Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = red mustard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6014 KiB  
Article
Evofosfamide Enhances Sensitivity of Breast Cancer Cells to Apoptosis and Natural-Killer-Cell-Mediated Cytotoxicity Under Hypoxic Conditions
by Shubhankar Das, Goutham Hassan Venkatesh, Walid Shaaban Moustafa Elsayed, Raefa Abou Khouzam, Ayda Shah Mahmood, Husam Hussein Nawafleh, Nagwa Ahmed Zeinelabdin, Rania Faouzi Zaarour and Salem Chouaib
Cancers 2025, 17(12), 1988; https://doi.org/10.3390/cancers17121988 - 14 Jun 2025
Viewed by 616
Abstract
Background/objectives: Hypoxia in the tumor microenvironment is linked to aggressiveness, epithelial–mesenchymal transition, metastasis, and therapy resistance. Targeting hypoxia to enhance antitumor immunity is crucial for overcoming therapeutic resistance. Here, we investigated the ability of Evofosfamide, a prodrug that gets activated under hypoxic conditions, [...] Read more.
Background/objectives: Hypoxia in the tumor microenvironment is linked to aggressiveness, epithelial–mesenchymal transition, metastasis, and therapy resistance. Targeting hypoxia to enhance antitumor immunity is crucial for overcoming therapeutic resistance. Here, we investigated the ability of Evofosfamide, a prodrug that gets activated under hypoxic conditions, to sensitize breast cancer cells to cell death. Evofosfamide is converted into bromo-isophosphoramide mustard, a potent DNA cross-linking agent that is expected to enhance the killing of cancer cells under hypoxic conditions, where these cells typically exhibit resistance. Methods: Representative breast cancer cell lines, MCF-7 and MDA-MB-231, were treated with Evofosfamide under normoxia and hypoxia. Changes in cell viability and the mechanism of cell death were measured using neutral red dye uptake, Annexin-FITC/propidium iodide staining, and Western blot analysis of markers—PARP1 and caspase 3/7. We tested Evofosfamide’s ability to counteract hypoxic suppression of type I Interferon signaling genes using quantitative PCR (qPCR), as well as its capacity to trigger natural killer (NK)-cell-mediated cytotoxicity. Results: Evofosfamide enhanced cell killing in both MCF-7 and MDA-MB-231 cells under hypoxic conditions compared to normoxic conditions. Cell killing was accompanied by increased cellular reactive oxygen species (ROS), diminished mitochondrial membrane potential, and induction of apoptosis, as demonstrated by the fragmentation or laddering of genomic DNA, the activation of caspase 3/7, and the cleavage of PARP. qPCR analysis revealed that Evofosfamide was capable of restoring type I interferon signaling in hypoxic breast cancer cells, leading to the subsequent cytolytic activity of NK cells against the tumor cells. Conclusions: Thus, conditioning the breast cancer cells with Evofosfamide resulted in enhanced cell killing under hypoxia, further underscoring its potential as a sensitizer to target hypoxia-driven tumors. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

18 pages, 2373 KiB  
Article
Yield, Bioactive Compounds, and Antioxidant Potential of Twenty-Three Diverse Microgreen Species Grown Under Controlled Conditions
by Bhornchai Harakotr, Lalita Charoensup, Panumart Rithichai, Yaowapha Jirakiattikul and Patlada Suthamwong
Resources 2025, 14(5), 71; https://doi.org/10.3390/resources14050071 - 27 Apr 2025
Viewed by 1008
Abstract
Selecting suitable crop species is crucial for optimizing the productivity and nutritional content of microgreens. In this study, twenty-three diverse microgreen species, grown under controlled conditions, were analyzed for yield, bioactive compounds, and antioxidant activities. The microgreens were cultivated on a peat substrate [...] Read more.
Selecting suitable crop species is crucial for optimizing the productivity and nutritional content of microgreens. In this study, twenty-three diverse microgreen species, grown under controlled conditions, were analyzed for yield, bioactive compounds, and antioxidant activities. The microgreens were cultivated on a peat substrate in a controlled environment, with a growth period of 6 to 20 days from planting to harvest. Conditions were maintained at 25 ± 2 °C, a 16 h photoperiod, CO2 concentration of 1000 ppm, relative humidity of 60 ± 2%, and the LED light was set at 330 μmol/m2/s PPFD. Results from the analysis revealed that the yield, bioactive compounds, and antioxidant potential differed significantly among the twenty-three microgreen species. Unfortunately, the superior microgreens exhibiting greater values for all studied traits could not be identified. However, the principal component analysis (PCA) clustered red radish, rat-tailed radish, and Chinese kale microgreens, which were high in both yield and bioactive compounds. In contrast, red holy basil and lemon basil microgreens had high levels of these compounds but low yields. Additionally, a high level of anti-tyrosinase activity was observed in garland chrysanthemum, Chinese mustard, and Chinese cabbage microgreens. Therefore, these microgreen species can be utilized individually or in varying ratios to produce bioactive compounds in different concentrations that are suitable for various applications. The information presented in this study provides valuable insights for health-conscious consumers and growers for selecting superior species with functional implications. Full article
Show Figures

Graphical abstract

21 pages, 4369 KiB  
Article
Differences in Accumulation of Rare Earth Elements by Plants Cultivated in Soil and Substrates from Industrial Waste Materials
by Dominika Gmur, Grzegorz Siebielec and Monika Pecio
Plants 2025, 14(4), 589; https://doi.org/10.3390/plants14040589 - 14 Feb 2025
Viewed by 1278
Abstract
The aim of this experiment was to investigate the differences in the uptake and accumulation of rare earth elements (REEs) between selected plant species and the substrates used (soil with increased REE content, ash, and smelter waste). Eight plant species were included in [...] Read more.
The aim of this experiment was to investigate the differences in the uptake and accumulation of rare earth elements (REEs) between selected plant species and the substrates used (soil with increased REE content, ash, and smelter waste). Eight plant species were included in the study: common yarrow (Achillea millefolium), false mayweed (Triplerosperum maritimum), tall fescue (Festuca arundinacea), marigold (Tagetes sp.), maize (Zea mays), white mustard (Sinapis alba), red clover (Trifolium pratense L.), and autumn fern (Dryopteris erythrosora). The study focused on the following REE representatives: lanthanum (La), cerium (Ce), europium (Eu), and gadolinium (Gd). Plant samples, divided into roots and shoots, were analyzed by ICP-MS. The obtained REE concentrations in plant tissues ranged from 9 to 697 µg kg−1 (La), 10 to 1518 µg kg−1 (Ce), 9 to 69 µg kg−1 (Eu), and 9 to 189 µg kg−1 (Gd). To determine the ability of plants to phytoextract REE, two factors were calculated: the translocation factor (TF) and the bioconcentration factor (BCF). The highest TF value was obtained for D. erythrosora growing on a substrate consisting of soil with increased REE content (Gd, TF = 4.03). Additionally, TF > 1 was obtained for all REEs in T. pratense L. In the experiment, the BCF was lower than 1 for all the plants tested. The study provided insight into the varying ability of plants to accumulate REEs, depending on both the plant species and the chemical properties of the substrate. Full article
(This article belongs to the Special Issue Rare Earth Elements in Plants)
Show Figures

Figure 1

17 pages, 2768 KiB  
Article
The Antioxidant Profile of Some Species of Microgreens Cultivated on Hemp and Coconut Substrate Under the Action of a Biostimulator Based on Humic Acids
by Alina Elena Marta, Florina Stoica, Ștefănica Ostaci and Carmenica Doina Jităreanu
Horticulturae 2024, 10(12), 1238; https://doi.org/10.3390/horticulturae10121238 - 21 Nov 2024
Cited by 1 | Viewed by 1997
Abstract
Microplants are vegetables, grains and aromatic herbs that are consumed in the stage of young plants, without roots, developed after the germination stage, in the stage of cotyledons and which have a high content of nutrients (antioxidants, vitamins, minerals, fatty acids, lutein, β-carotene, [...] Read more.
Microplants are vegetables, grains and aromatic herbs that are consumed in the stage of young plants, without roots, developed after the germination stage, in the stage of cotyledons and which have a high content of nutrients (antioxidants, vitamins, minerals, fatty acids, lutein, β-carotene, proteins and fibers, etc.), which makes them functional, concentrated foods capable of feeding the world’s ever-growing population. The significant amounts of antioxidants in microgreens have the role of neutralizing free radicals and reducing their harmful impact on human health. The microgreens studied were spinach (Spinacia oleracea) cultivar ‘Lorelay’, mustard (Sinapis alba) cultivar ‘White’ and radish (Raphanus sativus) cultivar ‘Red Rambo’, tested on hemp and coconut substrates and under the influence of the organic biostimulator Biohumussol, based on humic acids. The antioxidant content of the plants was determined by analyzing total carotenoids, lycopene, chlorophyll, β-carotene, polyphenols and flavonoids, as well as the antioxidant activity by ABTS and DPPH methods. The obtained results indicated that the reaction of the plant material depends on the composition of the substrate and the presence of the applied biostimulator. The highest contents of substances with an antioxidant role were obtained from the microgreens on the hemp substrate, especially mustard and radishes, and the biostimulator proved to be compatible with the spinach microgreens. Full article
Show Figures

Figure 1

16 pages, 1826 KiB  
Article
Effect of Photoluminophore Light-Correcting Coatings and Bacterization by Associative Microorganisms on the Growth and Productivity of Brassica juncea L. Plants
by Natalia S. Zakharchenko, Elena B. Rukavtsova, Ilia V. Yampolsky, Dmitry O. Balakirev, Ivan V. Dyadishchev, Sergey A. Ponomarenko, Yuriy N. Luponosov, Andrey E. Filonov, Pavel A. Mikhailov, Anton N. Zvonarev, Lenar I. Akhmetov, Vasily V. Terentyev, Alexandra Yu. Khudyakova, Lubov V. Zalomova, Sergey V. Tarlachkov, Alexander V. Aripovsky, Irina F. Puntus and Robert N. Khramov
Microbiol. Res. 2024, 15(4), 1957-1972; https://doi.org/10.3390/microbiolres15040131 - 25 Sep 2024
Cited by 1 | Viewed by 1152
Abstract
The effect of a coating material containing organic photoluminophore (PL) on the growth and development of mustard Brassica juncea L. plants colonized with beneficial associative bacteria Pseudomonas putida KT2442 and Rhodococcus erythropolis X5 was studied in vitro and in vivo. Plants grown with [...] Read more.
The effect of a coating material containing organic photoluminophore (PL) on the growth and development of mustard Brassica juncea L. plants colonized with beneficial associative bacteria Pseudomonas putida KT2442 and Rhodococcus erythropolis X5 was studied in vitro and in vivo. Plants grown with the use of microbial bacterization in combination with a photoluminophore coating (PLC) had significantly faster growth rates in vitro (2.1 times faster, P. putida; 1.8 times faster, R. erythropolis) than those grown using PLC alone (1.2 times faster). The leaves of plants grown with PLC had higher contents of glucose and fructose (28.4 ± 0.3% more glucose and 60.4 ± 0.3% more fructose accumulated compared to plants grown without PLC). It was found that seed weights and seed number increased 1.9-fold and 1.6-fold, respectively, for plants grown with PLC and colonized with beneficial P. putida KT2442 bacteria. The stimulatory effect of PLC on photosynthetic parameters of Photosystem II (PSII) was observed in colonized plants grown in vitro. For the first time, it was shown that providing plants with a PLC for only 4 weeks may make it possible to support further plant growth without PLC to obtain higher yields in the future. Thus, PLCs that convert shorter-wavelength radiation into red light may induce enhancement of biochemical processes not only in plants but also in microorganisms that supply plants with growth regulators and other active compounds. The results indicate the need for further research to understand the mechanisms of photobiological and photoregulatory systems in the interaction of microbes and plants. Full article
Show Figures

Figure 1

12 pages, 4204 KiB  
Article
The Effect of Light Intensity during Cultivation and Postharvest Storage on Mustard and Kale Microgreen Quality
by Ieva Gudžinskaitė, Kristina Laužikė, Audrius Pukalskas and Giedrė Samuolienė
Antioxidants 2024, 13(9), 1075; https://doi.org/10.3390/antiox13091075 - 3 Sep 2024
Cited by 3 | Viewed by 1476
Abstract
Microgreens are vegetable greens that are harvested early while they are still immature and have just developed cotyledons. One of the disadvantages and a challenge in production is that they exhibit a short shelf life and may be damaged easily. In seeking to [...] Read more.
Microgreens are vegetable greens that are harvested early while they are still immature and have just developed cotyledons. One of the disadvantages and a challenge in production is that they exhibit a short shelf life and may be damaged easily. In seeking to prolong the shelf life, some pre- and postharvest interventions have been investigated. Here, kale and mustard microgreens were grown in a controlled-environment walk-in chamber at +21/17 °C, with ~65% relative air humidity, while maintaining the spectral composition of deep red 61%, blue 20%, white 15%, and far red 4% (150, 200, and 250 µmol m−2 s−1 photosynthetic photon flux density (PPFD)). Both microgreens seemed to exhibit specific and species-dependent responses. Higher PPFD during growth and storage in light conditions resulted in increased contents of TPC in both microgreens on D5. Additionally, 150 and 250 PPFD irradiation affected the α-tocopherol content by increasing it during postharvest storage in kale. On D0 150 for kale and 200 PPFD for mustard microgreens, β-carotene content increased. D5 for kale showed insignificant differences, while mustard responded with the highest β-carotene content, under 150 PPFD. Our findings suggest that both microgreens show beneficial outcomes when stored in light compared to dark and that mild photostress is a promising tool for nutritional value improvement and shelf-life prolongation. Full article
Show Figures

Figure 1

12 pages, 8511 KiB  
Article
Preliminary Study on the Effect of Artificial Lighting on the Production of Basil, Mustard, and Red Cabbage Seedlings
by Bruna Maran, Wendel Paulo Silvestre and Gabriel Fernandes Pauletti
AgriEngineering 2024, 6(2), 1043-1054; https://doi.org/10.3390/agriengineering6020060 - 16 Apr 2024
Cited by 3 | Viewed by 1458
Abstract
The use of artificial lighting in a total or supplementary way is a current trend, with growing interest due to the increase in the global population and climate change, which require high-yield, quality, and fast-growing crops with less water and a smaller carbon [...] Read more.
The use of artificial lighting in a total or supplementary way is a current trend, with growing interest due to the increase in the global population and climate change, which require high-yield, quality, and fast-growing crops with less water and a smaller carbon footprint. This experiment aimed to evaluate the effect of light-emitting diode (LED) lighting on the production of basil, mustard, and red cabbage seedlings under controlled artificial conditions and in a greenhouse as a supplementary lighting regime. Under controlled conditions, the experiment was conducted with basil seedlings, comparing LED light with two wavelengths (purple and white light). In a greenhouse, mustard and red cabbage seedlings were evaluated under natural light (regular photoperiod) and with supplementary purple lighting of 3 h added to the photoperiod. The variables assessed were aerial fresh mass (AFM), aerial dry mass (ADM), root dry mass (RDM), plant length (PL), and leaf area (LA). Basil seedlings grown under purple light showed greater length and AFM than those grown under white light, with no effect on the production of secondary metabolites. In the greenhouse experiment, red cabbage seedlings showed an increase in AFM, ADM, and DRM with light supplementation, with no effect on LA. AFM showed no statistical difference in mustard seedlings, but the productive parameters LA, ADM, and DRM were higher with supplementation. None of the evaluated treatments influenced the production of phenolic compounds and flavonoids in the three species evaluated. Light supplementation affected red cabbage and mustard seedlings differently, promoting better development in some production parameters without affecting the production of phenolic compounds and flavonoids in either plant. Thus, light supplementation or artificial lighting can be considered a tool to enhance and accelerate the growth of seedlings, increasing productivity and maintaining the quality of the secondary metabolites evaluated. Thus, this technology can reduce operational costs, enable cultivation in periods of low natural light and photoperiod, and cultivate tropical species in temperate environments in completely artificial (indoor) conditions. Full article
Show Figures

Figure 1

20 pages, 3649 KiB  
Article
Technological Functionalisation of Microencapsulated Genistein and Daidzein Delivery Systems Soluble in the Stomach and Intestines
by Jurga Andreja Kazlauskaite, Inga Matulyte, Mindaugas Marksa and Jurga Bernatoniene
Pharmaceutics 2024, 16(4), 530; https://doi.org/10.3390/pharmaceutics16040530 - 12 Apr 2024
Cited by 1 | Viewed by 1318
Abstract
Encapsulating antioxidant-rich plant extracts, such as those found in red clover, within microcapsules helps protect them from degradation, thus improving stability, shelf life, and effectiveness. This study aimed to develop a microencapsulation delivery system using chitosan and alginate for microcapsules that dissolve in [...] Read more.
Encapsulating antioxidant-rich plant extracts, such as those found in red clover, within microcapsules helps protect them from degradation, thus improving stability, shelf life, and effectiveness. This study aimed to develop a microencapsulation delivery system using chitosan and alginate for microcapsules that dissolve in both the stomach and intestines, with the use of natural and synthetic emulsifiers. The microcapsules were formed using the extrusion method and employing alginate or chitosan as shell-forming material. In this study, all selected emulsifiers formed Pickering (β-CD) and traditional (white mustard extract, polysorbate 80) stable emulsions. Alginate-based emulsions resulted in microemulsions, while chitosan-based emulsions formed macroemulsions, distinguishable by oil droplet size. Although chitosan formulations with higher red clover extract (C1) concentrations showed potential, they exhibited slightly reduced firmness compared to other formulations (C2). Additionally, both alginate and chitosan formulations containing β-CD released bioactive compounds more effectively. The combined use of alginate and chitosan microcapsules in a single pill offers an innovative way to ensure dual solubility in both stomach and intestinal environments, increasing versatility for biomedical and pharmaceutical applications. Full article
(This article belongs to the Special Issue Natural Product Pharmaceuticals)
Show Figures

Figure 1

13 pages, 7159 KiB  
Article
The N-Terminal Region of Cucumber Mosaic Virus 2a Protein Is Involved in the Systemic Infection in Brassica juncea
by Tae-Seon Park, Dong-Joo Min, Ji-Soo Park and Jin-Sung Hong
Plants 2024, 13(7), 1001; https://doi.org/10.3390/plants13071001 - 31 Mar 2024
Cited by 1 | Viewed by 1554
Abstract
Brassica juncea belongs to the Brassicaceae family and is used as both an oilseed and vegetable crop. As only a few studies have reported on the cucumber mosaic virus (CMV) in B. juncea, we conducted this study to provide a basic understanding [...] Read more.
Brassica juncea belongs to the Brassicaceae family and is used as both an oilseed and vegetable crop. As only a few studies have reported on the cucumber mosaic virus (CMV) in B. juncea, we conducted this study to provide a basic understanding of the B. juncea and CMV interactions. B. juncea-infecting CMV (CMV-Co6) and non-infecting CMV (CMV-Rs1) were used. To identify the determinants of systemic infection in B. juncea, we first constructed infectious clones of CMV-Co6 and CMV-Rs1 and used them as pseudo-recombinants. RNA2 of CMV was identified as an important determinant in B. juncea because B. juncea were systemically infected with RNA2-containing pseudo-recombinants; CMV-Co6, R/6/R, and R/6/6 were systemically infected B. juncea. Subsequently, the amino acids of the 2a and 2b proteins were compared, and a chimeric clone was constructed. The chimeric virus R/6Rns/R6cp, containing the C-terminal region of the 2a protein of CMV-Rs1, still infects B. juncea. It is the 2a protein that determines the systemic CMV infection in B. juncea, suggesting that conserved 160G and 214A may play a role in systemic CMV infection in B. juncea. Full article
Show Figures

Figure 1

18 pages, 9046 KiB  
Article
Application of UAV Multispectral Imaging to Monitor Soybean Growth with Yield Prediction through Machine Learning
by Sadia Alam Shammi, Yanbo Huang, Gary Feng, Haile Tewolde, Xin Zhang, Johnie Jenkins and Mark Shankle
Agronomy 2024, 14(4), 672; https://doi.org/10.3390/agronomy14040672 - 26 Mar 2024
Cited by 17 | Viewed by 3612
Abstract
The application of remote sensing, which is non-destructive and cost-efficient, has been widely used in crop monitoring and management. This study used a built-in multispectral imager on a small unmanned aerial vehicle (UAV) to capture multispectral images in five different spectral bands (blue, [...] Read more.
The application of remote sensing, which is non-destructive and cost-efficient, has been widely used in crop monitoring and management. This study used a built-in multispectral imager on a small unmanned aerial vehicle (UAV) to capture multispectral images in five different spectral bands (blue, green, red, red edge, and near-infrared), instead of satellite-captured data, to monitor soybean growth in a field. The field experiment was conducted in a soybean field at the Mississippi State University Experiment Station near Pontotoc, MS, USA. The experiment consisted of five cover crops (Cereal Rye, Vetch, Wheat, Mustard plus Cereal Rye, and native vegetation) planted in the winter and three fertilizer treatments (Fertilizer, Poultry Liter, and None) applied before planting the soybean. During the soybean growing season in 2022, eight UAV imaging flyovers were conducted, spread across the growth season. UAV image-derived vegetation indices (VIs) coupled with machine learning (ML) models were computed for characterizing soybean growth at different stages across the season. The aim of this study focuses on monitoring soybean growth to predict yield, using 14 VIs including CC (Canopy Cover), NDVI (Normalized Difference Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), EVI2 (Enhanced Vegetation Index 2), and others. Different machine learning algorithms including Linear Regression (LR), Support Vector Machine (SVM), and Random Forest (RF) are used for this purpose. The stage of the initial pod development was shown as having the best predictability for earliest soybean yield prediction. CC, NDVI, and NAVI (Normalized area vegetation index) were shown as the best VIs for yield prediction. The RMSE was found to be about 134.5 to 511.11 kg ha−1 in the different yield models, whereas it was 605.26 to 685.96 kg ha−1 in the cross-validated models. Due to the limited number of training and testing samples in the K-fold cross-validation, the models’ results changed to some extent. Nevertheless, the results of this study will be useful for the application of UAV remote sensing to provide information for soybean production and management. This study demonstrates that VIs coupled with ML models can be used in multistage soybean yield prediction at a farm scale, even with a limited number of training samples. Full article
(This article belongs to the Special Issue Crop Production Parameter Estimation through Remote Sensing Data)
Show Figures

Figure 1

15 pages, 628 KiB  
Article
Can LED Lighting Be a Sustainable Solution for Producing Nutritionally Valuable Microgreens?
by Roberta Vrkić, Jana Šic Žlabur, Mia Dujmović and Božidar Benko
Horticulturae 2024, 10(3), 249; https://doi.org/10.3390/horticulturae10030249 - 5 Mar 2024
Cited by 2 | Viewed by 2348
Abstract
With its quality, intensity, and photoperiod, light is a decisive abiotic factor that directly influences plant biomass and the accumulation of specialized metabolites (SMs). Photosynthetically active radiation (PAR) has significant effects on primary and secondary plant metabolism and thus influences the morphological characteristics [...] Read more.
With its quality, intensity, and photoperiod, light is a decisive abiotic factor that directly influences plant biomass and the accumulation of specialized metabolites (SMs). Photosynthetically active radiation (PAR) has significant effects on primary and secondary plant metabolism and thus influences the morphological characteristics of plants and their antioxidant systems. The aim of this study was to investigate the effects of blue, red, and a 50:50 combination of blue and red LED lighting on the SM content in broccoli, mustard, and garden cress microgreens grown in an indoor farm using the zero-acreage farming technique (ZFarming). This research aims to provide valuable insights into the optimization of light spectra to improve the nutritional quality of microgreens, with a focus on sustainable and space-saving cultivation methods. After eight days, the samples were cut in the cotyledon phenophase and analyzed in a fresh state. The microgreens grown under the blue spectrum LED lighting had the highest content of ascorbic acid (112.70 mg·100 g fw−1), total phenolics (412.39 mg GAE·100 g fw−1), and the highest antioxidant capacity (2443.62 µmol TE·L−1). The results show that the highest content of SMs in all the studied microgreens species was accumulated under the blue spectrum LED lighting. This study underlines the favorable influence of the blue spectrum (400–500 nm) on the nutrient content, especially the enhancement of SMs, in the microgreens investigated. Furthermore, the use of supplemental LED lighting proves to be a sustainable and effective means of producing microgreens with superior nutritional properties through the innovative practice of the zero-acreage farming technique. Full article
Show Figures

Figure 1

34 pages, 725 KiB  
Article
Chemical Compositions and Essential Fatty Acid Analysis of Selected Vegetable Oils and Fats
by Pawan Kumar Ojha, Darbin Kumar Poudel, Anil Rokaya, Salina Maharjan, Sunita Timsina, Ambika Poudel, Rakesh Satyal, Prabodh Satyal and William N. Setzer
Compounds 2024, 4(1), 37-70; https://doi.org/10.3390/compounds4010003 - 17 Jan 2024
Cited by 19 | Viewed by 10395
Abstract
The fatty acid (FA) compositions of thirty-nine vegetable oils and fats, including nangai nut, pili nut, shea butter, tamanu oil, baobab, sea buckthorn berry, Brazil nut, grape seed, black seed, evening primrose, passion fruit, milk thistle, sunflower, pumpkin seed, sesame, soybean, flax seed, [...] Read more.
The fatty acid (FA) compositions of thirty-nine vegetable oils and fats, including nangai nut, pili nut, shea butter, tamanu oil, baobab, sea buckthorn berry, Brazil nut, grape seed, black seed, evening primrose, passion fruit, milk thistle, sunflower, pumpkin seed, sesame, soybean, flax seed, kukui, red raspberry seed, walnut, chia seed, hemp seed, rosehip, almond, avocado, carrot seed, moringa, apricot kernel, camellia seed, macadamia, olive, marula, argan, castor, jojoba, pomegranate seed, medium-chain triglyceride (MCT) coconut, roasted coconut, canola, and mustard oil, were analyzed using gas chromatography–mass spectrometry (GC-MS). Vegetable oils and fats have different profiles in terms of their fatty acid composition, and their major constituents vary significantly. However, we categorized them into different classes based on the percentages of different fatty acids they contain. The saturated fatty acids, such as palmitic acid and stearic acid, and the unsaturated fatty acids, including oleic acid, linoleic acid, and linolenic acid, are the main categories. Among them, roasted coconut oil contained the greatest amount of saturated fatty acids followed by nangai nut (45.61%). Passion fruit oil contained the largest amount of linoleic acid (66.23%), while chia seed oil had the highest content of linolenic acid (58.25%). Oleic acid was exclusively present in camellia seed oil, constituting 78.57% of its composition. Notably, mustard oil had a significant presence of erucic acid (54.32%), while pomegranate seed oil exclusively contained punicic acid (74.77%). Jojoba oil primarily consisted of (Z)-11-eicosenoic acid (29.55%) and (Z)-docos-13-en-1-ol (27.96%). The major constituent in castor oil was ricinoleic acid (89.89%). Compared with other vegetable oils and fats, pili nut oil contained a significant amount of (E)-FA (20.62%), followed by sea buckthorn berry oil with a content of 9.60%. FA compositions from sources may be problematic in the human diet due to no labeling or the absence of essential components. Therefore, consumers must cast an eye over some essential components consumed in their dietary intake. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2022–2023))
Show Figures

Figure 1

30 pages, 3973 KiB  
Article
The Effects of Light Spectrum and Intensity, Seeding Density, and Fertilization on Biomass, Morphology, and Resource Use Efficiency in Three Species of Brassicaceae Microgreens
by Reed John Cowden, Bo Markussen, Bhim Bahadur Ghaley and Christian Bugge Henriksen
Plants 2024, 13(1), 124; https://doi.org/10.3390/plants13010124 - 1 Jan 2024
Cited by 10 | Viewed by 4180
Abstract
Light is a critical component of indoor plant cultivation, as different wavelengths can influence both the physiology and morphology of plants. Furthermore, fertilization and seeding density can also potentially interact with the light recipe to affect production outcomes. However, maximizing production is an [...] Read more.
Light is a critical component of indoor plant cultivation, as different wavelengths can influence both the physiology and morphology of plants. Furthermore, fertilization and seeding density can also potentially interact with the light recipe to affect production outcomes. However, maximizing production is an ongoing research topic, and it is often divested from resource use efficiencies. In this study, three species of microgreens—kohlrabi; mustard; and radish—were grown under five light recipes; with and without fertilizer; and at two seeding densities. We found that the different light recipes had significant effects on biomass accumulation. More specifically, we found that Far-Red light was significantly positively associated with biomass accumulation, as well as improvements in height, leaf area, and leaf weight. We also found a less strong but positive correlation with increasing amounts of Green light and biomass. Red light was negatively associated with biomass accumulation, and Blue light showed a concave downward response. We found that fertilizer improved biomass by a factor of 1.60 across species and that using a high seeding density was 37% more spatially productive. Overall, we found that it was primarily the main effects that explained microgreen production variation, and there were very few instances of significant interactions between light recipe, fertilization, and seeding density. To contextualize the cost of producing these microgreens, we also measured resource use efficiencies and found that the cheaper 24-volt LEDs at a high seeding density with fertilizer were the most efficient production environment for biomass. Therefore, this study has shown that, even with a short growing period of only four days, there was a significant influence of light recipe, fertilization, and seeding density that can change morphology, biomass accumulation, and resource input costs. Full article
(This article belongs to the Special Issue Horticultural Crops Cultivation and Physiology)
Show Figures

Figure 1

19 pages, 6341 KiB  
Article
Detection of Aphid-Infested Mustard Crop Using Ground Spectroscopy
by Karunesh K. Shukla, Rahul Nigam, Ajanta Birah, A. K. Kanojia, Anoop Kumar, Bimal K. Bhattacharya and Subhash Chander
Remote Sens. 2024, 16(1), 47; https://doi.org/10.3390/rs16010047 - 21 Dec 2023
Cited by 1 | Viewed by 2408
Abstract
Timely detection of pest infestation in agricultural crops plays a pivotal role in the planning and execution of pest management interventions. In this study, a ground measured electromagnetic spectrum through hyperspectral sensing (400–2500 nm) was conducted in healthy and aphid-infested mustard crops in [...] Read more.
Timely detection of pest infestation in agricultural crops plays a pivotal role in the planning and execution of pest management interventions. In this study, a ground measured electromagnetic spectrum through hyperspectral sensing (400–2500 nm) was conducted in healthy and aphid-infested mustard crops in different regions of the Bharatpur district of Rajasthan state, India. The ground measured hyperspectral reflectance and its derivatives during the mustard aphid infestation period were used to identify the sensitive spectral regions in the electromagnetic spectrum concerning Aphid Infestation Severity Grade (AISG) to discriminate Lipaphis-infested mustard crops from the healthy ones. Further Principal Component Analysis (PCA) and Partial Least Square Regression (PLSR) were utilized to identify specific spectral bands to differentiate the healthy from aphid-infested crops. The spectral regions of 493–497 nm (blue), 509–515 nm (green), 690–714 nm (red), 717–721 nm (red edge), and 752–756 nm (NIR) showed high correlation with AISG for reflectance, first and second order derivatives. Further analysis of the spectra using PCA and PLSR indicated that spectral bands of 679 nm, 746 nm, and 979 nm had high sensitivity for discriminating aphid-infested crops from the healthy ones. Average reflectance and various spectral indices such as ratio spectral index (RSI), difference spectral index (DSI), and normalized difference spectral index (NDSI) of identified spectral regions and absolute reflectance of identified specific spectral bands were used for predicting AISG. Several regression models, including PCR and PLSR, were examined to predict the AISG. PLSR was found to better predict infestation grade with RMSE of 0.66 and r2 0.71. Our outcomes counseled that hyperspectral reflectance data have the ability to detect aphid-infested severity in mustard. Full article
(This article belongs to the Special Issue Proximal and Remote Sensing for Precision Crop Management)
Show Figures

Figure 1

22 pages, 3376 KiB  
Article
Leaf Mustard (Brassica juncea) Germplasm Resources Showed Diverse Characteristics in Agro-Morphological Traits and Glucosinolate Levels
by Awraris Derbie Assefa, Seong-Hoon Kim, Ho Chul Ko, Nayoung Ro, Parthiban Subramanian, Yun-Jo Chung, Yong-Hyuk Lee, Bum-Soo Hahn and Ju-Hee Rhee
Foods 2023, 12(23), 4374; https://doi.org/10.3390/foods12234374 - 4 Dec 2023
Cited by 6 | Viewed by 4570
Abstract
Leaf mustard, characterized by its purple/red/green leaves with a green/white midrib, is known for its thick, tender, and spicy leaves with a unique taste and flavor. There were only a few studies reported on leaf mustard for its morphological and biochemical traits from [...] Read more.
Leaf mustard, characterized by its purple/red/green leaves with a green/white midrib, is known for its thick, tender, and spicy leaves with a unique taste and flavor. There were only a few studies reported on leaf mustard for its morphological and biochemical traits from Korea. A total of 355 leaf mustard accessions stored at the GenBank of the National Agrobiodiversity Center were evaluated for 25 agro-morphological traits and seven intact glucosinolates (GSLs). The accessions showed a wide variation in terms of most of the traits. The quantitative agro-morphological traits varied from 16.0 (leaf length) to 48.7% (petiole width) of the coefficient of variation (CV). The highest variation was observed in glucoiberin (299.5%, CV), while the total GSL showed a CV of 66.1%. Sinigrin, followed by gluconapin and gluconasturtiin, was the most abundant GSL, accounting for as high as 75% of the total GSLs, while glucobrassicanapin and glucoiberin were the least abundant, contributing 0.7% and 0.1% on average, respectively. Sinigrin had a positive significant correlation with all GSLs but gluconasturtiin, while glucobarbarin and gluconasturtiin were highly positively correlated to each other, but least correlated with other GSLs. The leaf length was negatively correlated with sinigrin and glucoiberin. The width of the petiole showed a positive correlation with gluconapin, glucobrassicanapin, and glucobrassicin, while the length of the petiole had a negative correlation with sinigrin, glucobrassicanapin, glucoiberin, glucobrassicin, and the total GSLs. A higher width of the midrib was associated with higher contents of gluconapin, glucobrassicanapin, and glucobrassicin. A PCA analysis based on the agro-morphological traits showed that the first and second principal components accounted for 65.2% of the overall variability. Accessions that form a head tend to exhibit a longer leaf length, a larger plant weight, a thicker midrib, and higher widths of the midrib, petiole, and leaf. The GSLs showed inconsistent inter-and intra-leaf variation. Accessions that identified for various traits in their performance, such as, for example, Yeosu66 and IT259487 (highest total glucosinolates) and IT228984 (highest plant weight), would be promising lines for developing new varieties. Full article
Show Figures

Figure 1

Back to TopTop