Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,261)

Search Parameters:
Keywords = reduced-order observer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7617 KiB  
Article
Using Circuit Theory to Identify Important Ecological Corridors for Large Mammals Between Wildlife Refuges
by Büşra Kalleci and Özkan Evcin
Diversity 2025, 17(8), 542; https://doi.org/10.3390/d17080542 (registering DOI) - 1 Aug 2025
Abstract
Habitat fragmentation restricts the movement of large mammals across broad landscapes, leading to isolation of individuals or groups, reduced interaction with other species, and limited access to vital resources in surrounding habitats. In this study, we aimed to determine the wildlife ecological corridors [...] Read more.
Habitat fragmentation restricts the movement of large mammals across broad landscapes, leading to isolation of individuals or groups, reduced interaction with other species, and limited access to vital resources in surrounding habitats. In this study, we aimed to determine the wildlife ecological corridors for five large mammals (Ursus arctos, Cervus elaphus, Capreolus capreolus, Sus scrofa, and Canis lupus) between Kastamonu Ilgaz Mountain Wildlife Refuge and Gavurdağı Wildlife Refuge. In the field studies, we used the transect, indirect observation, and camera-trap methods to collect presence data. Maximum Entropy (MaxEnt) (v. 3.4.1) software was used to create habitat suitability models of the target species, which are based on the presence-only data approach. The results indicated that AUC values varied between 0.808 and 0.835, with water sources, stand type, and slope contributing most significantly to model performance. In order to determine wildlife ecological corridors, resistance surface maps were created using the species distribution models (SDMs), and bottleneck areas were determined. The Circuit Theory approach was used to model the connections between ecological corridors. As a result of this study, we developed connectivity models for five large mammals based on Circuit Theory, identified priority wildlife ecological corridors, and evaluated critical connection points between two protected areas, Ilgaz Mountain Wildlife Refuge and Gavurdağı Wildlife Refuge. These findings highlight the essential role of ecological corridors in sustaining landscape-level connectivity and supporting the long-term conservation of wide-ranging species. Full article
(This article belongs to the Special Issue Habitat Assessment and Conservation Strategies)
Show Figures

Graphical abstract

14 pages, 2595 KiB  
Article
Resurgence of Pertussis in the Autonomous Province of Vojvodina, Serbia: Shifting Seasonality, Age Patterns, and the Need for Booster Immunization
by Mioljub Ristić, Vladimir Vuković, Smiljana Rajčević, Snežana Medić, Marko Koprivica and Vladimir Petrović
Vaccines 2025, 13(8), 814; https://doi.org/10.3390/vaccines13080814 (registering DOI) - 31 Jul 2025
Abstract
Background: Despite decades of high childhood vaccination coverage, pertussis has re-emerged in the Autonomous Province of Vojvodina (AP Vojvodina), Serbia. We aimed to describe the temporal, seasonal, and age-specific patterns of pertussis in AP Vojvodina and to analyze trends by vaccination status in [...] Read more.
Background: Despite decades of high childhood vaccination coverage, pertussis has re-emerged in the Autonomous Province of Vojvodina (AP Vojvodina), Serbia. We aimed to describe the temporal, seasonal, and age-specific patterns of pertussis in AP Vojvodina and to analyze trends by vaccination status in order to highlight changes in epidemiology and potential gaps in vaccine-induced protection. Methods: We retrospectively analyzed 2796 pertussis cases reported between January 1997 and December 2024, examining temporal, seasonal, and age-specific trends, stratifying by vaccination status across four consecutive periods (1997–2003, 2004–2010, 2011–2017, and 2018–2024). Results: Throughout the 28-year period, after low and sporadic cases in the pre-2012 period, a dramatic rise was observed in 2014, 2017, and 2018, culminating in the highest annual number of reported cases in 2024 (1011 cases). Throughout this period, primary vaccination coverage with the DTwP/DTaP three-dose series ranged between 91% and 98%, while first booster coverage gradually declined from 98% in the early 2000s to 83% in 2024. Regarding seasonality, a sharp increase in cases began in 2012, peaking in November 2023 (>350 cases) and early 2024 (312 in January, 268 in February), with a seasonal shift from summer peaks in the 2011–2017 period to higher incidence rates during colder months more recently. Adolescents aged 10–14 years had the highest cumulative incidence (1149.4/100,000), followed by infants under 12 months (978.5/100,000), despite the latter representing fewer absolute cases. The proportion of pertussis in fully vaccinated individuals rose from 6.3% (1997–2003) to 49.7% (2018–2024). Conclusions: These findings suggest that booster immunization in adolescence and routine maternal vaccination during pregnancy could reduce transmission, particularly to infants. Enhanced surveillance and updated immunization policies are critical to mitigating future pertussis outbreaks. Full article
(This article belongs to the Special Issue Epidemiology of Diseases Preventable by Vaccination)
Show Figures

Figure 1

28 pages, 11074 KiB  
Article
Sedimentary Characteristics and Reservoir Quality of Shallow-Water Delta in Arid Lacustrine Basins: The Upper Jurassic Qigu Formation in the Yongjin Area, Junggar Basin, China
by Lin Wang, Qiqi Lyu, Yibo Chen, Xinshou Xu and Xinying Zhou
Appl. Sci. 2025, 15(15), 8458; https://doi.org/10.3390/app15158458 (registering DOI) - 30 Jul 2025
Abstract
The lacustrine to deltaic depositional systems of the Upper Jurassic Qigu Formation in the Yongjin area constitute a significant petroleum reservoir in the central Junggar Basin, China. Based on core observations, petrology analyses, paleoenvironment indicators and modern sedimentary analyses, sequence stratigraphy, lithofacies associations, [...] Read more.
The lacustrine to deltaic depositional systems of the Upper Jurassic Qigu Formation in the Yongjin area constitute a significant petroleum reservoir in the central Junggar Basin, China. Based on core observations, petrology analyses, paleoenvironment indicators and modern sedimentary analyses, sequence stratigraphy, lithofacies associations, sedimentary environment, evolution, and models were investigated. The Qigu Formation can be divided into a third-order sequence consisting of a lowstand systems tract (LST) and a transgressive systems tract (TST), which is further subdivided into six fourth-order sequences. Thirteen lithofacies and five lithofacies associations were identified, corresponding to shallow-water delta-front deposits. The paleoenvironment of the Qigu Formation is generally characterized by an arid freshwater environment, with a dysoxic to oxic environment. During the LST depositional period (SQ1–SQ3), the water depth was relatively shallow with abundant sediment supply, resulting in a widespread distribution of channel and mouth bar deposits. During the TST depositional period (SQ4–SQ6), the rapid rise in base level, combined with reduced sediment supply, resulted in swift delta retrogradation and widespread lacustrine sedimentation. Combined with modern sedimentary analysis, the shallow-water delta in the study area primarily comprises a composite system of single main channels and distributary channel-mouth bar complexes. The channel-bar complex eventually forms radially distributed bar assemblages with lateral incision and stacking. The distributary channel could incise a mouth bar deeply or shallowly, typically forming architectural patterns of going over or in the mouth bar. Reservoir test data suggest that the mouth bar sandstones are favorable targets for lithological reservoir exploration in shallow-water deltas. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

14 pages, 3505 KiB  
Article
The Influence of Operating Pressure Oscillations on the Machined Surface Topography in Abrasive Water Jet Machining
by Dejan Ž. Veljković, Jelena Baralić, Predrag Janković, Nedeljko Dučić, Borislav Savković and Aleksandar Jovičić
Materials 2025, 18(15), 3570; https://doi.org/10.3390/ma18153570 - 30 Jul 2025
Abstract
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in [...] Read more.
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in the operating pressure values are periodic, namely due to the cyclic operation of the intensifier and the physical characteristics of water. One of the most common means of reducing this phenomenon is installing an attenuator in the hydraulic system or a phased intensifier system. The main hypothesis of this study was that the topography of a machined surface is directly influenced by the inability of the pressure accumulator to fully absorb water pressure oscillations. In this study, we monitored changes in hydraulic oil pressure values at the intensifier entrance and their connection with irregularities on the machined surface—such as waviness—when cutting aluminum AlMg3 of different thicknesses. Experimental research was conducted in order to establish this connection. Aluminum AlMg3 of different thicknesses—from 6 mm to 12 mm—was cut with different traverse speeds while hydraulic oil pressure values were monitored. The pressure signals thus obtained were analyzed by applying the fast Fourier transform (FFT) algorithm. We identified a single-sided pressure signal amplitude spectrum. The frequency axis can be transformed by multiplying inverse frequency data with traverse speed; in this way, a single-sided amplitude spectrum can be obtained, examined against the period in which striations are expected to appear (in millimeters). In the lower zone of the analyzed samples, striations are observed at intervals determined by the dominant hydraulic oil pressure harmonics, which are transferred to the operating pressure. In other words, we demonstrate how the machined surface topography is directly induced by water jet pressure frequency characteristics. Full article
(This article belongs to the Special Issue High-Pressure Water Jet Machining in Materials Engineering)
Show Figures

Figure 1

15 pages, 1922 KiB  
Article
Idiopathic Syringomyelia: Diagnostic Value of Cranial Morphometric Parameters
by Birol Özkal and Hakan Özçelik
Brain Sci. 2025, 15(8), 811; https://doi.org/10.3390/brainsci15080811 - 29 Jul 2025
Viewed by 28
Abstract
Background: Identifying the etiological factors of syringomyelia, which can cause progressive neurological deficits in the spinal cord, is critically important for both diagnosis and treatment. This study aimed to assess the cranial morphometric features of patients with idiopathic syringomyelia by conducting comparative analyses [...] Read more.
Background: Identifying the etiological factors of syringomyelia, which can cause progressive neurological deficits in the spinal cord, is critically important for both diagnosis and treatment. This study aimed to assess the cranial morphometric features of patients with idiopathic syringomyelia by conducting comparative analyses with individuals diagnosed with Chiari Type I, Chiari Type I accompanied by syringomyelia, and healthy controls, in order to elucidate the potential structural contributors to the pathogenesis of idiopathic syringomyelia. Methods: In this retrospective and comparative study, a total of 172 patients diagnosed with Chiari Type I and/or syringomyelia between 2016 and 2024, along with 156 radiologically normal individuals, were included. The participants were categorized into four groups: healthy controls, Chiari Type I, Chiari Type I with syringomyelia, and idiopathic syringomyelia (defined as syringomyelia without an identifiable cause). Midline sagittal T1-weighted MR images were used to obtain quantitative measurements of the posterior fossa, cerebellum, intracranial area, and foramen magnum. All measurements were stratified and statistically analyzed by sex. Results: In cases with idiopathic syringomyelia, both the posterior fossa area and the cerebellum/posterior fossa ratio differed significantly from those of healthy controls. In male patients, the foramen magnum diameter was significantly larger in the Chiari + syringomyelia group compared with the idiopathic group. A significant correlation was found between the degree of tonsillar descent and selected morphometric parameters in female subjects, whereas no such correlation was observed in males. Both Chiari groups exhibited significantly smaller posterior fossa dimensions compared with the healthy and idiopathic groups, indicating greater neural crowding. Additionally, in Chiari Type I patients, increasing degrees of tonsillar descent were associated with a decreased incidence of syringomyelia. Conclusions: Anatomical variations such as a reduced posterior fossa area or altered foramen magnum diameter may contribute to the pathogenesis of idiopathic syringomyelia. Cranial morphometric analysis appears to offer diagnostic value in these cases. Further prospective, multicenter studies incorporating advanced neuroimaging modalities, particularly those assessing cerebrospinal fluid dynamics, are warranted to better understand the mechanisms underlying syringomyelia of unknown etiology. Full article
(This article belongs to the Special Issue Current Research in Neurosurgery)
Show Figures

Figure 1

21 pages, 3633 KiB  
Article
Shear Mechanism of Precast Segmental Concrete Beam Prestressed with Unbonded Tendons
by Wu-Tong Yan, Lei Yuan, Yong-Hua Su and Zi-Wei Song
Buildings 2025, 15(15), 2668; https://doi.org/10.3390/buildings15152668 - 28 Jul 2025
Viewed by 147
Abstract
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup [...] Read more.
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup strain, and tendon stress are recorded. The factors of shear span ratio, the position of segmental joints, and hybrid tendon ratio are focused on, and their effects on the shear behaviors are compared. Based on the measured responses, the shear contribution proportions of concrete segments, prestressed tendons, and stirrups are decomposed and quantified. With the observed failure modes, the truss–arch model is employed to clarify the shear mechanism of PSCBs, and simplified equations are further developed for predicting the shear strength. Using the collected test results of 30 specimens, the validity of the proposed equations is verified with a mean ratio of calculated-to-test values of 0.96 and a standard deviation of 0.11. Furthermore, the influence mechanism of shear span ratio, segmental joints, prestressing force, and hybrid tendon ratio on the shear strength is clarified. The increasing shear span ratio decreases the inclined angle of the arch ribs, thereby reducing the shear resistance contribution of the arch action. The open joints reduce the number of stirrups passing through the diagonal cracks, lowering the shear contribution of the truss action. The prestressing force can reduce the inclination of diagonal cracks, improving the contribution of truss action. The external unbonded tendon will decrease the height of the arch rib due to the second-order effects, causing lower shear strength than PSCBs with internal tendons. Full article
(This article belongs to the Special Issue Advances in Steel-Concrete Composite Structure—2nd Edition)
Show Figures

Figure 1

13 pages, 652 KiB  
Article
Evaluation of Alterations in Nutrient Utilization and Intestinal Health in Response to Heat Stress in Pekin Ducks Based on a Pair-Feeding Experimental Design
by Xiangyi Zeng, Arshad Javid, Gregory S. Fraley, Gang Tian, Keying Zhang, Shiping Bai, Xuemei Ding, Jianping Wang, Yan Liu, Yue Xuan, Shanshan Li and Qiufeng Zeng
Animals 2025, 15(15), 2213; https://doi.org/10.3390/ani15152213 - 28 Jul 2025
Viewed by 150
Abstract
The objective of this study was to investigate alterations in nutrient utilization, standardized ileal digestibility of amino acids (SIDAA), and intestinal health in response to heat stress (HS) in Pekin ducks. A total of 240 healthy 28-day-old male Pekin ducks were randomly allocated [...] Read more.
The objective of this study was to investigate alterations in nutrient utilization, standardized ileal digestibility of amino acids (SIDAA), and intestinal health in response to heat stress (HS) in Pekin ducks. A total of 240 healthy 28-day-old male Pekin ducks were randomly allocated to three groups: a normal control (NC) group, an HS group, and a pair-fed (PF; provided an amount of feed equal to that consumed by the HS group to eliminate the effects of feed intake) group, each with eight replicate cages of ten birds. The results showed that HS significantly reduced the apparent utilization of dietary energy, ether extract, and crude protein compared to both the NC and PF groups (p < 0.05), but yielded comparable SIDAA to the PF group. The HS group exhibited reduced mRNA levels of EAAT3 and PepT1, along with elevated mRNA levels of CAT1, GLUT5, and FATP6 in the jejunum compared to the NC or PF groups, respectively (p < 0.05). Furthermore, HS resulted in a significant deterioration of jejunal morphology and goblet cell count compared to the NC and PF groups (p < 0.05). Serum fluorescein isothiocyanate-dextran levels were significantly higher in HS ducks than in NC ducks (p < 0.05), but did not differ from PF ducks. At order-level classification of ileal mucosal microbiota, HS markedly increased the relative abundance of Bacillales, Deferribacterales, and Actinomycetales versus NC (p < 0.05), while significantly decreasing Bifidobacteriales abundance relative to PF (p < 0.05). Collectively, HS induces a leaky gut and microbiota dysbiosis that compromises gut health, thereby reducing dietary nutrient utilization in Pekin ducks. The observed reduction in feed intake constitutes a primary driver of intestinal health deterioration in heat-stressed Pekin ducks. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

34 pages, 3350 KiB  
Article
Distributed Robust Predefined-Time Sliding Mode Control for AUV-USV Heterogeneous Multi-Agent Systems Based on Memory Event-Triggered Mechanism Under Input Saturation
by Haitao Liu, Luchuan Li, Xuehong Tian and Qingqun Mai
J. Mar. Sci. Eng. 2025, 13(8), 1428; https://doi.org/10.3390/jmse13081428 - 27 Jul 2025
Viewed by 131
Abstract
This paper studies the distributed robust predefined-time sliding mode control (DRPSC) problem for high-order heterogeneous multi-agent systems under input saturation while considering external disturbances and model uncertainties. Firstly, a distributed predefined-time state observer (PTSO) is designed for each agent to achieve individual estimation [...] Read more.
This paper studies the distributed robust predefined-time sliding mode control (DRPSC) problem for high-order heterogeneous multi-agent systems under input saturation while considering external disturbances and model uncertainties. Firstly, a distributed predefined-time state observer (PTSO) is designed for each agent to achieve individual estimation of the state information of the virtual leader within a predefined time, and the observer does not need to count on the global information of the system. Secondly, a predefined-time auxiliary dynamic system (PTADS) is developed to solve the actuator’s input saturation problem. Thirdly, a distributed predefined-time sliding mode controller (PTSMC) is proposed, which ensures that the error converges to a small region near zero within a predefined time and combines H control to deal with the lumped uncertainty disturbances in the system to improve the robustness of the system. In addition, a memory event-triggered mechanism (METM) is designed to reduce the communication frequency of the underactuated AUV-USV multi-agent system and reduce the consumption of communication resources. Finally, Lyapunov theory is employed to prove that the closed-loop system is predefined-time stable, and the simulation results demonstrate that the proposed method is effective. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

19 pages, 3224 KiB  
Article
Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform
by Xian-Ni Su, Yu-Yang Wang, Muhammed Fahad Khan, Li-Na Zhu, Zhong-Liang Chen, Zhuo Wang, Bing-Bing Song, Qiao-Li Zhao, Sai-Yi Zhong and Rui Li
Foods 2025, 14(15), 2629; https://doi.org/10.3390/foods14152629 - 26 Jul 2025
Viewed by 267
Abstract
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a [...] Read more.
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a self-assembling peptide, 9-Fluorenylmethoxycarbonyl-phenylalanine-arginine-glycine-aspartic acid-phenylalanine (Fmoc-FRGDF), and hyaluronic acid (HA). The stability of this hydrogel as a quercetin (Que) delivery carrier was systematically investigated. Furthermore, the impact of Que co-assembly on the microstructural evolution and physicochemical properties of the hydrogel was characterized. Concurrently, the encapsulation efficiency (EE%) and controlled release kinetics of Que were quantitatively evaluated. Results: The findings indicated that HA significantly reduced the storage modulus (G′) from 256.5 Pa for Fmoc-FRGDF to 21.1 Pa with the addition of 0.1 mg/mL HA. Despite this reduction, HA effectively slowed degradation rates; specifically, residue rates of 5.5% were observed for Fmoc-FRGDF alone compared to 14.1% with 0.5 mg/mL HA present. Notably, Que enhanced G′ within the ternary complex, increasing it from 256.5 Pa in Fmoc-FRGDF to an impressive 7527.0 Pa in the Que/HA/Fmoc-FRGDF hydrogel containing 0.1 mg/mL HA. The interactions among Que, HA, and Fmoc-FRGDF involved hydrogen bonding, electrostatic forces, and hydrophobic interactions; furthermore, the co-assembly process strengthened the β-sheet structure while significantly promoting supramolecular ordering. Interestingly, the release profile of Que adhered to the Korsmeyer–Peppas pharmacokinetic equations. Conclusions: Overall, this study examines the impact of polyphenol on the rheological properties, microstructural features, secondary structure conformation, and supramolecular ordering within peptide–polysaccharide–polyphenol ternary complexes, and the Fmoc-FRGDF/HA hydrogel system demonstrates a superior performance as a delivery vehicle for maintaining quercetin’s bioactivity, thereby establishing a multifunctional platform for bioactive agent encapsulation and controlled release. Full article
Show Figures

Figure 1

18 pages, 3750 KiB  
Article
Design and Analysis of an Electro-Hydraulic Servo Loading System for a Pavement Mechanical Properties Test Device
by Yufeng Wu and Hongbin Tang
Appl. Sci. 2025, 15(15), 8277; https://doi.org/10.3390/app15158277 - 25 Jul 2025
Viewed by 98
Abstract
An electro-hydraulic servo loading system for a pavement mechanical properties test device was designed. The simulation analysis and test results showed that the PID control met the design requirements, but the output’s maximum error did not. Therefore, a fast terminal sliding mode control [...] Read more.
An electro-hydraulic servo loading system for a pavement mechanical properties test device was designed. The simulation analysis and test results showed that the PID control met the design requirements, but the output’s maximum error did not. Therefore, a fast terminal sliding mode control strategy with an extended state observer (ESO) was proposed. A tracking differentiator was constructed to obtain smooth differential signals from the input signals. The order of the system was reduced by considering the third and higher orders of the system as the total disturbance, and the states and the total disturbance of the system were estimated using the ESO. The fast terminal sliding mode control achieved fast convergence of the system within a limited time. The simulation results showed that the proposed control strategy improved the system accuracy and anti-disturbance ability, and system control performance was optimized. Full article
Show Figures

Figure 1

16 pages, 3684 KiB  
Article
Topography-Guided Custom Ablation Treatment for Post-Traumatic Corneal Irregularities—Case Reports
by Łukasz Drzyzga, Dorota Śpiewak, Mariola Dorecka and Dorota Wyględowska-Promieńska
Biomedicines 2025, 13(8), 1818; https://doi.org/10.3390/biomedicines13081818 - 24 Jul 2025
Viewed by 266
Abstract
Background: Post-traumatic corneal wounds that require suturing are quite common; they reduce corneal transparency and cause corneal distortion, leading to corneal astigmatism and higher-order aberrations. Excimer laser treatment can be a potentially beneficial intervention for such wounds. The observation aimed to evaluate the [...] Read more.
Background: Post-traumatic corneal wounds that require suturing are quite common; they reduce corneal transparency and cause corneal distortion, leading to corneal astigmatism and higher-order aberrations. Excimer laser treatment can be a potentially beneficial intervention for such wounds. The observation aimed to evaluate the effectiveness of topography-guided custom ablation treatment (TCAT) in patients with corneal injuries. Methods: This observation included three patients with corneal penetrating trauma (full-thickness corneal scar) and one patient with corneal blunt trauma, i.e., a non-penetrating injury with corneal laceration (partial-thickness corneal scar). This cohort study was conducted from July 2021 to August 2023. After first-stage treatment (stabilization of the post-traumatic visual defect confirmed by refraction and topography examination, corneal healing, and improvement of the corneal scar), the patients underwent the second-stage treatment, i.e., TCAT with a 20 to 45 s application of mitomycin C solution to avoid haze induction. After TCAT, the uncorrected distance visual acuity (UDVA) and best-corrected distance visual acuity (BCVA) were measured. Refractive astigmatism was assessed using autorefractometry. Topographic astigmatism was analyzed using corneal topography and pachymetry. The root mean square (RMS) of the higher-order aberration was calculated using Zernike coefficients. The patients’ corneal healing and refractive changes were monitored. Results: All patients were monitored for corneal healing and refractive changes and underwent the same second-stage treatment, which utilized TCAT to regularize the corneal surface and reduce higher-order aberrations (HOAs). The UDVA of patients 1, 2, 3 and 4 improved by 3, 7.5, 4 and 6 rows (Snellen chart), respectively. The resultant UDVA was 1.0, 0.9, 0.7 and 1.2, while BCVA was 1.0, 1.2, 1.0, and 1.5, respectively. Conclusions: TCAT regularized the patients’ corneal surfaces and reduced HOAs. We, therefore, conclude that TCAT may be a beneficial second-stage treatment for corneal trauma-induced astigmatism. Full article
Show Figures

Figure 1

30 pages, 964 KiB  
Review
Impact of Biodegradable Plastics on Soil Health: Influence of Global Warming and Vice Versa
by Pavlos Tziourrou, John Bethanis, Dimitrios Alexiadis, Eleni Triantafyllidou, Sotiria G. Papadimou, Edoardo Barbieri and Evangelia E. Golia
Microplastics 2025, 4(3), 43; https://doi.org/10.3390/microplastics4030043 - 23 Jul 2025
Viewed by 246
Abstract
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where [...] Read more.
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where they are found, due to a combination of environmental, soil, and climatic factors, as well as the simultaneous presence of other pollutants, both inorganic and organic. In the present work, a review has been conducted on published research findings regarding the impact of various types of BPs on the parameters that regulate and determine soil health. In particular, the study examined the effects of BPs on physical, chemical, and biological indices of soil quality, leading to several important conclusions. It was observed that silty and loamy soils were significantly affected, as their physical properties were altered. Moreover, significant changes in both chemical and microbiological indicators were observed with increasing environmental temperatures. The presence of all types of biodegradable microplastics led to a significant reduction in soil nitrogen content as temperature increased. This study highlights the profound effects of the climate crisis on the properties of soils already contaminated with plastics, as the effects of rising temperatures on soil properties appear to be amplified in the presence of plastics. On the other hand, higher temperatures also trigger a series of chemical reactions that accelerate the degradation of BPs, thereby reducing their volume and mass in the soil environment. These processes lead to increased emissions of gases and higher ambient temperatures, leading to global warming. The types and quantities of plastics present, along with the environmental changes in a study area, are critical factors that must be taken into account by policymakers in order to mitigate the impacts of climate change on soil health and productivity. Full article
Show Figures

Figure 1

26 pages, 55836 KiB  
Article
Experimental Acoustic Investigation of Rotor Noise Directivity and Decay in Multiple Configurations
by Giovanni Fasulo, Giosuè Longobardo, Fabrizio De Gregorio and Mattia Barbarino
Aerospace 2025, 12(7), 647; https://doi.org/10.3390/aerospace12070647 - 21 Jul 2025
Viewed by 201
Abstract
In the framework of the MATIM project, an acoustic test campaign was conducted on a platform derived from a commercial-class quadcopter within the CIRA semi-anechoic chamber. A dedicated rotor rig allowed systematic measurements of thrust, torque, and shaft speed together with near- and [...] Read more.
In the framework of the MATIM project, an acoustic test campaign was conducted on a platform derived from a commercial-class quadcopter within the CIRA semi-anechoic chamber. A dedicated rotor rig allowed systematic measurements of thrust, torque, and shaft speed together with near- and far-field noise using ten calibrated 1/2-inch precision microphones. Three configurations were examined: an isolated rotor, the same rotor mounted on an aluminium quadcopter plate, and the full four-rotor assembly. The resulting data set, acquired over 3000–8000 rpm, documents the azimuthal directivity and radial decay of tonal and broadband noise while separating motor, propeller, and installation contributions. Analysis shows that a nearby rigid plate scatters part of the sound field towards frontal and oblique observers and produces a shielding effect in the rotor plane. The combined operation of four rotors further redistributes energy and broadens blade-passing frequency harmonics. The database is intended as a benchmark for aeroacoustics codes and for the development of reduced-order models. Full article
Show Figures

Figure 1

18 pages, 4221 KiB  
Article
Dynamics Modeling and Control Method for Non-Cooperative Target Capture with a Space Netted Pocket System
by Wenyu Wang, Huibo Zhang, Jinming Yao, Wenbo Li, Zhuoran Huang, Chao Tang and Yang Zhao
Actuators 2025, 14(7), 358; https://doi.org/10.3390/act14070358 - 21 Jul 2025
Viewed by 145
Abstract
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on [...] Read more.
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on the absolute nodal coordinate formulation (ANCF) and equivalent plate–shell theory. A contact collision force model is developed using a spring–damper model. Subsequently, a feedforward controller is designed based on the estimated collision force from the dynamic model, aiming to compensate for the collision effects between the target and the net. By incorporating the collision estimation data, an extended state observer is designed, taking into account the collision estimation errors and the flexible uncertainties. A sliding mode feedback controller is then designed using the fast terminal sliding mode control method. Finally, simulation analysis of target capture under different motion states is conducted. The results demonstrate that the spacecraft system’s position and attitude average flutter amplitudes are less than 102 m and 102 deg. In comparison to standard sliding mode control, the designed controller reduces the attitude jitter amplitude by an order of magnitude, thus demonstrating its effectiveness and superiority. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

20 pages, 1220 KiB  
Article
Color and Attractant Preferences of the Black Fig Fly, Silba adipata: Implications for Monitoring and Mass Trapping of This Invasive Pest
by Ricardo Díaz-del-Castillo, Guadalupe Córdova-García, Diana Pérez-Staples, Andrea Birke, Trevor Williams and Rodrigo Lasa
Insects 2025, 16(7), 732; https://doi.org/10.3390/insects16070732 - 17 Jul 2025
Viewed by 434
Abstract
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata [...] Read more.
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata adults to visual (color) and olfactory (attractant) cues under laboratory and field conditions in fig orchards. No significant color preferences were observed in laboratory choice tests using nine colors or in field trials using traps of four different colors. In the laboratory, traps containing 2% ammonium sulfate solution, torula yeast + borax, or Captor + borax, captured similar numbers of flies, whereas CeraTrap® was less attractive. Traps containing 2% ammonium sulfate were more effective than 2% ammonium acetate, though attraction was comparable when ammonium acetate was diluted to 0.2% or 0.02%. In the field, torula yeast + borax and 2% ammonium sulfate mixed with fig latex outperformed the 2% ammonium sulfate solution alone, although seasonal variation influenced trap performance. A high proportion of field-captured females were sexually immature. Torula yeast + borax attracted high numbers of non-target insects and other lonchaeid species, which reduced its specificity. In contrast, traps containing fig latex mixtures showed higher selectivity, although some S. adipata adults could not be sexed due to specimen degradation. These findings highlight the value of torula yeast pellets and 2% ammonium sulfate plus fig latex for monitoring this pest, but merit validation in field studies performed over the entire crop cycle across both wet and dry seasons. Future studies should evaluate other proteins, ammonium salt combinations and fig latex volatiles in order to develop effective and selective monitoring or mass trapping tools targeted at this invasive pest. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

Back to TopTop