Preliminary Study on the Effect of Artificial Lighting on the Production of Basil, Mustard, and Red Cabbage Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Plant Cultivation
2.3. Seedling Assessment
2.4. Experimental Design and Statistical Analysis
3. Results
3.1. Experiment with Basil in a Controlled Environment
3.2. Luminous Supplementation of Mustard and Red Cabbage in a Greenhouse
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brainer, M.S.C.P. Produção de Hortaliças na Área de Atuação do BNB; Banco do Nordeste: Fortaleza, Brazil, 2021. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Faostat. Available online: https://www.fao.org/faostat/en/ (accessed on 4 February 2024).
- Silva, G.S.; Cecílio Filho, A.B.; Barbosa, J.C.; Alves, A.U. Espaçamentos entrelinhas e entre plantas no crescimento e na produção de repolho roxo. Bragantia 2011, 70, 538–543. [Google Scholar] [CrossRef]
- Melo, R.A.C.; Vendrame, L.P.C.; Madeira, N.R.; Blind, A.D.; Vilela, N.J. Characterization of the Brazilian vegetable brassicas production chain. Hortic. Bras. 2019, 37, 366–372. [Google Scholar] [CrossRef]
- Tian, Y.; Deng, F. Phytochemistry and biological activity of mustard (Brassica juncea): A review. CyTA-J. Food 2020, 18, 704–718. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estátistica (IBGE). Produção de Mostarda. Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/mostarda/br (accessed on 7 February 2024).
- Embrapa Hortaliças. Catálogo Brasileiro de Hortaliças; Embrapa Hortaliças: Brasília, Brazil, 2010; Available online: https://bibliotecas.sebrae.com.br/chronus/ARQUIVOS_CHRONUS/bds/bds.nsf/C22F9A4962A6E2E68325771C0065A2E4/$File/NT0004404E.pdf (accessed on 16 February 2024).
- Silvestre, W.P.; Pauletti, G.F. Evaluation of extraction yield and chemical composition of the essential oil of five commercial varieties of basil (Ocimum basilicum L.). Rev. Interdiscip. Ciência Apl. 2021, 6, 44–50. [Google Scholar] [CrossRef]
- Reis, A.; Miranda, B.E.C.; Boiteux, L.S.; Henz, G.P. Murcha do manjericão (Ocimum basilicum) no Brasil: Agente causal, círculo de plantas hospedeiras e transmissão via semente. Summa Phytopathol. 2007, 33, 137–141. [Google Scholar] [CrossRef]
- Radünz, L.L. Efeito da Temperatura do ar de Secagem no Teor e na Composição dos Óleos Essenciais de Quaco (Mikania glomerata Sprengel) e Hortelã-Comum (Mentha × villosa Huds). Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2004. [Google Scholar]
- An, Q.; Ren, J.N.; Fan, G.; Qu, S.S.; Song, Y.; Li, Y.; Pan, S.Y. Recent updates on bioactive properties of linalool. Food Funct. 2021, 12, 10370–10389. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, F.C. Producao de Mudas de Hortalicas em Ambiente Protegido; Embrapa Agroindústria Tropical: Fortaleza, Brazil, 2003. [Google Scholar]
- Kozai, T. Sustainable plant factory: Closed plant production systems with artificial light for high resource use efficiencies and quality produce. Acta Hortic. 2013, 1004, 27–40. [Google Scholar] [CrossRef]
- Udensi, J.; Loskutova, E.; Loughman, J.; Byrne, H.J. Quantitative Raman Analysis of Carotenoid Protein Complexes in Aqueous Solution. Molecules 2022, 27, 4724. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chang, Y.; Chen, G.; Lin, H. The research led to a supplementary lighting system for plants. Opt. Int. J. Light Electron Opt. 2016, 127, 7193–7201. [Google Scholar] [CrossRef]
- Luz, P.C.V.; Teixeira, M.L.; Machado, L.E.R.; Feil, D.L.P. Suplementação Luminosa Aplicada ao Cultivo de Hortaliças. In Proceedings of the 14th Seminar on Power Electronics and Control (SEPOC 2022), Santa Maria, Brazil, 12–15 November 2022. [Google Scholar] [CrossRef]
- Ohashi-Kaneko, K.; Takase, M.; Kon, N.; Fujiwara, K.; Kurata, K. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Control Biol. 2007, 45, 189–198. [Google Scholar] [CrossRef]
- Mota, M.; Semedo, S.; Pereira, M. A Iluminação Artificial em Horticultura. 2020. Available online: http://www.agrotec.pt/noticias/a-iluminacao-artificial-em-horticultura/ (accessed on 31 January 2024).
- Bley, F.B. LEDs Versus Lâmpadas Convencionais: Viabilizando a Troca. 2012. Available online: https://www.lumearquitetura.com.br/pdf/ed57/ed_57%20At%20-%20LEDs%20versus%20L%C3%A2mpadas.pdf (accessed on 17 January 2024).
- Hogewoning, S.W.; Trouborst, G.; Maljaars, H.; Poorter, H.; van Lepren, W.; Harbinson, J. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Oliver, L.P.; Coyle, S.D.; Bright, L.A.; Shultz, R.C.; Hager, J.V.; Tidwell, J.H. Comparison of Four Artificial Light Technologies for Indoor Aquaponic Production of Swiss Chard, Beta vulgaris, and Kale, Brassica oleracea. J. World Aquac. Soc. 2018, 49, 837–844. [Google Scholar] [CrossRef]
- Poudel, P.R.; Kataoka, I.; Mochioka, R. Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult. 2008, 92, 147–153. [Google Scholar] [CrossRef]
- Cardia, L.H.B.; Junior, M.R.B. Influência da Iluminação Artificial no Cultivo de Rabanete. 2019. Available online: http://rdu.unicesumar.edu.br/handle/123456789/4710 (accessed on 21 January 2024).
- Freitas, I.S. Suplementação Luminosa com Lâmpadas LED no Cultivo de Microverdes em Ambiente Protegido. Master’s Thesis, Universidade de São Paulo, Piracicaba, Brazil, 2020. [Google Scholar]
- Maluf, G.E.G.M.; Paula, A.C.C.F.F.; Leite, P.C.; Alvarenga, A.A.; Maluf, H.J.G.M. Efeito da Iluminação Noturna Complementar a 18 cm de Altura no Crescimento de Mudas de Alface (Lactuca sativa L.). In Proceedings of the IV Semana de Ciência e Tecnologia do IFMG, Bambuí, Brazil, 23–25 October 2011. [Google Scholar]
- Pedroza, J.P.; Lima, S.C.; Moraes Neto, J.M.; Melo, D.F.; Silva, T.T.S. Crescimento de Alface Cultivada sob Iluminação de Diodos Emissores de Luz. In Proceedings of the 6th Congresso Técnico Científico da Engenharia e da Agronomia, Palmas, Brazil, 17–19 September 2019; Available online: https://www.confea.org.br/midias/uploads-imce/Contecc2019/Agronomia/CRESCIMENTO%20DE%20ALFACE%20CULTIVADA%20SOB%20ILUMINA%C3%87%C3%83O%20DE%20DIODOS%20EMISSORES%20DE%20LUZ.pdf (accessed on 15 February 2024).
- Chen, X.L.; Li, Y.L.; Wang, L.C.; Guo, W.Z. Red and blue wavelengths affect the morphology, energy use efficiency and nutritional content of lettuce (Lactuca sativa L.). Sci. Rep. 2021, 11, 8374. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Huang, C.; Wu, P.; Ge, L.; Xu, Y. Optimization of Artificial Light for Spinach Growth in Plant Factory Based on Orthogonal Test. Plants 2020, 9, 490. [Google Scholar] [CrossRef]
- Yang, H.-C.; Kim, Y.-H.; Byun, H.-J.; Choi, I.-L.; Vu, N.-T.; Kim, D.-H.; Yoon, H.-S.; Jang, D.-C. Identification of Appropriate Light Intensity and Daytime Temperature for Cucumber (Cucumis sativus L.) Seedlings in a Plant Factory with Artificial Lighting for Use as Grafting Material. Sustainability 2023, 15, 4481. [Google Scholar] [CrossRef]
- Darko, E.; Heydarizadeh, P.; Schoefs, B.; Sabzalian, M.R. Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philos. Trans. R. Soc. B 2014, 369, 20130243. [Google Scholar] [CrossRef]
- Pilon, L.; Guedes, I.M.R.; Ribeiro, R.L.V.; Fonseca, R.S.A.; Silva, J.R. Teores de Antocianinas em Manjericão Roxo e Vitamina C em Alface Cultivados em Hidroponia sob Iluminação Artificial; Embrapa Hortaliças: Brasília, Brazil, 2021. [Google Scholar]
- Reyes-Carmona, J.; Yousef, G.G.; Martínez-Peniche, R.A.; Lila, M.A. Antioxidant capacity of fruit extracts of blackberry (Rubus sp.) produced in different climatic regions. J. Food Sci. 2005, 70, s497–s503. [Google Scholar] [CrossRef]
- Chalker-Scott, L.; Fuchigami, L.H. The role of phenolic compounds in plant stress responses. In Low Temperature Stress Physiology in Crops; Li, P.H., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 67–80. [Google Scholar] [CrossRef]
- Centro de Referência para as Energias Solar e Eólica Sérgio Brito (CRESESB). Potencial Solar—SunData v. 3.0. 2018. Available online: https://cresesb.cepel.br/index.php#localidade_1804 (accessed on 19 February 2024).
- Sarruge, J.R. Soluções nutritivas. Summa Phytopathol. 1975, 1, 231–233. [Google Scholar]
- Pereira, G.A.; Arruda, H.S.; Pastore, G.M. Modification and validation of Folin-Ciocalteu assay for faster and safer analysis of total phenolic content in food samples. Braz. J. Food Res. 2018, 9, 6062. [Google Scholar] [CrossRef]
- Matic, P.; Sabljic, M.; Jakobek, L. Validation of Spectrophotometric Methods for the Determination of Total Polyphenol and Total Flavonoid Content. J. AOAC Int. 2017, 100, 1795–1803. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, Y.; Piao, F.; Sun, Z. Effects of different LED sources on the growth and nitrogen metabolism of lettuce. Plant Cell Tissue Organ Cult. 2018, 134, 231–240. [Google Scholar] [CrossRef]
- Rahman, M.M.; Field, D.L.; Ahmed, S.M.; Hasan, M.T.; Basher, M.K.; Alameh, K. LED Illumination for High-Quality High-Yield Crop Growth in Protected Cropping Environments. Plants 2021, 10, 2470. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xu, A.; Cheng, Z.M. Effects of light emitting diode lights on plant growth, development and traits a meta-analysis. Hortic. Plant J. 2021, 7, 552–564. [Google Scholar] [CrossRef]
- Bantis, F.; Ouzounis, T.; Radoglou, K. Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Sci. Hortic. 2016, 198, 277–283. [Google Scholar] [CrossRef]
- Ahmadi, T.; Shabani, L.; Sabzalian, M.R. LED light sources improved the essential oil components and antioxidant activity of two genotypes of lemon balm (Melissa ofcinalis L.). Bot. Stud. 2021, 62, 9. [Google Scholar] [CrossRef] [PubMed]
- Terfa, M.T.; Olsen, J.E.; Torre, S. Blue Light Improves Stomatal Function and Dark-Induced Closure of Rose Leaves (Rosa x hybrida) Developed at High Air Humidity. Front. Plant Sci. 2020, 11, 1036. [Google Scholar] [CrossRef]
- Matthews, J.S.A.; Vialet-Chabrand, S.; Lawson, T. Role of blue and red light in stomatal dynamic behaviour. J. Exp. Bot. 2020, 71, 2253–2269. [Google Scholar] [CrossRef]
- Dou, H.; Niu, G.; Gu, M. Pre-Harvest UV-B Radiation and Photosynthetic Photon Flux Density Interactively Affect Plant Photosynthesis, Growth, and Secondary Metabolites Accumulation in Basil (Ocimum basilicum) Plants. Agronomy 2019, 9, 434. [Google Scholar] [CrossRef]
- Rizzon, A.A.; Silvestre, W.P.; Vicenço, C.B.; Rota, L.D.; Pauletti, G.F. Supplementary Light on the Development of Lettuce and Cauliflower Seedlings. Stresses 2024, 4, 94–106. [Google Scholar] [CrossRef]
- Proz, M.Á.; Silva, M.A.S.; Rodrigues, E.; Bender, R.J.; Rios, A.O. Effects of indoor, greenhouse, and field cultivation on bioactive compounds from parsley and basil. J. Sci. Food Agric. 2021, 101, 6320–6330. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Etae, N.; Wamae, Y.; Khummueng, W.; Utaipan, T.; Ruangrak, E. Effects of artificial light sources on growth and phytochemicals content in green oak lettuce. Hortic. Bras. 2020, 38, 204–210. [Google Scholar] [CrossRef]
Treatment | PL (cm) | AFM (g) | ADM (mg) | DRM (mg) | LA (mm2) |
---|---|---|---|---|---|
T1—purple light | 17.0 ± 1.8 * | 3.74 ± 0.72 | 250 ± 60 | 140 ± 20 ns | 5848 ± 1095 ns |
T2—white light | 13.5 ± 1.0 | 5.16 ± 0.45 * | 340 ± 20 * | 100 ± 40 | 9808 ± 2870 |
CV (%) | 14.93 | 21.15 | 20.10 | 28.66 | 33.63 |
Treatment | Total Phenolic Compounds (mg EAG∙100 g−1) | Flavonoids (mg EQ∙100 g−1) |
---|---|---|
T1—purple light | 632.6 ± 111.9 ns | 881.4 ± 228.5 ns |
T2—white light | 523.5 ± 100.0 | 736.8 ± 221.9 |
CV (%) | 19.76 | 27.49 |
Species | Treatment | PL (cm) | AFM (g) | ADM (mg) | DRM (mg) | LA (mm2) |
---|---|---|---|---|---|---|
Red cabbage | T1 | 14.2 ± 2.4 ns | 1.95 ± 0.37 | 110 ± 30 | 50 ± 7 | 4150 ± 1224 ns |
T2 | 16.0 ± 1.4 | 2.76 ± 0.19 * | 180 ± 10 * | 70 ± 2 * | 5894 ± 750 | |
CV (%) | 10.44 | 14.17 | 24.42 | 30.54 | 28.65 | |
Mustard | T1 | 17.4 ± 0.4 | 4.26 ± 0.28 ns | 310 ± 20 | 80 ± 7 | 8242 ± 815 |
T2 | 20.2 ± 1.9 * | 4.82 ± 0.82 | 460 ± 80 * | 130 ± 22 * | 13,174 ± 2286 * | |
CV (%) | 13.87 | 21.59 | 27.70 | 12.40 | 26.36 |
Treatment | Purple Cabbage | Mustard | ||
---|---|---|---|---|
TPC (mg EAG∙100 g−1) | Flavonoids (mg EQ∙100 g−1) | TPC (mg EAG∙100 g−1) | Flavonoids (mg EQ∙100 g−1) | |
T1 | 1157.5 ± 78.0 ns | 661.9 ± 32.6 ns | 1151.2 ± 162.8 ns | 739.9 ± 184.2 ns |
T2 | 1058.9 ± 75.5 | 730.0 ± 84.7 | 1129.9 ± 67.4 | 754.0 ± 117.1 |
CV (%) | 7.98 | 10.01 | 10.16 | 19.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maran, B.; Silvestre, W.P.; Pauletti, G.F. Preliminary Study on the Effect of Artificial Lighting on the Production of Basil, Mustard, and Red Cabbage Seedlings. AgriEngineering 2024, 6, 1043-1054. https://doi.org/10.3390/agriengineering6020060
Maran B, Silvestre WP, Pauletti GF. Preliminary Study on the Effect of Artificial Lighting on the Production of Basil, Mustard, and Red Cabbage Seedlings. AgriEngineering. 2024; 6(2):1043-1054. https://doi.org/10.3390/agriengineering6020060
Chicago/Turabian StyleMaran, Bruna, Wendel Paulo Silvestre, and Gabriel Fernandes Pauletti. 2024. "Preliminary Study on the Effect of Artificial Lighting on the Production of Basil, Mustard, and Red Cabbage Seedlings" AgriEngineering 6, no. 2: 1043-1054. https://doi.org/10.3390/agriengineering6020060
APA StyleMaran, B., Silvestre, W. P., & Pauletti, G. F. (2024). Preliminary Study on the Effect of Artificial Lighting on the Production of Basil, Mustard, and Red Cabbage Seedlings. AgriEngineering, 6(2), 1043-1054. https://doi.org/10.3390/agriengineering6020060