Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = redispersible powders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8375 KiB  
Article
Water-Soluble Formulations of Curcumin and Eugenol Produced by Spray Drying
by Iskra Z. Koleva, Katya Kamenova, Petar D. Petrov and Christo T. Tzachev
Pharmaceuticals 2025, 18(7), 944; https://doi.org/10.3390/ph18070944 - 23 Jun 2025
Viewed by 600
Abstract
Background/Objectives: In this study, we present a green, scalable platform for the production of water-dispersible powders co-encapsulating the lipophilic bioactives curcumin (Cur) and eugenol (Eug) within the amphiphilic polymer Soluplus® (SP) via low-temperature spray drying. Methods: The amount of Cur [...] Read more.
Background/Objectives: In this study, we present a green, scalable platform for the production of water-dispersible powders co-encapsulating the lipophilic bioactives curcumin (Cur) and eugenol (Eug) within the amphiphilic polymer Soluplus® (SP) via low-temperature spray drying. Methods: The amount of Cur (1%, 5%, and 10%) and Eug (5%, 10%, 15%, and 20%) was varied to achieve single- and double-loaded water-soluble powders with the maximum amount of active substances. The powders containing a higher loading of Cur, 5% and 10% (and Eug), were obtained from water/ethanol mixtures (2:1 and 5:1 v/v ratio), while the formulation with 1% of Cur was spray-dried by using water as a solvent. Results: By leveraging aqueous or aqueous–ethanolic feed systems, we achieved high loading of the bioactive substances—up to 10% Cur and 20% Eug (w/w)—while minimizing organic solvent use. Myo-inositol was incorporated as a stabilizing excipient to modulate particle morphology, improve powder flowability, and enhance redispersibility. Physicochemical characterization revealed nanoscale micellization (53–127 nm), amorphization of both actives as confirmed by XRD and DSC, and the absence of crystalline residue. Encapsulation efficiencies exceeded 95% for Cur and 93% for Eug. Dissolution tests demonstrated a rapid release from the 5% Cur/5% Eug formulation (>85% in 5 min), while higher-loaded single-formulations showed progressively slower release (up to 45 min). Conclusions: This work demonstrates a robust and environmentally responsible encapsulation strategy, suitable for delivering poorly water-soluble phytochemicals with potential applications in oral nutraceuticals and pharmaceutical dosage forms. Full article
Show Figures

Figure 1

17 pages, 3819 KiB  
Article
Valorization of a Residue of the Kombucha Beverage Industry Through the Production of Dehydrated Water Dispersible Cellulose Nanocrystals
by Laura Giselle Alonso, Luciana Di Giorgio, María Laura Foresti and Adriana Noemi Mauri
Polysaccharides 2025, 6(2), 44; https://doi.org/10.3390/polysaccharides6020044 - 29 May 2025
Viewed by 538
Abstract
In this study, cellulose nanocrystals (CNCs) were successfully isolated through the acid hydrolysis of freeze-dried and oven-dried bacterial nanocellulose (BNC) recovered from the floating pellicle generated during Kombucha tea production. The influence of the BNC drying method and its concentration on the yield [...] Read more.
In this study, cellulose nanocrystals (CNCs) were successfully isolated through the acid hydrolysis of freeze-dried and oven-dried bacterial nanocellulose (BNC) recovered from the floating pellicle generated during Kombucha tea production. The influence of the BNC drying method and its concentration on the yield and main characteristics of the CNCs obtained were studied. Additionally, selected CNC suspensions at various pH levels were subjected to freeze-drying and oven-drying, followed by an assessment of their dispersibility in water after undergoing different mechanical treatments. Results demonstrate the potential of utilizing byproducts from the expanding Kombucha industry as an alternative cellulose source for CNC production. Furthermore, the drying method applied to the BNC and its initial concentration in the hydrolysis medium were found to significantly impact the properties of the resulting CNCs, which exhibited diverse size distributions and Z-potential values. Finally, the redispersion studies highlighted the beneficial effect of drying CNCs from neutral and alkaline dispersions, as well as the requirement of ultrasound treatments to achieve the proper dispersion of dehydrated CNC powders. Full article
Show Figures

Graphical abstract

23 pages, 7171 KiB  
Article
Modification Mechanism of Low-Dosage Vinyl Acetate-Ethylene on Ordinary Portland Cement–Sulfoaluminate Cement Binary Blended Rapid Repair Mortar
by Hecong Wang, Yuxue Zhu, Ting Li, Xiaoning Li, Shuai Peng, Jinzhu Guo, Xuqiang Pei, Congchun Zhong, Yihang Yang, Qiang Ma, Zhonglun Zhang, Minghui Wu, Qunchao Zhang, De’an Shi and Zuobao Song
Polymers 2025, 17(11), 1501; https://doi.org/10.3390/polym17111501 - 28 May 2025
Viewed by 402
Abstract
This study developed a vinyl acetate-ethylene rapid repair mortar (VAE-RRM) by using a binary blended cementitious system (ordinary Portland cement and sulfoaluminate cement) and vinyl acetate-ethylene (VAE) redispersible polymer powder. The effects of the polymer-to-cement ratio (P/C: 0~2.0%) on setting time, mechanical properties, [...] Read more.
This study developed a vinyl acetate-ethylene rapid repair mortar (VAE-RRM) by using a binary blended cementitious system (ordinary Portland cement and sulfoaluminate cement) and vinyl acetate-ethylene (VAE) redispersible polymer powder. The effects of the polymer-to-cement ratio (P/C: 0~2.0%) on setting time, mechanical properties, interfacial bonding, and microstructure were systematically investigated. The results reveal that VAE delayed cement hydration via physical encapsulation and chemical chelation, extending the initial setting time to 182 min at P/C = 2.0%. At the optimal P/C = 0.9%, a synergistic organic–inorganic network enhanced flexural strength (14.62 MPa at 28 d, 34.0% increase) and interfacial bonding (2.74 MPa after interface treatment), though compressive strength decreased to 65.7 MPa due to hydration inhibition. Excessive VAE (P/C ≥ 1.5%) suppressed AFt/C-S-H growth, increasing harmful pores (>1 μm) and degrading performance. Microstructural analysis via scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) demonstrates that VAE films bridged hydration products, filled interfacial transition zones (ITZ), and refined pore structures, reducing the most probable pore size from 62.8 nm (reference) to 23.5 nm. VAE-RRM 3 (P/C = 0.9%) exhibited rapid hardening (initial setting time: 75 min), high substrate recovery (83.3%), and low porosity (<10%), offering an efficient solution for urban infrastructure repair. This work elucidates the dual mechanisms of pore refinement and interface reinforcement driven by VAE, providing theoretical guidance for designing high-performance repair materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 3782 KiB  
Article
Development of Spray-Dried Micelles, Liposomes, and Solid Lipid Nanoparticles for Enhanced Stability
by Shradha Dattani, Xiaoling Li, Charina Lampa, Amanda Barriscale, Behzad Damadzadeh, David Lechuga-Ballesteros and Bhaskara R. Jasti
Pharmaceutics 2025, 17(1), 122; https://doi.org/10.3390/pharmaceutics17010122 - 17 Jan 2025
Cited by 2 | Viewed by 1413
Abstract
Objectives: Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing [...] Read more.
Objectives: Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers. Methods: Aqueous dispersions of LDV-targeted micelles, liposomes, and SLNs loaded with paclitaxel (PTX) were converted into re-dispersible powders using spray drying. The physicochemical properties of the nanocarriers were determined via scanning electron microscopy (SEM), Karl Fischer titration, differential scanning calorimetry (DSC), and dynamic light scattering (DLS). Short-term stability of all nanocarrier formulations was compared by measuring particle size, polydispersity index (PDI), and paclitaxel retention over 7 days at room temperature and at 4 °C. Results: Paclitaxel-loaded micelles, liposomes, and SLN formulations were successfully converted into well-dispersed spray-dried powders with acceptable yields (71.5 to 83.5%), low moisture content (<2%), and high transition temperatures (95.1 to 100.8 °C). SEM images revealed differences in morphology, where nanocarriers spray-dried with trehalose or a combination of trehalose and L-leucine produced smooth or corrugated particle surfaces, respectively. Reconstituted spray-dried nanocarriers maintained their nanosize and paclitaxel content over 7 days at 4 °C. Conclusions: The results of this study demonstrate the potential for the development of spray-dried lipid-based nanocarriers for long-term stability. Full article
Show Figures

Figure 1

24 pages, 2695 KiB  
Article
Hybrid Nanocomposite Mini-Tablet to Be Applied into the Post-Extraction Socket: Matching the Potentialities of Resveratrol-Loaded Lipid Nanoparticles and Hydroxyapatite to Promote Alveolar Wound Healing
by Viviana De Caro, Giada Tranchida, Cecilia La Mantia, Bartolomeo Megna, Giuseppe Angellotti and Giulia Di Prima
Pharmaceutics 2025, 17(1), 112; https://doi.org/10.3390/pharmaceutics17010112 - 15 Jan 2025
Viewed by 1373
Abstract
Background/Objectives: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to [...] Read more.
Background/Objectives: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction. Methods: The mLNP-RSV dispersion was mixed with seven different polymers in various mLNP/polymer ratios. Following freeze-drying, the powders were redispersed, and the resulting dispersions were tested by DLS experiments. Then, the best two nanocomposites underwent extensive characterization by SEM, XRD, FTIR, Raman spectroscopy, and thermal analysis as well as in vitro partitioning studies aimed at verifying their ability to yield the mLNP-RSV from the hydrophilic matrix to a lipophilic tissue. The characterizations led to identify the best nanocomposite, which was further combined with HXA to obtain hybrid nanocomposites, further evaluated as pharmaceutical powders or in form of mini-tablets. Results: PEG-based nanocomposites emerged as optimal and, following HXA insertion, the resulting powders revealed adequate bulk properties, making them useful as a pharmaceutical intermediate to produce ≈59 mm3 mini-tablets, compliant with the post-extraction socket. Moreover, they were proven ex vivo to be able to promote RSV and GA accumulation into the buccal tissue over time. Conclusions: The here-proposed mini-tablet offers an innovative therapeutic approach for alveolar wound healing promotion as they led to a standardized dose administration, while being handy and stable in terms of physical solid identity as long as it takes to suture the wound. Full article
Show Figures

Figure 1

30 pages, 17875 KiB  
Article
Design and Performance Evaluation of a Cementitious Repair Grouting Mortar for Cement Pavement Slab Cavity
by Sibo Huang, Chong Li and Zejie Zhang
Buildings 2024, 14(12), 4083; https://doi.org/10.3390/buildings14124083 - 23 Dec 2024
Viewed by 1052
Abstract
To address the severe damage caused by voids beneath cement concrete pavement slabs, which compromise pavement performance and lifespan, there is an urgent need to develop an economical and efficient grouting material for slab void repair. This study employed a two-step orthogonal experiment [...] Read more.
To address the severe damage caused by voids beneath cement concrete pavement slabs, which compromise pavement performance and lifespan, there is an urgent need to develop an economical and efficient grouting material for slab void repair. This study employed a two-step orthogonal experiment design (OED) method to optimize the composition of grouting material. Results show that the plain cement mortar achieves the best flowability, setting time, compressive strength, or flexural strength when the water-to-binder ratio is 0.375, with 20% quartz sand, 2% coal ash, and 5% ground calcium carbonate. For the high-performance cement mortar developed, the optimal water-to-binder ratio is 0.35, with 0.5% redispersible latex powder, 0.2% polypropylene fiber, 0.6% water-reducing agent, 0.8% early-strength agent, and 2.0% expansion agent. Under these optimal conditions, the grouting material with a flowability of 15 s has a compressive strength and flexural strength of 76.98 MPa and 11.89 MPa, respectively, and achieves 77.4% of its 28-day compressive strength and 94.0% of its 28-day flexural strength by day 3. This grouting material also possesses a slight expansion within 0.1% at 3, 7, and 28 days, categorizing it as a micro-expansion mortar. The bond strength at the mortar-concrete interface exceeds the tensile strength of the mortar itself, ensuring no debonding at the interface before grouting material failure. The XRD, SEM, and infrared spectra results explain the early strength development mechanism of this cement mortar. Full article
(This article belongs to the Special Issue Research on Advanced Materials in Road Engineering)
Show Figures

Figure 1

26 pages, 11878 KiB  
Article
Improving Interlayer Adhesion of Cementitious Materials for 3D Construction Printing
by Vyacheslav Medvedev, Andrey Pustovgar, Aleksey Adamtsevich, Liubov Adamtsevich and Anastasia Abramova
Buildings 2024, 14(12), 3793; https://doi.org/10.3390/buildings14123793 - 27 Nov 2024
Viewed by 1206
Abstract
The popularity of additive technologies in construction is increasing every year. At the same time, there are still a significant number of unresolved issues in this area related to the complexity of ensuring uniformity of printing due to technical difficulties with the mortar. [...] Read more.
The popularity of additive technologies in construction is increasing every year. At the same time, there are still a significant number of unresolved issues in this area related to the complexity of ensuring uniformity of printing due to technical difficulties with the mortar. One of the main issues is the adhesion of printed layers. This is especially true for continuing the printing process after it has been suspended with the formation of a cold joint. The authors consider the possibility of improving the technological properties of 3D construction printing (3DCP) mortars by introducing redispersible polymer powders (RPPs) and surface-active substances (SASs) into their composition. A comprehensive analysis of the effectiveness of various RPPs and SASs was carried out using standard testing methods to identify the most effective options and combinations of admixtures depending on their structure and mechanism of action. Laboratory tests of the mortar composition for 3DCP using the selected RPPs and SASs were carried out with the imitation of the formation of a cold joint. The most effective combination of RPPs and SASs was used to create the mortar for making the form-forming element using a construction 3D printer. Based on the results of the tests, the patterns of RPPs and SASs influence on the adhesive strength of such mixtures were determined. Full article
(This article belongs to the Special Issue 3D Printing and Low-Carbon Technologies in Cementitious Composites)
Show Figures

Figure 1

20 pages, 10850 KiB  
Article
Lipid–Polymer Hybrid Nanoparticles in Microparticle-Based Powder: Evaluating the Potential of Methylprednisolone Delivery for Future Lung Disease Treatment via Inhalation
by Cinzia Scialabba, Emanuela Fabiola Craparo, Sofia Bonsignore, Marta Cabibbo and Gennara Cavallaro
Pharmaceutics 2024, 16(11), 1454; https://doi.org/10.3390/pharmaceutics16111454 - 14 Nov 2024
Cited by 1 | Viewed by 1394
Abstract
Background. Lipid–polymer hybrid nanoparticles (LPHNPs) offer a promising method for delivering methylprednisolone (MePD) to treat lung inflammation, addressing aggregation issues seen with polymer-only formulations. Objectives. This study aimed to develop LPHNPs for MePD delivery, assessing their physicochemical properties, drug loading, cytocompatibility, and release [...] Read more.
Background. Lipid–polymer hybrid nanoparticles (LPHNPs) offer a promising method for delivering methylprednisolone (MePD) to treat lung inflammation, addressing aggregation issues seen with polymer-only formulations. Objectives. This study aimed to develop LPHNPs for MePD delivery, assessing their physicochemical properties, drug loading, cytocompatibility, and release profiles, ultimately enabling inhalable microparticle-based powder. Methods. The nanoparticles were formulated using α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-g-Rhodamine B-g-poly(lactic acid) (PHEA-g-RhB-g-PLA) and phospholipids DPPC, DOTAP, and DSPE-PEG2000 in a 45:30:25 weight ratio. Their size, redispersion after freeze-drying, drug loading (DL%), and controlled release were evaluated. Cytocompatibility was assessed on 16-HBE cell lines, measuring anti-inflammatory effects via IL-6 and IL-8 levels. Spray drying was optimized to produce microparticles using mannitol (MAN), leucine (LEU), and N-acetylcysteine (NAC). Results. The nanoparticles had a size of 186 nm and a DL% of 2.9% for MePD. They showed good cytocompatibility, significantly reducing IL-6 and IL-8 levels. Spray drying yielded microparticles with a fine particle fraction (FPF) of 62.3% and a mass median aerodynamic diameter (MMAD) of 3.9 µm. Inclusion of LPHNPs@MePD (0.25% w/v) resulted in FPF and MMAD values of 56.7% and 4.4 µm. In conclusion, this study described the production of novel inhalable powders as carriers for MePD-loaded nanostructures with favorable physicochemical properties, cytocompatibility, and promising aerosol performance, indicating their potential as an effective inhalable therapy for lung inflammation with corticosteroids, especially for treating chronic diseases. Full article
Show Figures

Figure 1

30 pages, 11305 KiB  
Article
Optimisation and Composition of the Recycled Cold Mix with a High Content of Waste Materials
by Przemysław Buczyński and Jakub Krasowski
Sustainability 2024, 16(22), 9624; https://doi.org/10.3390/su16229624 - 5 Nov 2024
Cited by 2 | Viewed by 1157
Abstract
This research focuses on a mineral–cement mixture containing bitumen emulsion, designed for cold recycling procedures, the formulation of which includes 80% (m/m) of waste material. Deep cold recycling technology from the MCE mixture guarantees the implementation of a sustainable development policy in the [...] Read more.
This research focuses on a mineral–cement mixture containing bitumen emulsion, designed for cold recycling procedures, the formulation of which includes 80% (m/m) of waste material. Deep cold recycling technology from the MCE mixture guarantees the implementation of a sustainable development policy in the field of road construction. The utilised waste materials include 50% (m/m) reclaimed asphalt pavement (RAP) from damaged asphalt layers and 30% (m/m) recycled aggregate (RA) sourced from the substructure. In order to assess the possibility of using a significant amount of waste materials in the composition of the mineral–cement–emulsion (MCE) mixture, it is necessary to optimise the MCE mix. Optimisation was carried out with respect to the quantity and type of binding agents, such as Portland cement (CEM), bitumen emulsion (EMU), and redispersible polymer powder (RPP). The examination of the impact of the binding agents on the physico-mechanical characteristics of the MCE blend was performed using a Box–Behnken trivalent fractional design. This method has not been used before to optimise MCE mixture composition. This is a novelty in predicting MCE mixture properties. Examinations of the physical properties, mechanical properties, resistance to the effects of climatic factors, and stiffness modulus were conducted on Marshall samples prepared in laboratory settings. Mathematical models determining the variability of the attributes under analysis in correlation with the quantity of the binding agents were determined for the properties under investigation. The MCE mixture composition was optimised through the acquired mathematical models describing the physico-mechanical characteristics, resistance to climatic factors, and rigidity modulus. The optimisation was carried out through the generalised utility function UIII. The optimisation resulted in indicating the proportional percentages of the binders, enabling the assurance of the required properties of the cold recycled mix while utilising the maximum quantity of waste materials. Full article
Show Figures

Figure 1

31 pages, 4878 KiB  
Review
Nanocellulose-Based Materials for Water Pollutant Removal: A Review
by Hani Nasser Abdelhamid
Int. J. Mol. Sci. 2024, 25(15), 8529; https://doi.org/10.3390/ijms25158529 - 5 Aug 2024
Cited by 14 | Viewed by 4666
Abstract
Cellulose in the nano regime, defined as nanocellulose, has been intensively used for water treatment. Nanocellulose can be produced in various forms, including colloidal, water redispersible powders, films, membranes, papers, hydrogels/aerogels, and three-dimensional (3D) objects. They were reported for the removal of water [...] Read more.
Cellulose in the nano regime, defined as nanocellulose, has been intensively used for water treatment. Nanocellulose can be produced in various forms, including colloidal, water redispersible powders, films, membranes, papers, hydrogels/aerogels, and three-dimensional (3D) objects. They were reported for the removal of water contaminants, e.g., heavy metals, dyes, drugs, pesticides, pharmaceuticals, microbial cells, and other pollutants from water systems. This review summarized the recent technologies for water treatment using nanocellulose-based materials. A scientometric analysis of the topic was also included. Cellulose-based materials enable the removal of water contaminants, and salts offer advanced technologies for water desalination. They are widely used as substrates, adsorbents, and catalysts. They were applied for pollutant removal via several methods such as adsorption, filtration, disinfection, coagulation/flocculation, chemical precipitation, sedimentation, filtration (e.g., ultrafiltration (UF), nanofiltration (NF)), electrofiltration (electrodialysis), ion-exchange, chelation, catalysis, and photocatalysis. Processing cellulose into commercial products enables the wide use of nanocellulose-based materials as adsorbents and catalysts. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

21 pages, 23871 KiB  
Article
Transformation of ABT-199 Nanocrystal Suspensions into a Redispersible Drug Product—Impact of Vacuum Drum Drying, Spray Drying and Tableting on Re-Nanodispersibility
by Barbara Schönfeld, Julius Sundermann, Benjamin-Luca Keller, Ulrich Westedt and Oliver Heinzerling
Pharmaceutics 2024, 16(6), 782; https://doi.org/10.3390/pharmaceutics16060782 - 8 Jun 2024
Cited by 4 | Viewed by 1836
Abstract
The present study compared vacuum drum drying (VDD) and conventional spray drying (SD) for solidifying crystalline ABT-199 nanosuspensions into redispersible oral drug products. The aim was to optimize formulation compositions and process conditions to maintain nanoparticle size after tablet redispersion. The impact of [...] Read more.
The present study compared vacuum drum drying (VDD) and conventional spray drying (SD) for solidifying crystalline ABT-199 nanosuspensions into redispersible oral drug products. The aim was to optimize formulation compositions and process conditions to maintain nanoparticle size after tablet redispersion. The impact of drug load (22%, 33%, 44%) and type of drying protectant (mannitol, mannitol/trehalose mix (1:1), trehalose) on redispersibility and material powder properties were investigated. Moreover, compression analysis was performed assessing the influence of compaction pressure on primary nanocrystal redispersibility and tablet disintegration. Higher drug loads and lower drying protectant levels resulted in particle growth, confirming a drug load dependence on redispersibility behavior. Notably, all drying protectants showed similar protection properties at properly chosen drying process parameters (Tg-dependent), except when VDD was used for mannitol formulations. Differences between the applied drying processes were observed in terms of downstream processing and tabletability: mannitol-containing formulations solidified via VDD showed an improved processability compared to formulations with trehalose. In conclusion, VDD is a promising drying technique that offers advantageous downstream processability compared to SD and represents an attractive novel processing technology for the pharmaceutical industry. As demonstrated in the present study, VDD combines higher yields with a leaner manufacturing process flow. The improved bulk properties provide enhanced tabletability and enable direct compression. Full article
(This article belongs to the Special Issue Pharmaceutical Solids: Advanced Manufacturing and Characterization)
Show Figures

Graphical abstract

19 pages, 3393 KiB  
Article
Spray-Dried Powder Containing Cannabigerol: A New Extemporaneous Emulgel for Topical Administration
by Alice Picco, Lorena Segale, Ivana Miletto, Federica Pollastro, Silvio Aprile, Monica Locatelli, Elia Bari, Maria Luisa Torre and Lorella Giovannelli
Pharmaceutics 2023, 15(12), 2747; https://doi.org/10.3390/pharmaceutics15122747 - 8 Dec 2023
Cited by 3 | Viewed by 2653
Abstract
Cannabigerol (CBG), a cannabinoid from Cannabis sativa L., recently attracted noteworthy attention for its dermatological applications, mainly due to its anti-inflammatory, antioxidant, and antimicrobial effectiveness similar to those of cannabidiol (CBD). In this work, based on results from studies of in vitro permeation [...] Read more.
Cannabigerol (CBG), a cannabinoid from Cannabis sativa L., recently attracted noteworthy attention for its dermatological applications, mainly due to its anti-inflammatory, antioxidant, and antimicrobial effectiveness similar to those of cannabidiol (CBD). In this work, based on results from studies of in vitro permeation through biomimetic membranes performed with CBG and CBD in the presence and in the absence of a randomly substituted methyl-β-cyclodextrin (MβCD), a new CBG extemporaneous emulgel (oil-in-gel emulsion) formulation was developed by spray-drying. The powder (SDE) can be easily reconstituted with purified water, leading to a product with chemical-physical and technological characteristics that are comparable to those of the starting emulgels (E). Thermogravimetric analysis (TGA), attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR), x-ray powder diffraction (XRPD), and high-performance liquid chromatography (HPLC) analyses demonstrated that the spray-drying treatment did not alter the chemical properties of CBG. This product can represent a metered-dosage form for the localized treatment of cutaneous afflictions such as acne and psoriasis. Full article
(This article belongs to the Special Issue Spray Drying in the Pharmaceutical and Nutraceutical Field)
Show Figures

Graphical abstract

8 pages, 3333 KiB  
Proceeding Paper
Formulation of Sustainable Biopolymer-Based Nanoparticles Obtained via Media Milling for Chia Oil Vehiculization in Pickering Emulsions
by María G. Bordón, Lucía López-Vidal, Nahuel Camacho, Marcela L. Martínez, María C. Penci, Cecilio Carrera-Sánchez, Víctor Pizones Ruiz Henestrosa, Santiago D. Palma and Pablo D. Ribotta
Biol. Life Sci. Forum 2023, 25(1), 20; https://doi.org/10.3390/blsf2023025020 - 5 Dec 2023
Viewed by 1024
Abstract
Sustainable corn starch nanoparticles were prepared using media milling to stabilize omega-3-rich Pickering emulsions based on chia oil. The milling conditions were as follows: 24 h (milling time), 0.4–0.6 mm (bead diameter), 1600 rpm (impeller speed), 30% (volume occupied by the grinding media), [...] Read more.
Sustainable corn starch nanoparticles were prepared using media milling to stabilize omega-3-rich Pickering emulsions based on chia oil. The milling conditions were as follows: 24 h (milling time), 0.4–0.6 mm (bead diameter), 1600 rpm (impeller speed), 30% (volume occupied by the grinding media), 7% w/v (starch concentration), and 0, 0.07 and 1% w/v of sodium dodecyl sulfate (SDS). Nanosuspensions containing 7% w/v of starch and the three concentrations of SDS were filtered, centrifuged, homogenized, and spray-dried to obtain redispersible powders. The particle size ranges were 2288 ± 211, 385 ± 21, and 278 ± 11 nm with 0, 0.07 and 1% w/v of SDS, respectively. The most stable backscattering profiles obtained during a period of one week were observed with 0.07 and 1% w/v of SDS. Therefore, the surface dilatational rheology of these particles adsorbed at chia oil/water interfaces was studied. A rapid decrease in the interfacial tension within 1 h was obtained with 1% w/v of SDS (down to 3 mN/m). Moreover, the most stable particle size after redispersion was obtained with the highest concentration of SDS. Finally, Pickering emulsions were prepared, and significant coalescence was observed with 0 and 0.07% w/v of SDS (within a few minutes). Nonetheless, in the presence of 1% w/v of SDS, oil droplets showed mean diameters and polydispersity indexes of 280.13 ± 4.60 nm and 0.35 ± 0.02, respectively, with no significant variations during storage for around 1 month. The results show that wet-stirred media milling can be applied to produce sustainable, new food-grade starch nanoparticles able to deliver bioactive compounds from chia oil. Full article
(This article belongs to the Proceedings of V International Conference la ValSe-Food and VIII Symposium Chia-Link)
Show Figures

Figure 1

19 pages, 9702 KiB  
Article
Mechanical Performance Evaluation of Repair Materials Suitable for Mechanical Pressurizing Equipment for Cross-Sectional Repair of Concrete Box Structures
by Jung-Youl Choi, Sun-Hee Kim, Hyeong Sik Yu and Jee-Seung Chung
Materials 2023, 16(4), 1472; https://doi.org/10.3390/ma16041472 - 9 Feb 2023
Viewed by 1433
Abstract
This study entailed performance tests to confirm the bond performance of the proposed new repair material and the pressurization effect of the developed mechanical pressurizing equipment. The physical property changes of the new repair material were reviewed by varying the mixing ratio of [...] Read more.
This study entailed performance tests to confirm the bond performance of the proposed new repair material and the pressurization effect of the developed mechanical pressurizing equipment. The physical property changes of the new repair material were reviewed by varying the mixing ratio of high aluminate cement (HAC)-mixed mortar. Strength tests were performed according to the mixing ratios of polymer and silica fume to improve the bond performance. To improve water retention, the mixing ratios of the cellulose and nylon fibers were adjusted, and the change in water retention was measured. The proposed repair material mixing ratio yielded the best performance when pressure was applied to the repair surface. Comparing the existing repair materials and the new repair material prepared by adjusting the ratios of HAC-mixed mortar, cellulose fiber, redispersible powder resin, and other factors confirmed that the new repair material has a high bond strength. Full article
Show Figures

Figure 1

32 pages, 5221 KiB  
Article
A Micro-Configured Multiparticulate Reconstitutable Suspension Powder of Fixed Dose Rifampicin and Pyrazinamide: Optimal Fabrication and In Vitro Quality Evaluation
by Penelope N. Rampedi, Modupe O. Ogunrombi, James Wesley-Smith and Oluwatoyin A. Adeleke
Pharmaceutics 2023, 15(1), 64; https://doi.org/10.3390/pharmaceutics15010064 - 25 Dec 2022
Cited by 6 | Viewed by 3270
Abstract
The scarcity of age-appropriate pharmaceutical formulations is one of the major challenges impeding successful management of tuberculosis (TB) prevalence in minors. To this end, we designed and assessed the quality of a multiparticulate reconstitutable suspension powder containing fixed dose rifampicin and pyrazinamide (150 [...] Read more.
The scarcity of age-appropriate pharmaceutical formulations is one of the major challenges impeding successful management of tuberculosis (TB) prevalence in minors. To this end, we designed and assessed the quality of a multiparticulate reconstitutable suspension powder containing fixed dose rifampicin and pyrazinamide (150 mg/300 mg per 5 mL) which was prepared employing solid–liquid direct dispersion coupled with timed dehydration, and mechanical pulverization. The optimized formulation had a high production yield (96.000 ± 3.270%), displayed noteworthy powder flow quality (9.670 ± 1.150°), upon reconstitution the suspension flow property was non-Newtonian and was easily redispersible with gentle manual agitation (1.720 ± 0.011 strokes/second). Effective drug loading was attained for both pyrazinamide (97.230 ± 2.570%w/w) and rifampicin (97.610 ± 0.020%w/w) and drug release followed a zero-order kinetic model (R2 = 0.990) for both drugs. Microscopic examinations confirmed drug encapsulation efficiency and showed that the particulates were micro-dimensional in nature (n < 700.000 µm). The formulation was physicochemically stable with no chemically irreversible drug-excipient interactions based on the results of characterization experiments performed. Findings from organoleptic evaluations generated an overall rating of 4.000 ± 0.000 for its attractive appearance and colour 5.000 ± 0.000 confirming its excellent taste and extremely pleasant smell. Preliminary cytotoxicity studies showed a cell viability above 70.000% which indicates that the FDC formulation was biocompatible. The optimized formulation was environmentally stable either as a dry powder or reconstituted suspension. Accordingly, a stable and palatable FDC antimycobacterial reconstitutable oral suspension powder, intended for flexible dosing in children and adolescents, was optimally fabricated. Full article
(This article belongs to the Collection Women in Pharmaceutics)
Show Figures

Figure 1

Back to TopTop