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Abstract: The application of remote sensing, which is non-destructive and cost-efficient, has been
widely used in crop monitoring and management. This study used a built-in multispectral imager
on a small unmanned aerial vehicle (UAV) to capture multispectral images in five different spectral
bands (blue, green, red, red edge, and near-infrared), instead of satellite-captured data, to monitor
soybean growth in a field. The field experiment was conducted in a soybean field at the Mississippi
State University Experiment Station near Pontotoc, MS, USA. The experiment consisted of five cover
crops (Cereal Rye, Vetch, Wheat, Mustard plus Cereal Rye, and native vegetation) planted in the
winter and three fertilizer treatments (Fertilizer, Poultry Liter, and None) applied before planting the
soybean. During the soybean growing season in 2022, eight UAV imaging flyovers were conducted,
spread across the growth season. UAV image-derived vegetation indices (VIs) coupled with machine
learning (ML) models were computed for characterizing soybean growth at different stages across
the season. The aim of this study focuses on monitoring soybean growth to predict yield, using
14 VIs including CC (Canopy Cover), NDVI (Normalized Difference Vegetation Index), GNDVI
(Green Normalized Difference Vegetation Index), EVI2 (Enhanced Vegetation Index 2), and others.
Different machine learning algorithms including Linear Regression (LR), Support Vector Machine
(SVM), and Random Forest (RF) are used for this purpose. The stage of the initial pod development
was shown as having the best predictability for earliest soybean yield prediction. CC, NDVI, and
NAVI (Normalized area vegetation index) were shown as the best VIs for yield prediction. The RMSE
was found to be about 134.5 to 511.11 kg ha−1 in the different yield models, whereas it was 605.26
to 685.96 kg ha−1 in the cross-validated models. Due to the limited number of training and testing
samples in the K-fold cross-validation, the models’ results changed to some extent. Nevertheless, the
results of this study will be useful for the application of UAV remote sensing to provide information
for soybean production and management. This study demonstrates that VIs coupled with ML models
can be used in multistage soybean yield prediction at a farm scale, even with a limited number of
training samples.

Keywords: crop yield prediction; UAV; multispectral imaging; machine learning

1. Introduction

The relationship between agriculture and food security is intertwined. Ongoing
advancements in technology and tools are streamlining agricultural operations, facilitating
a daily increase in food production. Despite these developments, challenges persist in
managing the field environment, obtaining current information on crops and fields, and
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addressing uncertainties related to weather and unforeseen natural events. In pursuit of the
national objective of a sustainable agricultural production system, numerous researchers
are actively working to enhance monitoring and forecasting systems for crop production.

Soybean is the fourth leading crop cultivated globally, and the most-traded agricultural
commodity, at about 9 percent of the total value of agricultural trade [1]. It is the second
most-cultivated crop in the United States, comprising an about 31.2% share of the total
area planted (about 31.1 million hectares) and providing a net return of about 544.89 USD
per hectare [2]. The national average soybean total production costs per bushel were
9.85 USD for the 2021 crop in the United States [1]. According to a 2022 report, U.S. soybean
production has increased and reached 4465 million bushels (121.5 million metric tons) in
2022 [3]. However, in 2022, an estimated 4.3 billion bushels of soybeans were produced
in the United States, a decrease of almost 200 million bushels compared to the previous
year [4].

To reduce production costs, the adoption of new technologies can be beneficial. To
provide sufficient food and fibers for increasing human demands, an increase in agricul-
tural production is urgently needed. However, sustainable food production is always a
demanding and challenging issue. With the challenges of global climate change, natural
and anthropogenic pollution, erosion, and disturbances, the agriculture sector needs new,
additional technologies to overcome the limitations of crop production. Remote sensing
as an advanced technology is, nowadays, widely applied in precision agriculture [5–7]. It
is a method of acquiring spatial information by measuring electromagnetic radiation that
interacts with the atmosphere and with objects. Nowadays, multispectral and hyperspectral
space-borne and airborne images are available from different sensors on different platforms
like MODIS, Landsat, SPOT, Sentinel, crewed aircraft, and uncrewed unmanned aerial
vehicles (UAVs), with different resolutions and wavelengths [8].

However, resolution and scale are two important factors in the application of remote
sensing (RS) for precision agriculture. On the farm scale, UAVs are successfully used for
corn yield prediction at different growth stages [9]. UAV-captured multispectral images
are widely applied for soybean grain yield prediction [10–12]. Satellite-captured images
are also applied for monitoring soybean growth stages [13] and yield prediction [1]. Other
researchers are also trying to improve crop cultivation and monitoring systems using RS
technology [14–19].

Crop yield prediction using the vegetation index (VI) obtained from RS data is chal-
lenging [10]. This study has been conducted to use some commonly used VIs, i.e., the
CC (Canopy Cover), NDVI (Normalized Difference Vegetation Index), GNDVI (Green
Normalized Difference Vegetation Index), EVI2 (Enhanced Vegetation Index 2), NDRE
(Normalized Difference Red Edge Index), ARVI (Atmospherically resistant vegetation
index), CCCI (Canopy Chlorophyl Content Index), GRRI (Green–Red ratio vegetation
Index), CARI (Chlorophyll Absorption Ratio Index), NAVI (Normalized Area Vegetation
Index), SCCCI (Simplified Canopy Chlorophyll Content Index), CIRE (Chlorophyll Index
Red edge), CVI (Chlorophyll Vegetation Index), and GCVI (Green Chlorophyll Vegetation
Index) to monitor crop yield at different stages of soybean growth. Monitoring soybean
growth at the vegetative and reproductive stages would be helpful for improving crop
yield prediction levels.

Furthermore, this study used some popular ML models, i.e., Linear Regression (LR),
Random Forest (RF), and Support Vector Machine (SVM) that have been previously applied
for crop yield prediction [9–11]. Different stages of soybean growth have been modelled
with LR models [13]. The VIs have been used to study soybean V4 stages (25 days after
emergence), using decision trees for yield prediction [10]. Besides this, the vegetative
(V6) and reproductive (R5) growth stages of corn have been explored using different ML
models [9]. Different phenotypes of soybean have also been examined using machine
learning for yield prediction, which is helpful for crop breeding assessment [11]. Data
fusion and ML models also show good predictions for soybean yield estimation [12]. This
study monitored both the vegetative and reproductive stages of soybean using ML models
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for yield estimation. However, identifying detailed information for the different stages
of soybean growing in a field is a difficult and time-consuming task. For better yield
prediction, this information is necessary. VIs made from remotely sensed images would be
helpful for this purpose.

The purpose of this study was to identify soybean yield under the influence of nutrient
management in a field. This will provide advantages during decision making for farm
management, crop economics, and market management. The objectives of this study were
to identify the optimal VIs that are useful at a farm scale and the optimal stage for predicting
soybean yield by the processing and analyzing of UAV-captured multispectral images.

2. Materials and Methods
2.1. Study Site

The study field was located at the Pontotoc Ridge-Flatwoods Branch Experiment
Station of the Mississippi Agricultural and Forestry Experiment Station near Pontotoc, MS,
USA (34.2478831◦ N, 88.998673◦ W) (Figure 1).
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2.2. Experiment Design

The study consisted of five cover crops (Cereal Rye, Vetch, Wheat, Mustard plus Cereal
Rye, and native vegetation) planted in the winter and three fertilizer treatments (Synthetic
Fertilizer, Poultry Liter, and None) applied before planting the soybean in a full factorial
combination. The design was a randomized complete block with four replications. The
cover crops were planted in the fall of 2021 and killed about two weeks before planting
soybean in the spring of 2022. The design of the experimental plots for the cover crops and
fertilizer treatments are mentioned in Table A1 and the layout as shown in Figure 2. The
size of each plot was 6.1 m by 9.1 m. The synthetic fertilizer treatment was recommended
based on standard practice; it contained 125 kg ha−1 yr−1 (Kilogram per hectare per year)
of Phosphorous (P), 45 kg ha−1 yr−1 of K (Potassium), 22.4 45 kg ha−1 yr−1 of S (Sulphur),
and 4.5 of Zn (Zinc). Poultry litter (PL) was used as a substitute for synthetic fertilizers.
The rate of PL was 4500 kg ha−1 yr−1. Hence, the soybean was not irrigated. Therefore,
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the soybean growth stages mentioned in Table 1 were examined during the growth period.
The soybean yield was measured after harvesting and compared with different stages of
soybean growth in the models described in later sections.
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Table 1. Soybean growth stages with respect to UAV flyovers for field imaging.

No. Date of UAV Imaging Flyovers Growth Stage Label and Description

a 8 June 2022 VE: Vegetative Emergence
b 17 June 2022 V1: 1st node develops
c 7 July 2022 V7: 8th node develops
d 21 July 2022 R3: Initial Pod develops
e 3 August 2022 R4: Full Pod develops
f 16 August 2022 R5: Initial seed develops
g 31 August 2022 R6: Full seed develops
h 13 September 2022 R7: Initial Maturity

2.3. UAV Imaging

The soybean field images were acquired using a DJI Phantom 4 quadcopter UAV
with a built-in multispectral camera (DJI, Shenzhen, China). On the UAV, the camera was
mounted on a gimble with a −90◦ to +30◦ tilt controllable range, with six 1/2.9” 2.08 MP
CMOS sensors with a 1600 × 1300 image size and 62.7◦ field of view. The sensors included
one broadband RGB sensor for visible light imaging and five narrowband monochrome
sensors (blue (B): 450 nm ± 16 nm; green (G): 560 nm ± 16 nm; red (R): 650 nm ± 16 nm;
red edge (RE): 730 nm ± 16 nm; and near-infrared (NIR): 840 nm ± 26 nm) for multispectral
imaging. For image calibration from digital counts to percent reflectance, the images of
a calibrated reflectance panel were captured prior to and after each flight. The camera
operation was automatically synchronized for global position system (GPS) positions with
the global navigation satellite system (GNSS; GPS + GLONASS + Galileo) built-in on
the UAV.

According to the USDA’s field crop usual planting and harvesting dates (2010), the
most active season for planting is between 24 March–27 April and the harvesting period is
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between 23 August–23 September for Mississippi (https://downloads.usda.library.cornell.
edu/usda-esmis/files/vm40xr56k/dv13zw65p/w9505297d/planting-10-29-2010.pdf, ac-
cessed on 10 January 2024). We have followed the period of late May for planting and
mid-September for the harvesting of soybean. During this period, the monthly average low
and high temperatures were reported as 19–30 ◦C for June, 21–32 ◦C for July, 20–32 ◦C for
August, and 16–29 ◦C for September in the study area. The average precipitation during
these months was 123, 110, 102, and 93 mm, respectively. The UAV flights were conducted
between 10:30 a.m. and 12:00 p.m. to avoid cloud shadows, as weather permitted, with a
flight altitude of 50 m above the canopy surface to acquire high-resolution (~4 cm/pixel)
images along the progress of the soybean’s growth. Flight routes were preset using the
mission planning tool of Pix4DCapture software (Pix4D, Lausanne, Switzerland), with an
image front overlap of 80% and a side overlap of 70%.

The collected images were Importe” to ’ix4DMapper (Pix4D, Lausanne, Switzerland)
to generate broadband RGB orthomosaic images and narrow-band green, red, red edge,
and NIR orthomosaic images, which were orthorectified to correct for geometric and
vignetting distortion. Figure 3 shows the color infrared (CIR) orthomosaic image of the
soybean field. Orthomosaic images were imported to ArcMap (ESRI, Redlands, CA, USA)
to draw the boundary of each plot based on the different treatments. A Python (https:
//www.python.org/, accessed on 10 October 2023) script was written to extract the mean
values of the canopy cover and spectral bands within each experimental plot.
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In total, UAV imaging was conducted using 8 flyovers throughout the soybean’s
growth stages (Table 1). The dates were selected based on weather conditions and the
soybean growth stages that were being monitored in the field. Figure 4 shows RGB UAV
images from each flight on changes in the condition of crops.

https://downloads.usda.library.cornell.edu/usda-esmis/files/vm40xr56k/dv13zw65p/w9505297d/planting-10-29-2010.pdf
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2.4. Vegetation Indices

Vegetation indices (VIs), which are formulated by combining image band data, are indi-
cators of crop greenness and health. Among the various vegetation indices, the normalized
difference vegetation index (NDVI) and enhanced vegetation index (EVI) are frequently
used for crop growth and yield-related research as a remote sensing parameter [20]. Other
studies have shown that the vegetation index, reflecting peak greenness, is the most active
parameter in forecasting crop yield [21,22]. In our study, the acquired multispectral datasets
for different stages of soybean growth were used in deriving thirteen VIs (Table 2).

Table 2. Description of different VIs (Blue, Green, Red, NIR, Red Edge are the five multispectral
images used for deriving the VIs).

Vegetation Index Description Formula Reference

CC Canopy cover No. of Vegetative Pixels/No. of Total Pixels [23]

NDVI Normalized difference vegetation index NIR−RED
NIR+RED [10]

GNDVI Green normalized difference vegetation index NIR−GREEN
NIR+GREEN [10]

EVI2 Two-band enhanced vegetation index 2.5(NIR−RED)
NIR+2.4RED+1

[19]

NDRE Normalized difference red edge index NIR−RED EDGE
NIR+RED EDGE [10]

ARVI Atmospherically resistant vegetation index GREEN−RED
GREEN+RED−BLUE [24]

CCCI Canopy chlorophyl content index NDRE−NDREMIN
NDREmax−NDREMIN

[25]

GRRI Green–red ratio vegetation index GREEN
RED [26]

CARI Chlorophyll absorption ratio index RED EDGE
RED [27]

NAVI Normalized area vegetation index NIR−RED
NIR [28]

SCCCI Simplified canopy chlorophyll content index NDVI
NDRE [24]

CIRE Chlorophyll index red edge NIR
RED EDGE − 1 [29]

CVI Chlorophyll vegetation index NIR×RED
GREEN2 [28]

GCVI Green chlorophyll vegetation index NIR
GREEN − 1 [30]

In addition, canopy cover (CC) [23] was included as an index by dividing the number
of vegetative pixels (0.5 NDVI thresholding) from the total number of pixels in the unit area
(each plot for this study). Table 3 provides a list of the derived VIs and their mathematical
formulas used in this study.

Table 3. Correlation between VIs.

CC NDVI GNDVI EVI2 NDRE ARVI CCCI GRRI CARI NAVI SCCCI CIRE CVI GCVI

CC 1.00
NDVI 0.80 1.00

GNDVI 0.66 0.79 1.00
EVI2 0.23 0.37 −0.18 1.00

NDRE 0.19 0.17 −0.27 0.61 1.00
ARVI 0.20 0.49 0.10 0.69 0.12 1.00
CCCI 0.19 0.17 −0.27 0.61 1.00 0.12 1.00
GRRI 0.52 0.68 0.14 0.85 0.47 0.76 0.47 1.00
CARI 0.67 0.84 0.84 0.11 −0.28 0.42 −0.28 0.50 1.00
NAVI 0.79 0.99 0.77 0.38 0.19 0.48 0.19 0.68 0.81 1.00
SCCCI 0.08 0.22 0.50 −0.43 −0.87 0.15 −0.87 −0.13 0.59 0.21 1.00
CIRE −0.14 −0.24 0.32 −0.95 −0.73 −0.60 −0.73 −0.78 0.04 −0.25 0.54 1.00
CVI 0.18 0.16 0.68 −0.76 −0.41 −0.43 −0.41 −0.55 0.30 0.16 0.43 0.74 1.00

GCVI 0.64 0.71 0.96 −0.29 −0.23 −0.04 −0.23 0.06 0.80 0.70 0.46 0.37 0.77 1.00
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2.5. Data Modeling and Evaluation
2.5.1. ML Models

Three commonly used models i.e., linear regression (LR), support vector machine
(SVM), and random forest (RF) were applied in this study to evaluate soybean yield
prediction at a farm scale [9,11,13,14]. Linear regression is a simple and interpretable
statistical model that describes the linear relationship between dependent and independent
variables. LR makes the following assumptions: homogeneity of variance (i.e., training
samples have similar variances), training samples are normally distributed and statistically
independent, and there is linearity between dependent and independent variables. For
yield prediction, SVM is employed as support vector regression (SVR) to enable an optimal
hyperplane to be obtained and minimizes the difference between predicted and observed
values. The availability of kernel functions, such as linear, polynomial, radial basis function,
and sigmoid, facilitates the development of optimal hyperplanes to produce higher accuracy.
RF uses a bagging technique, where many decision trees (DTs) are developed to obtain
an ensemble model for accurate classification or prediction results. The implemented RF
algorithm has one hyperparameter, noted as ‘mtry’, which describes the number of input
variables randomly selected at each split while developing different DTs.

2.5.2. Model Performance Evaluation

We used the coefficient of determination (R2) and Root Mean Square Error (RMSE)
in this study, as these are commonly used in assessing the prediction performance of ML
models. The mathematical equations are shown in Equations (1) and (2), respectively:

R2 = 1 − SSE
SST

= 1 − ∑(y − ŷ)2

∑(y − y)2 (1)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(2)

where ŷ is the model predicted yield, y is the measured yield, y is the average yield, n is the
total number of samples, SSE is the sum square error, and SST is the total sum square.

2.5.3. K-Fold Cross Validation

We used a K-fold cross validation scheme to evaluate the ML model’s prediction to
deal with the limited data generated by the experimental design. The schematic diagram
for the K-fold cross validation is described in Figure 5. First, the dataset is divided into
K-folds. Then, one-fold is used for testing, and the k-1 folds are used for training. A
K-number of iterations are completed to find the mean error in the models. For this study,
the data were split into 4 groups. One group was set as the test data and the remaining
3 groups were set as the training and validation data. As such, a 4-fold cross validation
was conducted with the scheme.
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3. Results
3.1. VI Explorative Analysis

This study formed 14 Vis from the images collected by the UAV. The ranges of the
Vis are plotted in Figure 6. Some Vis, i.e., CC, NDVI, GNDVI, EVI2, NDRE, ARVI, CCCI,
CIRE were within the range of 0–1. Other Vis, i.e., GRRI, CARI, NAVI, SCCCI, CVI, and
GCVI were within the range of 0–8, with some outliers. The correlation among the Vis
is shown in Table 3. While 13 VI pairs were highly positively correlated, 6 VI pairs were
negatively correlated. It is notable that we did not find any direct influence of cover crops
and fertilizer treatments on the Vis.

3.2. Impact of Fertilizer Treatments and Cover Crops

This study had three fertilizer and five cover crop treatments that had an interactive
impact on the soybean yield. As Figure 7 shows, there was an increase in soybean yield
due to fertilizer and poultry litter treatment compared to no fertilizer treatment in the
field. The range of crop yields with fertilizer treatment (fert.) was 1443.61–2421.71 kg ha−1,
with a mean of 1902.26 kg ha−1 and a standard deviation (std dev) of 292.07 kg ha−1; for
the poultry litter treatment (PL.) the range was 1526.73–2801.68 kg ha−1, with a mean of
2136.9 kg ha−1 and a std dev of 289.38 kg ha−1, respectively. The range of the crop yield with
no treatment (None) was 529.6–1453.77 kg ha−1, with a mean of 1116.37 kg ha−1 and a std
dev of 246.81 kg ha−1. However, there was no significant change in the soybean yield with
different cover crops. The study found that the range of the crop yields for Cereal Rye (CR)
was 529.6–2171.47 kg ha−1, with a mean of 1567.29 kg ha−1 and a std dev of 522.41 kg ha−1;
for Vetch (VE) this was 724.83–2338.12 kg ha−1 with a mean of 1747.45 kg ha−1 and a std
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dev of 471.83 kg ha−1; for Wheat (WH) the range was 993.1–2801.68 kg ha−1 with a mean
of 1898.9 kg ha−1 and a std dev of 533.37 kg ha−1; for Mustard plus Cereal Rye (CRm)
the range was 765.12–2783.32 kg ha−1 with a mean of 1711.2 kg ha−1 and a std dev of
553.75 kg ha−1; and for native vegetation (NV), the range was 885.09–2421.71 kg ha−1 with
a mean of 1667.69 kg ha−1 and a std dev of 448.23 kg ha−1, respectively. The dry weight
of the CR, CRm, VE, and WH were measured and the average values were 1885 kg ha−1,
2009 kg ha−1, 1652 kg ha−1, and 3242 kg ha−1,respectively. The NV’s dry weight was
not measured.
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3.3. Yield Prediction Modeling
3.3.1. Crop Yield Modeling

Obtained using VIs, the crop yield modeling results for the total growth season are
listed in Table 4. From the LR model, CC, NDVI, and NAVI showed better predictability,
with a RMSE of 404.65, 447.22, and 447.76 kg ha−1, respectively. The R2 in the LR model
ranged from 0 to 38% using different VIs. A similar trend was found in the SVR model.
The RMSE ranged between 409.29 and 529.33 kg ha−1 in the SVR model. However, the RF
model showed CC, NDVI, EVI2, GRRI, and NAVI as being better VIs compared to the rest
of the VIs. The R2 values ranged between 80 and 87% and the RMSE ranged between 184.6
and 228.12 kg ha−1 in the RF models. The CC metrics showed the least RMSE and highest
R2 value of all the ML models. Overall, all models agreed that the CC, NDVI and NAVI
were the best indices for soybean yield modelling from UAV-derived multispectral images.

Table 4. Yield prediction from three ML models.

VI

LR Model RF Model SVR Model

R2 RMSE
(kg ha−1) R2 RMSE

(kg ha−1) R2 RMSE
(kg ha−1)

CC 0.386 404.65 0.872 184.60 0.372 409.29
NDVI 0.250 447.22 0.849 200.54 0.245 448.63

GNDVI 0.105 488.44 0.816 221.39 0.098 490.46
EVI2 0.046 504.45 0.863 191.33 0.059 500.75

NDRE 0.025 509.76 0.811 224.35 −0.039 526.37
ARVI 0.044 504.79 0.839 207.00 0.033 507.75
CCCI 0.025 509.76 0.811 224.35 0.040 506.00
GRRI 0.174 469.21 0.852 198.46 0.176 468.87
CARI 0.152 475.60 0.835 209.55 0.197 462.82
NAVI 0.248 447.76 0.849 200.54 0.247 447.96
SCCCI 0.000 516.35 0.824 216.88 −0.051 529.33
CIRE 0.017 511.85 0.840 206.66 −0.037 525.84
CVI 0.002 515.75 0.805 228.12 0.001 516.02

GCVI 0.089 492.75 0.816 221.39 0.117 485.35

3.3.2. Soybean Yield Modeling at Different Growth Stages

In this study, UAV imaging flyovers spanned soybean growth phenology across
different stages, i.e., VE, V1, V7, R3, R4, R5, R6, and R7, as shown in Table 1. For VE, V1,
V7, R3, R4, R5, R6, and R7, the crop yield modeling results (R2, and RMSE) are plotted in
Figures 8 and 9, respectively. With the LR model, the soybean growth stages of R3, R4, and
R5 were indicated as good stages for yield prediction, with high R2 and low RMSE values.
All the VIs showed the same trend in these stages. However, the variation in the prediction
of the RF model was not noticeable. Besides the LR model, the SVR model indicated
variations in yield prediction at different growth stages. This study found that the LR
and SVR models were more consistent than the RF model for the soybean yield prediction
scenarios. Therefore, the R3 stage could be used for early soybean yield prediction and R5,
R6, and R7 could be used for later yield prediction using any ML models.
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Figure 8. The R2 values for soybean yield prediction modeling at different growth stages: (a) for the
LR model, (b) for the RF model, and (c) for the SVR model, respectively.
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3.4. Cross-Validated Yield Prediction Model

Due to the limited sample size of the dataset, we cross-validated the total season
soybean yield model using a K-fold cross validation scheme. Here, we have four-fold cross
validation results, as shown in Table 5. This study found a range of RMSEs of between
618.71 and 679.24 kg ha−1 from all the models, with varying R2 values. Different VIs
showed different values of R2 and RMSE in different models but with similar trends. We
found similar trends in the LR and SVR cross-validated models. However, the RF models
showed an ability to capture data patterns, which might be due to the limited number
of training and testing samples. The negative R2 value is a reflection of this. The Lowest
RMSE of 595.64 kg ha−1 was found in the SVR model using the CARI index. The SVR
model showed less sensitivity for soybean yield prediction. However, this study simplified
the VI metrics from these cross-validated ML models, which may have been useful for
soybean yield modeling with limited data.

Table 5. Cross-validated yield prediction by three ML models.

VI

LR Model RF Model SVR Model

R2 RMSE
(kg ha−1) R2 RMSE

(kg ha−1) R2 RMSE
(kg ha−1)

CC 0.063 621.40 −0.117 678.56 0.082 615.14
NDVI 0.012 638.01 0.015 625.95 0.036 630.34

GNDVI 0.017 636.67 −0.155 677.89 0.023 634.58
EVI2 0.013 637.74 −0.003 642.92 0.025 633.91

NDRE 0.025 634.04 −0.060 660.95 0.024 634.18
ARVI −0.004 643.26 −0.020 648.37 0.002 641.44
CCCI 0.025 634.04 −0.060 660.95 0.031 632.16
GRRI 0.061 622.07 −0.129 670.26 0.069 619.45
CARI 0.076 617.16 −0.115 677.95 0.109 595.64
NAVI 0.002 641.24 0.016 625.82 0.008 639.56
SCCCI 0.020 635.59 −0.138 684.96 0.056 623.62
CIRE 0.008 639.29 −0.105 675.01 0.007 628.73
CVI 0.002 641.51 −0.158 678.97 0.048 615.55

GCVI 0.053 624.63 −0.149 688.13 0.098 599.00

4. Discussion

This study developed a remote sensing method for monitoring soybean growth and
predicting yields using UAV multispectral image data by using machine learning ap-
proaches. Compared to satellite sensors, UAV sensors have the advantage of providing
high-resolution data with low atmospheric interference and showed good predictive abili-
ties in this study, which will be informative for reducing crop management costs and labor.
In this study, we formed and used 14 VI metrics. Of these 14 VIs, CC, NDVI, and NAVI
showed good performance in predicting soybean yield at different growth stages. Previous
studies have also emphasized the use of NDVI and NDVI-derived metrics for soybean
yield prediction using remote sensing data [13,14]. This study found that the R3 stage, i.e.,
the initial pod development stage, could be the earliest stage for good yield prediction
derived from the ML models. A previous study conducted on the V6 and R5 stages for
corn yield prediction showed a similar performance [9]. The RMSE found in this study,
which was a range of between 605.26 and 685.96 kg ha−1 in the cross validated models,
followed the results found in previous studies [13]. Our study also found the impacts of
nutrient treatments, i.e., poultry litter and fertilizer, on the soybean yield.

Among the ML models used in this study, the LR model was easiest to implement.
However, this model was found to be sensitive to the outliers, so it was difficult to monitor
the crop growth and yield relationship. However, the SVR model was found to be less
sensitive to the crop growth and yield interaction and was good for yield prediction.
However, while the RF model is usually good for identifying feature interactions, due to
the small sample size it could not identify the proper interactions during cross validation.
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We found a negative R-square in the cross validated RF model. Therefore, all models
showed good applicability for soybean yield prediction.

This study showed a real field scenario for soybean yield prediction using UAV
multispectral data. These results could be helpful in implementing UAVs in agricultural
crop management and could also help in national and global crop production management
in cooperation with satellite sensors for large-scale studies. The use of UAVs in the field
will reduce labor and costs for seasonal crop production in fields. In crop science studies,
field-scale experiments are highly desirable; however, the costs of the experimental setups
prevent repetition over multiple years.

Therefore, this study maintains an actual field scenario of soybean production with
nutrient management and agrochemical treatment. The results found in this study will
provide a baseline for future crop studies using UAVs. In addition to this, if we could
collect more UAV images, the soybean growth stages could be well monitored and might
improve the prediction scenario. Additionally, considering meteorological factors in the
ML model could provide more realistic predictions.

5. Conclusions

This study was conducted on soybean crops with nutrient management in a field. The
use of UAVs to monitor soybean growth and predict soybean yield from VI metrics showed
fruitful behaviors. The CC, NDVI, and NAVI metrics showed the best predictability at
different stages of soybean growth. The earliest time for soybean yield prediction was at
initial pod development, according to UAV-derived VI metrics. This study showed the
LR, RF and SVR model’s applicability for soybean yield prediction. However, any other
ML model could fit in this study. Considering the interaction of fertilizers and cover crops,
different-yield ML models produced an RMSE ranging from 134.5 to 511.11 kg ha−1 in
training models, in contrast to the 605.26 to 685.96 kg ha−1 in the cross-validated models.
This study will help us meet national crop management goals and will assist decision
makers in crop production and management.
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Abbreviations

ARVI Atmospherically resistant vegetation index
B Blue
CARI Chlorophyll Absorption Ratio Index
CC Canopy Cover
CCCI Canopy Chlorophyl Content Index
CIR Color infrared
CIRE Chlorophyll Index Red edge
CR Cereal Rye
CRm Mustard plus Cereal Rye
CVI Chlorophyll Vegetation Index
EVI2 Enhanced Vegetation Index 2
Fert Fertilizer
G Green
GCVI Green Chlorophyll Vegetation Index
GNDVI Green Normalized Difference Vegetation Index
GNSS Global navigation satellite system
GPS Global position system
GRRI Green–Red ratio vegetation Index
kg ha−1 yr−1 Kilogram per hectare per year
LR Linear Regression
ML Machine Learning
NAVI Normalized Area Vegetation Index
NDRE Normalized Difference Red Edge Index
NDVI Normalized Difference Vegetation Index
NIR Near Infrared
NV Native vegetation
PL Poultry Liter
R Red
RE Red Edge
RF Random Forest
RMSE Root Mean Square Error
R2 Coefficient of Determination
RS Remote sensing
SCCCI Simplified Canopy Chlorophyll Content Index
SVM Support Vector Machine
UAV Unmanned aerial vehicle
VE Vetch
WH Wheat

Appendix A

Table A1. Design of field experiments for different treatments and varieties.

Cover Crop Experimental Plot Design

Cereal Rye

101 Fert 201 Fert 301 None 401 Fert

102 None 202 PL 302 Fert 402 None

103 PL 203 None 303 PL 403 PL

Vetch

104 None 204 PL 304 None 404 PL

105 Fert 205 None 305 PL 405 None

106 PL 206 Fert 306 Fert 406 Fert

Wheat

107 PL 207 None 307 None 407 Fert

108 Fert 208 PL 308 PL 408 PL

109 None 209 Fert 309 Fert 409 None
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Table A1. Cont.

Cover Crop Experimental Plot Design

NRCS Mustard + Cereal Rye

110 None 210 PL 310 None 410 None

111 PL 211 None 311 Fert 411 PL

112 Fert 212 Fert 312 PL 412 Fert

Native Vegetation

113 Fert 213 None 313 PL 413 Fert

114 PL 214 PL 314 None 414 None

115 None 215 Fert 315 Fert 415 PL
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