Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = red-emitting Mn4+ phosphors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4101 KB  
Article
Phosphor Ceramic Composite for Tunable Warm White Light
by Ross A. Osborne, Nerine J. Cherepy, Peter S. Bleier, Romain M. Gaume and Stephen A. Payne
Materials 2024, 17(13), 3187; https://doi.org/10.3390/ma17133187 - 29 Jun 2024
Cited by 3 | Viewed by 1738
Abstract
Composite phosphor ceramics for warm white LED lighting were fabricated with K2SiF6:Mn4+ (KSF) as both a narrowband red phosphor and a translucent matrix in which yellow-emitting Y3Al5O12:Ce3+ (YAG) particles were dispersed. [...] Read more.
Composite phosphor ceramics for warm white LED lighting were fabricated with K2SiF6:Mn4+ (KSF) as both a narrowband red phosphor and a translucent matrix in which yellow-emitting Y3Al5O12:Ce3+ (YAG) particles were dispersed. The emission spectra of these composites under blue LED excitation were studied as a function of YAG loading and thickness. Warm white light with a color temperature of 2716 K, a high CRI of 92.6, and an R9 of 77.6 was achieved. A modest improvement in the thermal conductivity of the KSF ceramic of up to 9% was observed with the addition of YAG particles. In addition, a simple model was developed for predicting the emission spectra based on several parameters of the composite ceramics and validated with the experimental results. The emission spectrum can be tuned by varying the dopant concentrations, thickness, YAG loading, and YAG particle size. This work demonstrates the utility of KSF/YAG composite phosphor ceramics as a means of producing warm white light, which are potentially suitable for higher-drive applications due to their increased thermal conductivity and reduced droop compared with silicone-dispersed phosphor powders. Full article
Show Figures

Figure 1

15 pages, 3980 KB  
Article
Enhancing the Luminescence of La3Mg2NbO9:Mn4+ Phosphor through H3BO3 and Charge Compensator Co-Doping for Use in Plant Growth Lamps
by Zaifa Yang, Ruoxuan Wang, Shuyu Yang, Hongxia Bu and Jingfen Zhao
Molecules 2024, 29(6), 1402; https://doi.org/10.3390/molecules29061402 - 21 Mar 2024
Cited by 9 | Viewed by 2121
Abstract
Mn4+-doped red-light-emitting phosphors have become a research hotspot that can effectively enhance photosynthesis and promote morphogenesis in plants. Herein, the red phosphor La3Mg2NbO9:Mn4+ was synthesized through the solid-state reaction method. The effects of adding [...] Read more.
Mn4+-doped red-light-emitting phosphors have become a research hotspot that can effectively enhance photosynthesis and promote morphogenesis in plants. Herein, the red phosphor La3Mg2NbO9:Mn4+ was synthesized through the solid-state reaction method. The effects of adding H3BO3 and a charge compensator R+ (R = Li, Na, K) on the crystal structure, morphology, quantum efficiency, and luminous performance of the La3Mg2NbO9:Mn4+ phosphor were systematically analyzed, respectively. The results showed that adding H3BO3 flux and a charge compensator improved the quantum efficiency and luminescence intensity. The emission intensity of the phosphor was enhanced about 5.9 times when Li+ was used as the charge compensator, while it was enhanced about 240% with the addition of H3BO3 flux. Remarkably, it was also found that the addition of H3BO3 flux and a charge compensator simultaneously improved the thermal stability at 423 K from 47.3% to 68.9%. The prototype red LED fabricated using the La3Mg2NbO9:Mn4+,H3BO3,Li+ phosphor exhibited a perfect overlap with the phytochrome absorption band for plant growth. All of these results indicate that the La3Mg2NbO9:Mn4+,H3BO3,Li+ phosphor has great potential for use in agricultural plant lighting. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials)
Show Figures

Figure 1

12 pages, 4217 KB  
Article
Preparation and Optical Property of Far-Red LED Encapsulated with the Graded-Index Fluorescent Glass Film
by Shihong Liang, Bin Wang, Xiangfu Wang and Xiaohong Yan
Electronics 2023, 12(16), 3448; https://doi.org/10.3390/electronics12163448 - 15 Aug 2023
Cited by 3 | Viewed by 1584
Abstract
Fabricating far-red light-emitting diodes (LEDs) with high emission efficiency is a change for the application in plant growth. In this work, a new type of far-red LED was fabricated for plant growth by encapsulating the Sr3LiSbO6:Mn4+, Mg [...] Read more.
Fabricating far-red light-emitting diodes (LEDs) with high emission efficiency is a change for the application in plant growth. In this work, a new type of far-red LED was fabricated for plant growth by encapsulating the Sr3LiSbO6:Mn4+, Mg2+ (SLSO:Mn4+, Mg2+) far-red phosphors with the gradient-refractive glass films. Under 365 nm excitation, the phosphors emitted the wide band in the 550–800 nm range, which overlapped with the absorption band of plants that absorb far-red light (PFR). The internal quantum efficiency (IQE) of the LED was 93.6%. Compared with the luminous efficacy of traditional (fluorescent silicone) LEDs (59 lm/W), the luminous efficacy of the new LED is increased by 62.7%, and reaches 96.74 lm/W. Thus, this far-red LED with high IQE has a long-term application prospect in plant growth. Full article
Show Figures

Figure 1

10 pages, 3028 KB  
Article
Highly Efficient and Stable CsPbBr3-Alginic Acid Composites for White Light-Emitting Diodes
by Muyi Wang, Song Wang, Renjie Chen, Mengmeng Zhu, Yunpeng Liu, Haojie Ding, Jun Ren, Tongtong Xuan and Huili Li
Coatings 2023, 13(6), 1062; https://doi.org/10.3390/coatings13061062 - 7 Jun 2023
Cited by 8 | Viewed by 2130
Abstract
All-inorganic perovskite nanocrystals (NCs) have attractive potential for applications in display and lighting fields due to their special optoelectronic properties. However, they still suffer from poor water and thermal stability. In this work, green CsPbBr3-alginic acid (CsPbBr3-AA) perovskite composites [...] Read more.
All-inorganic perovskite nanocrystals (NCs) have attractive potential for applications in display and lighting fields due to their special optoelectronic properties. However, they still suffer from poor water and thermal stability. In this work, green CsPbBr3-alginic acid (CsPbBr3-AA) perovskite composites were synthesized by an in situ hot-injection process which showed a high photoluminescence quantum yield (PLQY) of 86.43% and improved moisture and thermal stability. Finally, white light-emitting diodes (WLEDs) were fabricated by combining the green CsPbBr3-AA perovskite composites with red K2SiF6:Mn4+ phosphors and blue InGaN LED chips. The WLEDs show a relatively high luminous efficacy of 36.4 lm/W and a wide color gamut (124% of the National Television System Committee). These results indicate that the green CsPbBr3-AA perovskite composites have great potential applications in backlight displays. Full article
(This article belongs to the Special Issue Feature Papers of Coatings for Energy Applications)
Show Figures

Figure 1

16 pages, 3786 KB  
Article
Novel Mn4+-Activated K2Nb1−xMoxF7 (0 ≤ x ≤ 0.15) Solid Solution Red Phosphors with Superior Moisture Resistance and Good Thermal Stability
by Yuhan Gao, Lei Feng, Linglin Wang, Jun Zheng, Feiyao Ren, Siyu Liu, Zhanglei Ning, Ting Zhou, Xiaochun Wu, Xin Lai and Daojiang Gao
Molecules 2023, 28(11), 4566; https://doi.org/10.3390/molecules28114566 - 5 Jun 2023
Cited by 12 | Viewed by 2216
Abstract
Nowadays, Mn4+-activated fluoride red phosphors with excellent luminescence properties have triggered tremendous attentions for enhancing the performance of white light-emitting diodes (WLEDs). Nonetheless, the poor moisture resistance of these phosphors impedes their commercialization. Herein, we proposed the dual strategies of “solid [...] Read more.
Nowadays, Mn4+-activated fluoride red phosphors with excellent luminescence properties have triggered tremendous attentions for enhancing the performance of white light-emitting diodes (WLEDs). Nonetheless, the poor moisture resistance of these phosphors impedes their commercialization. Herein, we proposed the dual strategies of “solid solution design” and “charge compensation” to design K2Nb1−xMoxF7 novel fluoride solid solution system, and synthesized the Mn4+-activated K2Nb1−xMoxF7 (0 ≤ x ≤ 0.15, x represents the mol % of Mo6+ in the initial solution) red phosphors via co-precipitation method. The doping of Mo6+ not only significantly improve the moisture resistance of the K2NbF7: Mn4+ phosphor without any passivation and surface coating, but also effectively enhance the luminescence properties and thermal stability. In particular, the obtained K2Nb1−xMoxF7: Mn4+ (x = 0.05) phosphor possesses the quantum yield of 47.22% and retains 69.95% of its initial emission intensity at 353 K. Notably, the normalized intensity of the red emission peak (627 nm) for the K2Nb1−xMoxF7: Mn4+ (x = 0.05) phosphor is 86.37% of its initial intensity after immersion for 1440 min, prominently higher than that of the K2NbF7: Mn4+ phosphor. Moreover, a high-performance WLED with high CRI of 88 and low CCT of 3979 K is fabricated by combining blue chip (InGaN), yellow phosphor (Y3Al5O12: Ce3+) and the K2Nb1−xMoxF7: Mn4+ (x = 0.05) red phosphor. Our findings convincingly demonstrate that the K2Nb1−xMoxF7: Mn4+ phosphors have a good practical application in WLEDs. Full article
(This article belongs to the Collection Green Energy and Environmental Materials)
Show Figures

Figure 1

14 pages, 5478 KB  
Article
Sol-Gel Synthesis and Photoluminescence Properties of a Far-Red Emitting Phosphor BaLaMgTaO6:Mn4+ for Plant Growth LEDs
by Niansi Fan, Quan Du, Rui Guo, Lan Luo and Li Wang
Materials 2023, 16(11), 4029; https://doi.org/10.3390/ma16114029 - 28 May 2023
Cited by 10 | Viewed by 2111
Abstract
Far-red (FR) emitting LEDs are known as a promising supplement light source for photo-morphogenesis of plants, in which FR emitting phosphors are indispensable components. However, mostly reported FR emitting phosphors are suffering from problems of wavelength mismatch with LED chips or low quantum [...] Read more.
Far-red (FR) emitting LEDs are known as a promising supplement light source for photo-morphogenesis of plants, in which FR emitting phosphors are indispensable components. However, mostly reported FR emitting phosphors are suffering from problems of wavelength mismatch with LED chips or low quantum efficiency, which are still far from practical applications. Here, a new efficient FR emitting double-perovskite phosphor BaLaMgTaO6:Mn4+ (BLMT:Mn4+) has been prepared by sol-gel method. The crystal structure, morphology and photoluminescence properties have been investigated in detail. BLMT:Mn4+ phosphor has two strong and wide excitation bands in the range of 250–600 nm, which matches well with a near-UV or blue chip. Under 365 nm or 460 nm excitation, BLMT:Mn4+ emits an intense FR light ranging from 650 to 780 nm with maximum emission at 704 nm due to 2Eg4A2g forbidden transition of Mn4+ ion. The critical quenching concentration of Mn4+ in BLMT is 0.6 mol%, and its corresponding internal quantum efficiency is as high as 61%. Moreover, BLMT:Mn4+ phosphor has good thermal stability, with emission intensity at 423 K keeping 40% of the room temperature value. The LED devices fabricated with BLMT:Mn4+ sample exhibit bright FR emission, which greatly overlaps with the absorption curve of FR absorbing phytochrome, indicating that BLMT:Mn4+ is a promising FR emitting phosphor for plant growth LEDs. Full article
(This article belongs to the Special Issue Advances in Fluorescent Materials)
Show Figures

Figure 1

27 pages, 8462 KB  
Review
Recent Research Progress of Mn4+-Doped A2MF6 (A = Li, Na, K, Cs, or Rb; M = Si, Ti, Ge, or Sn) Red Phosphors Based on a Core–Shell Structure
by Yueping Xie, Tian Tian, Chengling Mao, Zhenyun Wang, Jingjia Shi, Li Yang and Cencen Wang
Nanomaterials 2023, 13(3), 599; https://doi.org/10.3390/nano13030599 - 2 Feb 2023
Cited by 19 | Viewed by 3514
Abstract
White light emitting diodes (WLEDs) are widely used due to their advantages of high efficiency, low electricity consumption, long service life, quick response time, environmental protection, and so on. The addition of red phosphor is beneficial to further improve the quality of WLEDs. [...] Read more.
White light emitting diodes (WLEDs) are widely used due to their advantages of high efficiency, low electricity consumption, long service life, quick response time, environmental protection, and so on. The addition of red phosphor is beneficial to further improve the quality of WLEDs. The search for novel red phosphors has focused mainly on Eu2+ ion- and Mn4+ ion-doped compounds. Both of them have emissions in the red region, absorption in blue region, and similar quantum yields. Eu2+-doped phosphors possess a rather broad-band emission with a tail in the deep red spectral range, where the sensitivity of the human eye is significantly reduced, resulting in a decrease in luminous efficacy of WLEDs. Mn4+ ions provide a narrow emission band ~670 nm in oxide hosts, which is still almost unrecognizable to the human eye. Mn4+-doped fluoride phosphors have become one of the research hotspots in recent years due to their excellent fluorescent properties, thermal stability, and low cost. They possess broad absorption in the blue region, and a series of narrow red emission bands at around 630 nm, which are suitable to serve as red emitting components of WLEDs. However, the problem of easy hydrolysis in humid environments limits their application. Recent studies have shown that constructing a core–shell structure can effectively improve the water resistance of Mn4+-doped fluorides. This paper outlines the research progress of Mn4+-doped fluoride A2MF6 (A = Li, Na, K, Cs, or Rb; M = Si, Ti, Ge or Sn), which has been based on the core–shell structure in recent years. From the viewpoint of the core–shell structure, this paper mainly emphasizes the shell layer classification, synthesis methods, luminescent mechanism, the effect on luminescent properties, and water resistance, and it also gives some applications in terms of WLEDs. Moreover, it proposes challenges and developments in the future. Full article
(This article belongs to the Special Issue Low Dimensional Luminescent Nanomaterials and Nanodevices)
Show Figures

Figure 1

17 pages, 4966 KB  
Article
A Dual-Wavelength Phosphorescent Anti-Counterfeiting Copolymer Containing Eu(III) and Tb(III)
by Hui Zhao, Zihao Wang, Yongchao Wang, Jiandong Guo, Aiqin Zhang, Husheng Jia and Bingshe Xu
Polymers 2023, 15(3), 736; https://doi.org/10.3390/polym15030736 - 31 Jan 2023
Cited by 2 | Viewed by 2201
Abstract
The anti-counterfeiting technology of banknotes, bills and negotiable securities is constantly copied, and it is urgent to upgrade its anti-counterfeiting technology. In view of the defect of easy replication of single-wavelength anti-counterfeiting technology, the bonded copolymer PMEuTb was synthesized, employing the technique of [...] Read more.
The anti-counterfeiting technology of banknotes, bills and negotiable securities is constantly copied, and it is urgent to upgrade its anti-counterfeiting technology. In view of the defect of easy replication of single-wavelength anti-counterfeiting technology, the bonded copolymer PMEuTb was synthesized, employing the technique of first coordination and then polymerization. The molecular structure of copolymer PMEuTb was confirmed by infrared spectrum and UV-vis absorption spectrum. The internal mechanism of negative correlation between initiator concentration and number-average molecular weight Mn of the copolymer was revealed, and the positive correlation between Mn and luminescent behavior of the copolymer was analyzed. The luminescent properties of copolymer PMEuTb with initiator amount of 0.1% were investigated, the copolymer PMEuTb exhibits dual-wavelength emission of green light and red light under the excitation of ultraviolet light at 254 nm and 365 nm. The copolymer has the lifetime of 1.083 ms at 5D47F5 transition and 0.665 ms at 5D07F2 transition, which belongs to phosphorescent emitting materials. The copolymer remains stable at 240 °C, and variable temperature photoluminescent spectra demonstrate the luminescent intensity remains 85% at 333 K, meeting the requirements of room temperature phosphorescent anti-counterfeiting materials. The luminescent patterns made by standard screen printing display the green and cuticolor logo at 254 nm and 365 nm, respectively, indicating that the bonded phosphors PMEuTb has potential application in phosphorescent anti-counterfeiting. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 3823 KB  
Article
Double Perovskite Mn4+-Doped La2CaSnO6/La2MgSnO6 Phosphor for Near-Ultraviolet Light Excited W-LEDs and Plant Growth
by Zheng Lu, Dashuai Sun, Zeyu Lyu, Sida Shen, Jianhui Wang, Hanwei Zhao, Lixuan Wang and Hongpeng You
Molecules 2022, 27(22), 7697; https://doi.org/10.3390/molecules27227697 - 9 Nov 2022
Cited by 13 | Viewed by 2661
Abstract
Non-rare earth doped oxide phosphors with far-red emission have become one of the hot spots of current research due to their low price and excellent physicochemical stability as the red component in white light-emitting diodes (W-LEDs) and plant growth. Herein, we report novel [...] Read more.
Non-rare earth doped oxide phosphors with far-red emission have become one of the hot spots of current research due to their low price and excellent physicochemical stability as the red component in white light-emitting diodes (W-LEDs) and plant growth. Herein, we report novel Mn4+-doped La2CaSnO6 and La2MgSnO6 phosphors by high-temperature solid-phase synthesis and analyzed their crystal structures by XRD and Rietveld refinement. Their excitation spectra consist of two distinct excitation bands with the dominant excitation range from 250 to 450 nm, indicating that they possess strong absorption of near-ultraviolet light. Their emission is located around 693 and 708 nm, respectively, and can be absorbed by the photosensitive pigments Pr and Pfr, proving their great potential for plant growth. Finally, the prepared samples were coated with 365 nm UV chips to fabricate far-red LEDs and W-LEDs with low correlation color temperature (CCT = 4958 K/5275 K) and high color rendering index (Ra = 96.4/96.6). Our results indicate that La2CaSnO6:Mn4+ and La2MgSnO6:Mn4+ red phosphors could be used as candidate materials for W-LED lighting and plant growth. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials)
Show Figures

Figure 1

12 pages, 4742 KB  
Article
A Novel Red-Emitting Na2NbOF5:Mn4+ Phosphor with Ultrahigh Color Purity for Warm White Lighting and Wide-Gamut Backlight Displays
by Jingshan Hou, Wenxiang Yin, Langping Dong, Yang Li, Yufeng Liu, Zhifu Liu, Guoying Zhao, Ganghua Zhang and Yongzheng Fang
Materials 2021, 14(18), 5317; https://doi.org/10.3390/ma14185317 - 15 Sep 2021
Cited by 28 | Viewed by 3367
Abstract
In this work, a novel red-emitting oxyfluoride phosphor Na2NbOF5:Mn4+ with an ultra-intense zero-phonon line (ZPL) was successfully synthesized by hydrothermal method. The phase composition and luminescent properties of Na2NbOF5:Mn4+ were studied in detail. [...] Read more.
In this work, a novel red-emitting oxyfluoride phosphor Na2NbOF5:Mn4+ with an ultra-intense zero-phonon line (ZPL) was successfully synthesized by hydrothermal method. The phase composition and luminescent properties of Na2NbOF5:Mn4+ were studied in detail. The photoluminescence excitation spectrum contains two intense excitation bands centered at 369 and 470 nm, which match well with commercial UV and blue light-emitting diode (LED) chips. When excited by 470 nm blue light, Na2NbOF5:Mn4+ exhibits red light emission dominated by ZPL. Notably, the color purity of the Na2NbOF5:Mn4+ red phosphor can reach 99.9%. Meanwhile, the Na2NbOF5:Mn4+ phosphor has a shorter fluorescence decay time than commercial K2SiF6:Mn4+, which is conducive to fast switching of images in display applications. Profiting from the intense ZPL, white light-emitting diode (WLED) with high color rendering index of Ra = 86.2 and low correlated color temperature of Tc = 3133 K is realized using yellow YAG:Ce3+ and red Na2NbOF5:Mn4+ phosphor. The WLED fabricated using CsPbBr3 quantum dots (QDs) and red Na2NbOF5:Mn4+ phosphor shows a wide color gamut of 127.56% NTSC (National Television Standard Committee). The results show that red-emitting Na2NbOF5:Mn4+ phosphor has potential application prospects in WLED lighting and display backlight. Full article
(This article belongs to the Special Issue Materials Light Life)
Show Figures

Figure 1

9 pages, 6186 KB  
Article
Improving Color Quality of Nanowire White Light-Emitting Diodes with Mn4+ Doped Fluoride Nanosheets
by Thi Hong Quan Vu, Thi Tuyet Doan, Barsha Jain, Ravi Teja Velpula, Tung Cao Thanh Pham, Hieu Pham Trung Nguyen and Hoang-Duy Nguyen
Micromachines 2021, 12(8), 965; https://doi.org/10.3390/mi12080965 - 15 Aug 2021
Cited by 7 | Viewed by 2640
Abstract
A two-dimensional nanostructured fluoride red-emitting phosphor with an excellent quantum yield of ~91% is studied for cost-effective and high-color quality nanowire white light-emitting diodes (WLEDs). K2TiF6:Mn4+ phosphors are synthesized via an emulsification method using surfactants as sodium dodecyl [...] Read more.
A two-dimensional nanostructured fluoride red-emitting phosphor with an excellent quantum yield of ~91% is studied for cost-effective and high-color quality nanowire white light-emitting diodes (WLEDs). K2TiF6:Mn4+ phosphors are synthesized via an emulsification method using surfactants as sodium dodecyl sulphonate and oleic acid. The K2TiF6:Mn4+ phosphors in ultra-thin and nanosheet crystals are observed via scanning electron microscopy and high-resolution transmission electron microscopy. The surfactants are found to play a key role in inhibition of KTFM crystal growth process and stabilization of Mn4+ ions doping into the K2TiF6 host. The prepared phosphors exhibited intensive red emission at approximately 632 nm and excellent thermal stability in the range of 300–500 K upon 460 nm light excitation. Moreover, the K2TiF6:Mn4+ nanosheets were integrated on InGaN/AlGaN nanowire WLEDs for color quality study. The results show that the nanowire WLEDs with red-emitting phosphor exhibit unprecedentedly high color rendering index ~96.4, and correlated color temperature ~4450 K. Full article
(This article belongs to the Special Issue Nanostructured Light-Emitters, Volume II)
Show Figures

Figure 1

13 pages, 2100 KB  
Article
Time- and Temperature-Dependent Luminescence of Manganese Ions in Ceramic Magnesium Aluminum Spinels
by Nicholas Khaidukov, Angela Pirri, Maria Brekhovskikh, Guido Toci, Matteo Vannini, Barbara Patrizi and Vladimir Makhov
Materials 2021, 14(2), 420; https://doi.org/10.3390/ma14020420 - 16 Jan 2021
Cited by 21 | Viewed by 3197
Abstract
Samples of magnesium aluminum spinel ceramics doped with manganese ions were prepared by a high-temperature solid-state reaction method; their potential as red-emitting phosphors was analyzed using a time-resolved luminescence spectroscopy technique, from room temperature to 10 K. It was found that in the [...] Read more.
Samples of magnesium aluminum spinel ceramics doped with manganese ions were prepared by a high-temperature solid-state reaction method; their potential as red-emitting phosphors was analyzed using a time-resolved luminescence spectroscopy technique, from room temperature to 10 K. It was found that in the red spectral range, the luminescence spectra of manganese ions in the MgAl2O4 spinel showed a narrow band peaking at 651 nm due to the emission of Mn4+ and a broader emission band in the region of 675 ÷ 720 nm; the ratio of intensities for these bands depends on the synthesis conditions. By applying a special multi-step annealing procedure, the MgAl2O4:Mn4+ phosphor containing only tetravalent manganese ions, Mn4+, was synthesized. Broad-band far-red emission observed from MgAl2O4:Mn and Mg1.25Al1.75O3.75F0.25:Mn phosphors, prepared by a conventional method of a solid-state reaction, was interpreted as coming from Mn3+ ions. Full article
(This article belongs to the Special Issue Advances in Phosphors for Light-Emitting Diode)
Show Figures

Figure 1

11 pages, 4461 KB  
Article
Effects of Impurity Doping on the Luminescence Performance of Mn4+-Doped Aluminates with the Magnetoplumbite-Type Structure for Plant Cultivation
by Xiaoshuang Li, Zikun Chen, Bo Wang, Ruizhao Liang, Yongting Li, Lei Kang and Pengfei Liu
Materials 2019, 12(1), 86; https://doi.org/10.3390/ma12010086 - 27 Dec 2018
Cited by 19 | Viewed by 4105
Abstract
Mn4+ activated LaMgAl11O19 (LMA/Mn4+) with red emitting phosphor was obtained by sintering under air conditioning. The X-ray diffraction pattern Rietveld refinement results reveal that three six-fold coordinated Al sites are substituted by Mn4+ ions. Furthermore, the [...] Read more.
Mn4+ activated LaMgAl11O19 (LMA/Mn4+) with red emitting phosphor was obtained by sintering under air conditioning. The X-ray diffraction pattern Rietveld refinement results reveal that three six-fold coordinated Al sites are substituted by Mn4+ ions. Furthermore, the chemical valence state of manganese in the LMA host was further confirmed through X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). Photoluminescence emission (PL) and excitation (PLE) spectra of LMA/Mn4+ as well as the lifetime were measured, and the 663 nm emission is ascribed to the 2Eg4A2g from the 3d3 electrons in the [MnO6]8− octahedral complex. The emission spectrum matches well with the absorption of phytochrome. Temperature-dependent PL spectra show that the color changes of the phosphor at 420 K are 0.0110 for Δx and −0.0109 for Δy. Moreover, doping Zn2+ and Mg2+ ions in the host enhances the emission intensity of Mn4+ ions. These results highlight the potential of LMA/Mn4+ phosphor for a light-emitting diode (LED) plant lamp. Full article
Show Figures

Graphical abstract

13 pages, 1160 KB  
Article
Mn4+-Doped Magnesium Titanate—A Promising Phosphor for Self-Referenced Optical Temperature Sensing
by Francesca Venturini, Michael Baumgartner and Sergey M. Borisov
Sensors 2018, 18(2), 668; https://doi.org/10.3390/s18020668 - 24 Feb 2018
Cited by 19 | Viewed by 6559
Abstract
Phosphors based on magnesium titanate activated with Mn 4 + ions are of great interest because, when excited with blue light, they display a strong red-emitting luminescence. They are characterized by a luminescence decay which is strongly temperature dependent in the range from [...] Read more.
Phosphors based on magnesium titanate activated with Mn 4 + ions are of great interest because, when excited with blue light, they display a strong red-emitting luminescence. They are characterized by a luminescence decay which is strongly temperature dependent in the range from −50 C to 150 C, making these materials very promising for temperature sensing in the biochemical field. In this work, the optical and thermal properties of the luminescence of Mg 2 TiO 4 are investigated for different Mn 4 + doping concentrations. The potential of this material for temperature sensing is demonstrated by fabricating a fiber optic temperature microsensor and by comparing its performance against a standard resistance thermometer. The response of the fiber optic sensor is exceptionally fast, with a response time below 1 s in the liquid phase and below 1.1 s in the gas phase. Full article
Show Figures

Figure 1

14 pages, 3653 KB  
Article
LaAlO3:Mn4+ as Near-Infrared Emitting Persistent Luminescence Phosphor for Medical Imaging: A Charge Compensation Study
by Jiaren Du, Olivier Q. De Clercq, Katleen Korthout and Dirk Poelman
Materials 2017, 10(12), 1422; https://doi.org/10.3390/ma10121422 - 12 Dec 2017
Cited by 74 | Viewed by 9392
Abstract
Mn4+-activated phosphors are emerging as a novel class of deep red/near-infrared emitting persistent luminescence materials for medical imaging as a promising alternative to Cr3+-doped nanomaterials. Currently, it remains a challenge to improve the afterglow and photoluminescence properties of these [...] Read more.
Mn4+-activated phosphors are emerging as a novel class of deep red/near-infrared emitting persistent luminescence materials for medical imaging as a promising alternative to Cr3+-doped nanomaterials. Currently, it remains a challenge to improve the afterglow and photoluminescence properties of these phosphors through a traditional high-temperature solid-state reaction method in air. Herein we propose a charge compensation strategy for enhancing the photoluminescence and afterglow performance of Mn4+-activated LaAlO3 phosphors. LaAlO3:Mn4+ (LAO:Mn4+) was synthesized by high-temperature solid-state reaction in air. The charge compensation strategies for LaAlO3:Mn4+ phosphors were systematically discussed. Interestingly, Cl/Na+/Ca2+/Sr2+/Ba2+/Ge4+ co-dopants were all found to be beneficial for enhancing LaAlO3:Mn4+ luminescence and afterglow intensity. This strategy shows great promise and opens up new avenues for the exploration of more promising near-infrared emitting long persistent phosphors for medical imaging. Full article
(This article belongs to the Special Issue State-of-the-Art Materials Science in Belgium 2017)
Show Figures

Graphical abstract

Back to TopTop