE 2010, 5, e13203. [Google Scholar] [CrossRef]
- Denner, J. Why was PERV not transmitted during preclinical and clinical xenotransplantation trials and after inoculation of animals. Retrovirology 2018, 15, 28. [Google Scholar] [CrossRef]
Assay | Advantages | Disadvantages |
---|---|---|
Co-cultivation with pig cells after gamma-irradiation | - Accounts for both cell-free and cell-to-cell transmission | - Requires gamma irradiation - Gamma irradiation may alter virus expression |
Separation of pig and human cells by porous membranes | - No need to inactivate virus-producing cells - Easy removal of cell culture inserts | - Does not capture cell-to-cell transmission |
Use of selection marker-resistant human cells | - Avoids the need for gamma irradiation, preserving natural PERVs expression and replication - Enables direct contact between pig and human cells - Allows detection of both free virus and cell-to-cell transmission - Enables complete removal of pig cells - Cost-effective and less time-consuming; does not require specialized equipment | - Requires target cells with a selection marker and selection medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denner, J. Co-Cultivation Assays for Detecting Infectious Human-Tropic Porcine Endogenous Retroviruses (PERVs). Int. J. Mol. Sci. 2025, 26, 7111. https://doi.org/10.3390/ijms26157111
Denner J. Co-Cultivation Assays for Detecting Infectious Human-Tropic Porcine Endogenous Retroviruses (PERVs). International Journal of Molecular Sciences. 2025; 26(15):7111. https://doi.org/10.3390/ijms26157111
Chicago/Turabian StyleDenner, Joachim. 2025. "Co-Cultivation Assays for Detecting Infectious Human-Tropic Porcine Endogenous Retroviruses (PERVs)" International Journal of Molecular Sciences 26, no. 15: 7111. https://doi.org/10.3390/ijms26157111
APA StyleDenner, J. (2025). Co-Cultivation Assays for Detecting Infectious Human-Tropic Porcine Endogenous Retroviruses (PERVs). International Journal of Molecular Sciences, 26(15), 7111. https://doi.org/10.3390/ijms26157111