Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,684)

Search Parameters:
Keywords = reduced mobility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3614 KiB  
Article
Gum Acacia–Dexamethasone Combination Attenuates Sepsis-Induced Acute Kidney Injury in Rats via Targeting SIRT1-HMGB1 Signaling Pathway and Preserving Mitochondrial Integrity
by Fawaz N. Alruwaili, Omnia A. Nour and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(8), 1164; https://doi.org/10.3390/ph18081164 - 5 Aug 2025
Abstract
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley [...] Read more.
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley rats were separated into six groups, including the control, GA group, LPS-induced AKI group, DEX + LPS group, GA + LPS group, and GA + DEX + LPS group. AKI was induced in rats using LPS (10 mg/kg, i.p.). GA was administered orally (7.5 g/kg) for 14 days before LPS injection, and DEX was injected (1mg/kg, i.p.) 2 h after LPS injection. Results: LPS injection significantly (p < 0.05, vs. control group) impaired renal function, as evidenced through increased levels of kidney function biomarkers, decreased creatinine clearance, and histopathological alterations in the kidneys. LPS also significantly (p < 0.05, vs. control group) elevated levels of oxidative stress markers, while it reduced levels of antioxidant enzymes. Furthermore, LPS triggered an inflammatory response, manifested by significant (p < 0.05, vs. control group) upregulation of Toll-like receptor 4, myeloid differentiation primary response 88, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB, along with increased expression of high-mobility group box 1. Administration of GA significantly ameliorated LPS-induced renal impairment by enhancing antioxidant defenses and suppressing inflammatory pathways (p < 0.05, vs. LPS group). Furthermore, GA-DEX-treated rats showed improved kidney function, reduced oxidative stress, and attenuated inflammatory markers (p < 0.05, vs. LPS group). Conclusions: The GA-DEX combination exhibited potent renoprotective effects against LPS-induced SA-AKI, possibly due to their antioxidant and anti-inflammatory properties. These results suggest that the GA-DEX combination could be a promising and effective therapeutic agent for managing SA-AKI. Full article
(This article belongs to the Section Pharmacology)
29 pages, 1459 KiB  
Article
The Impact of a Mobile Laboratory on Water Quality Assessment in Remote Areas of Panama
by Jorge E. Olmos Guevara, Kathia Broce, Natasha A. Gómez Zanetti, Dina Henríquez, Christopher Ellis and Yazmin L. Mack-Vergara
Sustainability 2025, 17(15), 7096; https://doi.org/10.3390/su17157096 - 5 Aug 2025
Abstract
Monitoring water quality is crucial for achieving clean water and sanitation goals, particularly in remote areas. The project “Morbidity vs. Water Quality for Human Consumption in Tonosí: A Pilot Study” aimed to enhance water quality assessments in Panama using advanced analytical techniques to [...] Read more.
Monitoring water quality is crucial for achieving clean water and sanitation goals, particularly in remote areas. The project “Morbidity vs. Water Quality for Human Consumption in Tonosí: A Pilot Study” aimed to enhance water quality assessments in Panama using advanced analytical techniques to assess volatile organic compounds, heavy metals, and microbiological pathogens. To support this, the Technical Unit for Water Quality (UTECH) was established, featuring a novel mobile laboratory with cutting-edge technology for accurate testing, minimal chemical reagent use, reduced waste generation, and equipped with a solar-powered battery system. The aim of this paper is to explore the design, deployment, and impact of the UTECH. Furthermore, this study presents results from three sampling points in Tonosí, where several parameters exceeded regulatory limits, demonstrating the capabilities of the UTECH and highlighting the need for ongoing monitoring and intervention. The study also assesses the environmental, social, and economic impacts of the UTECH in alignment with the Sustainable Development Goals and national initiatives. Finally, a SWOT analysis illustrates the UTECH’s potential to improve water quality assessments in Panama while identifying areas for sustainable growth. The study showcases the successful integration of advanced mobile laboratory technologies into water quality monitoring, contributing to sustainable development in Panama and offering a replicable model for similar initiatives in other regions. Full article
24 pages, 2357 KiB  
Article
Optimized Intelligent Localization Through Mathematical Modeling and Crow Search Algorithms
by Tamer Ramadan Badawy and Nesreen I. Ziedan
Sensors 2025, 25(15), 4804; https://doi.org/10.3390/s25154804 - 5 Aug 2025
Abstract
Localization has emerged as a critical problem over the past decades, with diverse techniques developed to address robot and mobile localization challenges across varied domains. However, existing localization methods still fall short of achieving the precision needed for certain high-demand applications. The proposed [...] Read more.
Localization has emerged as a critical problem over the past decades, with diverse techniques developed to address robot and mobile localization challenges across varied domains. However, existing localization methods still fall short of achieving the precision needed for certain high-demand applications. The proposed algorithm is designed to enhance localization accuracy by integrating mathematical modeling with the Crow Search Algorithm (CSA). The objective is to identify the most probable position within a designated search space. Anchored by a network of fixed points, the search area is initially defined. A mathematical approach is then applied to reduce this area by calculating the intersections between circles centered at each anchor point. Within this reduced area, an array of candidate points are selected, and their centroid is computed to serve as an initial estimate. The modified CSA iteratively improves upon this estimate by emulating the natural behavior of crows, updating its variables to converge on the optimal position. Experimental evaluations, conducted on both real and simulated datasets, demonstrate that the proposed algorithm leads to a better localization accuracy than existing methods. The proposed methodology achieves a significant accuracy improvement with an accuracy of 98%. These results confirm the effectiveness of our approach for applications that require high precision with minimal infrastructure and low computational complexity. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 - 4 Aug 2025
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

17 pages, 3099 KiB  
Article
Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control with Spatio-Temporal Attention Mechanism
by Wenzhe Jia and Mingyu Ji
Appl. Sci. 2025, 15(15), 8605; https://doi.org/10.3390/app15158605 (registering DOI) - 3 Aug 2025
Viewed by 75
Abstract
Traffic congestion in large-scale road networks significantly impacts urban sustainability. Traditional traffic signal control methods lack adaptability to dynamic traffic conditions. Recently, deep reinforcement learning (DRL) has emerged as a promising solution for optimizing signal control. This study proposes a Multi-Agent Deep Reinforcement [...] Read more.
Traffic congestion in large-scale road networks significantly impacts urban sustainability. Traditional traffic signal control methods lack adaptability to dynamic traffic conditions. Recently, deep reinforcement learning (DRL) has emerged as a promising solution for optimizing signal control. This study proposes a Multi-Agent Deep Reinforcement Learning (MADRL) framework for large-scale traffic signal control. The framework employs spatio-temporal attention networks to extract relevant traffic patterns and a hierarchical reinforcement learning strategy for coordinated multi-agent optimization. The problem is formulated as a Markov Decision Process (MDP) with a novel reward function that balances vehicle waiting time, throughput, and fairness. We validate our approach on simulated large-scale traffic scenarios using SUMO (Simulation of Urban Mobility). Experimental results demonstrate that our framework reduces vehicle waiting time by 25% compared to baseline methods while maintaining scalability across different road network sizes. The proposed spatio-temporal multi-agent reinforcement learning framework effectively optimizes large-scale traffic signal control, providing a scalable and efficient solution for smart urban transportation. Full article
Show Figures

Figure 1

18 pages, 1376 KiB  
Article
The Effect of Short-Term Healthy Ketogenic Diet Ready-To-Eat Meals Versus Healthy Ketogenic Diet Counselling on Weight Loss in Overweight Adults: A Pilot Randomized Controlled Trial
by Melissa Hui Juan Tay, Qai Ven Yap, Su Lin Lim, Yuki Wei Yi Ong, Victoria Chantel Hui Ting Wee and Chin Meng Khoo
Nutrients 2025, 17(15), 2541; https://doi.org/10.3390/nu17152541 - 1 Aug 2025
Viewed by 210
Abstract
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net [...] Read more.
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net carbohydrate intake to 50 g per day, prioritizing unsaturated fats, and reducing saturated fat intake. However, adherence to the HKD remains a challenge in urban, time-constrained environments. Therefore, this pilot randomized controlled trial aimed to investigate the effects of Healthy Ketogenic Diet Ready-To-Eat (HKD-RTE) meals (provided for the first month only) versus HKD alone on weight loss and metabolic parameters among overweight adults. Methods: Multi-ethnic Asian adults (n = 50) with a body mass index (BMI) ≥ 27.5 kg/m2 were randomized into the HKD-RTE group (n = 24) and the HKD group (n = 26). Both groups followed the HKD for six months, with the HKD-RTE group receiving HKD-RTE meals during the first month. Five in-person workshops and mobile health coaching through the Nutritionist Buddy Keto app helped to facilitate dietary adherence. The primary outcome was the change in body weight at 6 months. Linear regression was performed on the change from baseline for each continuous outcome, adjusting for demographics and relevant covariates. Logistic regression was performed on binary weight loss ≥ 5%, adjusting for demographics and relevant covariates. Results: In the HKD group, participants’ adherence to the 50 g net carbohydrate target was 15 days, while that in the HKD-RTE group was 19 days over a period of 30 days. Participants’ adherence to calorie targets was 21 days in the HKD group and 23 days in the HKD-RTE. The average compliance with the HKD-RTE meals provided in the HKD-RTE group was 55%. The HKD-RTE group experienced a greater percentage weight loss at 1 month (−4.8 ± 3.0% vs. −1.8 ± 6.2%), although this was not statistically significant. This trend continued up to 6 months, with the HKD-RTE group showing a greater percentage weight reduction (−8.6 ± 6.8% vs. −3.9 ± 8.6%; p = 0.092). At 6 months, the HKD-RTE group had a greater reduction in total cholesterol (−0.54 ± 0.76 mmol/L vs. −0.05 ± 0.56 mmol/L; p = 0.283) and LDL-C (−0.43 ± 0.67 mmol/L vs. −0.03 ± 0.52 mmol/L; p = 0.374) compared to the HKD group. Additionally, the HKD-RTE group exhibited greater reductions in systolic blood pressure (−8.3 ± 9.7 mmHg vs. −5.3 ± 11.0 mmHg), diastolic blood pressure (−7.7 ± 8.8 mmHg vs. −2.0 ± 7.0 mmHg), and HbA1c (−0.3 ± 0.5% vs. −0.1 ± 0.4%) than the HKD group (not statistically significant for any). Conclusions: Both HKD-RTE and HKD led to weight loss and improved metabolic profiles. The HKD-RTE group tended to show more favorable outcomes. Short-term HKD-RTE meal provision may enhance initial weight loss, with sustained long-term effects. Full article
Show Figures

Figure 1

17 pages, 5464 KiB  
Article
Association Between Stiffness of the Deep Fibres of the Tibialis Anterior Muscle and Seiza Posture Performance After Ankle Fracture Surgery
by Hayato Miyasaka, Bungo Ebihara, Takashi Fukaya, Koichi Iwai, Shigeki Kubota and Hirotaka Mutsuzaki
J. Funct. Morphol. Kinesiol. 2025, 10(3), 300; https://doi.org/10.3390/jfmk10030300 - 1 Aug 2025
Viewed by 72
Abstract
Background: Seiza, a traditional sitting posture requiring deep ankle plantarflexion and knee flexion, often becomes difficult after ankle fracture surgery because of restricted mobility. Increased stiffness of the tibialis anterior (TA) muscle, particularly in its deep and superficial fibres, may limit [...] Read more.
Background: Seiza, a traditional sitting posture requiring deep ankle plantarflexion and knee flexion, often becomes difficult after ankle fracture surgery because of restricted mobility. Increased stiffness of the tibialis anterior (TA) muscle, particularly in its deep and superficial fibres, may limit plantarflexion and affect functional recovery. This study aimed to investigate the relationship between TA muscle stiffness, assessed using shear wave elastography (SWE), and the ability to assume the seiza posture after ankle fracture surgery. We also sought to determine whether the stiffness in the deep or superficial TA fibres was more strongly correlated with seiza ability. Methods: In this cross-sectional study, 38 patients who underwent open reduction and internal fixation for ankle fractures were evaluated 3 months postoperatively. Seiza ability was assessed using the ankle plantarflexion angle and heel–buttock distance. The shear moduli of the superficial and deep TA fibres were measured using SWE. Ankle range of motion, muscle strength, and self-reported seiza pain were also measured. Multiple linear regression was used to identify the predictors of seiza performance. Results: The shear moduli of both deep (β = −0.454, p < 0.001) and superficial (β = −0.339, p = 0.017) TA fibres independently predicted ankle plantarflexion angle during seiza (adjusted R2, 0.624). Pain during seiza was significantly associated with reduced plantarflexion, whereas muscle strength was not a significant predictor. Conclusions: TA muscle stiffness, especially in the deep fibres, was significantly associated with limited postoperative seiza performance. Targeted interventions that reduce deep TA stiffness may enhance functional outcomes. Full article
(This article belongs to the Section Functional Anatomy and Musculoskeletal System)
Show Figures

Figure 1

27 pages, 3107 KiB  
Article
Modeling School Commuting Mode Choice Under Normal and Adverse Weather Conditions in Chiang Rai City
by Chanyanuch Pangderm, Tosporn Arreeras and Xiaoyan Jia
Future Transp. 2025, 5(3), 101; https://doi.org/10.3390/futuretransp5030101 - 1 Aug 2025
Viewed by 81
Abstract
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit [...] Read more.
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit (MNL) regression model was applied to examine the effects of socio-demographic attributes, household vehicle ownership, travel distance, and spatial variables on mode selection. The results revealed notable modal shifts during adverse weather, with motorcycle usage decreasing and private vehicle reliance increasing, while school bus usage remained stable, highlighting its role as a resilient transport option. Car ownership emerged as a strong enabler of modal flexibility, whereas students with limited access to private transport demonstrated reduced adaptability. Additionally, increased waiting and travel times during adverse conditions underscored infrastructure and service vulnerabilities, particularly for mid-distance travelers. The findings suggest an urgent need for transport policies that promote inclusive and climate-resilient mobility systems, particularly in the context of Chiang Rai, including expanded school bus services, improved first-mile connectivity, and enhanced pedestrian infrastructure. This study contributes to the literature by addressing environmental variability in school travel behavior and offers actionable insights for sustainable transport planning in secondary cities and border regions. Full article
Show Figures

Figure 1

34 pages, 434 KiB  
Article
Mobile Banking Adoption: A Multi-Factorial Study on Social Influence, Compatibility, Digital Self-Efficacy, and Perceived Cost Among Generation Z Consumers in the United States
by Santosh Reddy Addula
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 192; https://doi.org/10.3390/jtaer20030192 - 1 Aug 2025
Viewed by 243
Abstract
The introduction of mobile banking is essential in today’s financial sector, where technological innovation plays a critical role. To remain competitive in the current market, businesses must analyze client attitudes and perspectives, as these influence long-term demand and overall profitability. While previous studies [...] Read more.
The introduction of mobile banking is essential in today’s financial sector, where technological innovation plays a critical role. To remain competitive in the current market, businesses must analyze client attitudes and perspectives, as these influence long-term demand and overall profitability. While previous studies have explored general adoption behaviors, limited research has examined how individual factors such as social influence, lifestyle compatibility, financial technology self-efficacy, and perceived usage cost affect mobile banking adoption among specific generational cohorts. This study addresses that gap by offering insights into these variables, contributing to the growing literature on mobile banking adoption, and presenting actionable recommendations for financial institutions targeting younger market segments. Using a structured questionnaire survey, data were collected from both users and non-users of mobile banking among the Gen Z population in the United States. The regression model significantly predicts mobile banking adoption, with an intercept of 0.548 (p < 0.001). Among the independent variables, perceived cost of usage has the strongest positive effect on adoption (B=0.857, β=0.722, p < 0.001), suggesting that adoption increases when mobile banking is perceived as more affordable. Social influence also has a significant positive impact (B=0.642, β=0.643, p < 0.001), indicating that peer influence is a central driver of adoption decisions. However, self-efficacy shows a significant negative relationship (B=0.343, β=0.339, p < 0.001), and lifestyle compatibility was found to be statistically insignificant (p=0.615). These findings suggest that reducing perceived costs, through lower fees, data bundling, or clearer communication about affordability, can directly enhance adoption among Gen Z consumers. Furthermore, leveraging peer influence via referral rewards, Partnerships with influencers, and in-app social features can increase user adoption. Since digital self-efficacy presents a barrier for some, banks should prioritize simplifying user interfaces and offering guided assistance, such as tutorials or chat-based support. Future research may employ longitudinal designs or analyze real-life transaction data for a more objective understanding of behavior. Additional variables like trust, perceived risk, and regulatory policies, not included in this study, should be integrated into future models to offer a more comprehensive analysis. Full article
11 pages, 2706 KiB  
Technical Note
The RESCUE Technique: A Mnemonic Acronym to Enhance Outcomes in Nail Fixation of Extracapsular Hip Fractures
by Anastasios P. Nikolaides, Julius Bryan Abesamis, Ahmed Hamed, Samer Sarofeen, Niraj Vetharajan, Rajpreet Sahemey, Omer Salar and Panagiotis Konstantinou
J. Clin. Med. 2025, 14(15), 5419; https://doi.org/10.3390/jcm14155419 - 1 Aug 2025
Viewed by 164
Abstract
Intertrochanteric fractures in the elderly present complex challenges due to poor bone quality and comorbidities. Cephalomedullary (CM) nails offer biomechanical advantages that support early mobilization, yet complications such as cutout, implant failure, and malalignment persist. This review examines the effectiveness of CM nail [...] Read more.
Intertrochanteric fractures in the elderly present complex challenges due to poor bone quality and comorbidities. Cephalomedullary (CM) nails offer biomechanical advantages that support early mobilization, yet complications such as cutout, implant failure, and malalignment persist. This review examines the effectiveness of CM nail fixation in geriatric extracapsular hip fractures and introduces the RESCUE technique—a structured, mnemonic-based approach aimed at improving surgical outcomes and reducing common complications. RESCUE stands for Reduce, Entry point, Screw, Compress, Unleash traction, and Enhance full-weight bearing. This six-step framework addresses the critical elements of fixation, including precise reduction, optimal entry point selection, central screw placement, controlled fracture compression, cautious traction management, and early mobilization. Case illustrations of frequent failure patterns underscore the practical application of the RESCUE technique. By following this systematic approach, surgeons can enhance construct stability, minimize failure risk, and promote functional recovery in elderly patients. Full article
(This article belongs to the Special Issue The “Orthogeriatric Fracture Syndrome”—Issues and Perspectives)
Show Figures

Figure 1

13 pages, 906 KiB  
Systematic Review
Mobile Health Applications for Secondary Prevention After Myocardial Infarction or PCI: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by Ioannis Skalidis, Henri Lu, Niccolo Maurizi, Stephane Fournier, Grigorios Tsigkas, Anastasios Apostolos, Stephane Cook, Juan F. Iglesias, Philippe Garot, Thomas Hovasse, Antoinette Neylon, Thierry Unterseeh, Jerome Garot, Nicolas Amabile, Neila Sayah, Francesca Sanguineti, Mariama Akodad and Panagiotis Antiochos
Healthcare 2025, 13(15), 1881; https://doi.org/10.3390/healthcare13151881 - 1 Aug 2025
Viewed by 215
Abstract
Background: Mobile health applications have emerged as a novel tool to support secondary prevention after myocardial infarction (MI) or percutaneous coronary intervention (PCI). However, the impact of app-based interventions on clinically meaningful outcomes such as hospital readmissions remains uncertain. Objective: To systematically evaluate [...] Read more.
Background: Mobile health applications have emerged as a novel tool to support secondary prevention after myocardial infarction (MI) or percutaneous coronary intervention (PCI). However, the impact of app-based interventions on clinically meaningful outcomes such as hospital readmissions remains uncertain. Objective: To systematically evaluate the effectiveness of smartphone app-based interventions in reducing unplanned hospital readmissions among post-MI/PCI patients. Methods: A systematic search of PubMed was conducted for randomized controlled trials published between January 2020 and April 2025. Eligible studies evaluated smartphone apps designed for secondary cardiovascular prevention and reported on unplanned hospital readmissions. Risk ratios (RRs) and 95% confidence intervals (CIs) were pooled using a random-effects model. Subgroup analyses were performed based on follow-up duration and user adherence. Results: Four trials encompassing 827 patients met inclusion criteria. App-based interventions were associated with a significant reduction in unplanned hospital readmissions compared to standard care (RR 0.45; 95% CI: 0.23–0.89; p = 0.0219). Greater benefits were observed in studies with longer follow-up durations and higher adherence rates. Improvements in patient-reported outcomes, including health-related quality of life, were also documented. Heterogeneity was moderate. Major adverse cardiovascular events (MACEs) were reported in only two studies and were not analyzed due to inconsistent definitions and low event rates. Conclusions: Smartphone applications for post-MI/PCI care are associated with reduced unplanned hospital readmissions and improved patient-reported outcomes. These tools may play a meaningful role in future cardiovascular care models, especially when sustained engagement and personalized features are prioritized. Full article
(This article belongs to the Special Issue Smart and Digital Health)
Show Figures

Figure 1

17 pages, 482 KiB  
Article
Branched-Chain Amino Acids Combined with Exercise Improves Physical Function and Quality of Life in Older Adults: Results from a Pilot Randomized Controlled Trial
by Ronna Robbins, Jason C. O’Connor, Tiffany M. Cortes and Monica C. Serra
Dietetics 2025, 4(3), 32; https://doi.org/10.3390/dietetics4030032 - 1 Aug 2025
Viewed by 176
Abstract
This pilot, randomized, double-blind, placebo-controlled trial investigated the effects of branched-chain amino acids (BCAAs)—provided in a 2:1:1 ratio of leucine:isoleucine:valine—combined with exercise on fatigue, physical performance, and quality of life in older adults. Twenty participants (63% female; BMI: 35 ± 2 kg/m2 [...] Read more.
This pilot, randomized, double-blind, placebo-controlled trial investigated the effects of branched-chain amino acids (BCAAs)—provided in a 2:1:1 ratio of leucine:isoleucine:valine—combined with exercise on fatigue, physical performance, and quality of life in older adults. Twenty participants (63% female; BMI: 35 ± 2 kg/m2; age: 70.5 ± 1.2 years) were randomized to 8 weeks of either exercise + BCAAs (100 mg/kg body weight/d) or exercise + placebo. The program included moderate aerobic and resistance training three times weekly. Physical function was assessed using handgrip strength, chair stands, gait speed, VO2 max, and a 400 m walk. Psychological health was evaluated using the CES-D, Fatigue Assessment Scale (FAS), Insomnia Severity Index (ISI), and global pain, fatigue, and quality of life using a visual analog scale (VAS). Significant group x time interactions were found for handgrip strength (p = 0.03), chair stands (p < 0.01), and 400 m walk time (p < 0.01). Compared to exercise + placebo, exercise + BCAAs showed greater improvements in strength, mobility, and endurance, along with reductions in fatigue (−45% vs. +92%) and depressive symptoms (−29% vs. +5%). Time effects were also observed for ISI (−30%), FAS (−21%), and VAS quality of life (16%) following exercise + BCAA supplementation. These preliminary results suggest that BCAAs combined with exercise may be an effective way to improve physical performance and reduce fatigue and depressive symptoms in older adults. Full article
Show Figures

Figure 1

38 pages, 4443 KiB  
Review
The Role of Plant Growth-Promoting Bacteria in Soil Restoration: A Strategy to Promote Agricultural Sustainability
by Mario Maciel-Rodríguez, Francisco David Moreno-Valencia and Miguel Plascencia-Espinosa
Microorganisms 2025, 13(8), 1799; https://doi.org/10.3390/microorganisms13081799 - 1 Aug 2025
Viewed by 414
Abstract
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant [...] Read more.
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant physiology and soil function through diverse molecular mechanisms. PGPB synthesizes indole-3-acetic acid (IAA) to stimulate root development and nutrient uptake and produce ACC deaminase, which lowers ethylene accumulation under stress, mitigating growth inhibition. They also enhance nutrient availability by releasing phosphate-solubilizing enzymes and siderophores that improve iron acquisition. In parallel, PGPB activates jasmonate and salicylate pathways, priming a systemic resistance to biotic and abiotic stress. Through quorum sensing, biofilm formation, and biosynthetic gene clusters encoding antibiotics, lipopeptides, and VOCs, PGPB strengthen rhizosphere colonization and suppress pathogens. These interactions contribute to microbial community recovery, an improved soil structure, and enhanced nutrient cycling. This review synthesizes current evidence on the molecular and physiological mechanisms by which PGPB enhance soil restoration in degraded agroecosystems, highlighting their role beyond biofertilization as key agents in ecological rehabilitation. It examines advances in nutrient mobilization, stress mitigation, and signaling pathways, based on the literature retrieved from major scientific databases, focusing on studies published in the last decade. Full article
Show Figures

Figure 1

17 pages, 1602 KiB  
Article
Phase Portrait-Based Orientation-Aware Path Planning for Autonomous Mobile Robots
by Abdurrahman Yilmaz and Hasan Kivrak
Inventions 2025, 10(4), 65; https://doi.org/10.3390/inventions10040065 - 1 Aug 2025
Viewed by 161
Abstract
Path planning algorithms for mobile robots and autonomous systems have advanced considerably, yet challenges remain in navigating complex environments while satisfying non-holonomic constraints and achieving precise target orientation. Phase portraits are traditionally used to analyse dynamical systems via equilibrium points and system trajectories, [...] Read more.
Path planning algorithms for mobile robots and autonomous systems have advanced considerably, yet challenges remain in navigating complex environments while satisfying non-holonomic constraints and achieving precise target orientation. Phase portraits are traditionally used to analyse dynamical systems via equilibrium points and system trajectories, and can be a powerful framework for addressing these challenges. In this work, we propose a novel orientation-aware path planning algorithm that uses phase portrait dynamics by treating both obstacles and target poses as equilibrium points within the environment. Unlike conventional approaches, our method explicitly incorporates non-holonomic constraints and target orientation requirements, resulting in smooth, feasible trajectories with high final pose accuracy. Simulation results across 28 diverse scenarios show that our method achieves zero final orientation error with path lengths comparable to Hybrid A*, and planning times reduced by 52% on the indoor map and 84% on the playpen map relative to Hybrid A*. These results highlight the potential of phase portrait-based planning as an effective and efficient method for real-time autonomous navigation. Full article
Show Figures

Figure 1

28 pages, 6624 KiB  
Article
YoloMal-XAI: Interpretable Android Malware Classification Using RGB Images and YOLO11
by Chaymae El Youssofi and Khalid Chougdali
J. Cybersecur. Priv. 2025, 5(3), 52; https://doi.org/10.3390/jcp5030052 - 1 Aug 2025
Viewed by 226
Abstract
As Android malware grows increasingly sophisticated, traditional detection methods struggle to keep pace, creating an urgent need for robust, interpretable, and real-time solutions to safeguard mobile ecosystems. This study introduces YoloMal-XAI, a novel deep learning framework that transforms Android application files into RGB [...] Read more.
As Android malware grows increasingly sophisticated, traditional detection methods struggle to keep pace, creating an urgent need for robust, interpretable, and real-time solutions to safeguard mobile ecosystems. This study introduces YoloMal-XAI, a novel deep learning framework that transforms Android application files into RGB image representations by mapping DEX (Dalvik Executable), Manifest.xml, and Resources.arsc files to distinct color channels. Evaluated on the CICMalDroid2020 dataset using YOLO11 pretrained classification models, YoloMal-XAI achieves 99.87% accuracy in binary classification and 99.56% in multi-class classification (Adware, Banking, Riskware, SMS, and Benign). Compared to ResNet-50, GoogLeNet, and MobileNetV2, YOLO11 offers competitive accuracy with at least 7× faster training over 100 epochs. Against YOLOv8, YOLO11 achieves comparable or superior accuracy while reducing training time by up to 3.5×. Cross-corpus validation using Drebin and CICAndMal2017 further confirms the model’s generalization capability on previously unseen malware. An ablation study highlights the value of integrating DEX, Manifest, and Resources components, with the full RGB configuration consistently delivering the best performance. Explainable AI (XAI) techniques—Grad-CAM, Grad-CAM++, Eigen-CAM, and HiRes-CAM—are employed to interpret model decisions, revealing the DEX segment as the most influential component. These results establish YoloMal-XAI as a scalable, efficient, and interpretable framework for Android malware detection, with strong potential for future deployment on resource-constrained mobile devices. Full article
Show Figures

Figure 1

Back to TopTop