Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = red blotch disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
0 pages, 1252 KB  
Article
Field Susceptibility of Almond (Prunus dulcis) Cultivars to Red Leaf Blotch Caused by Polystigma amygdalinum in Apulia (Italy) and Influence of Environmental Conditions
by Pompea Gabriella Lucchese, Emanuele Chiaromonte, Donato Gerin, Angelo Agnusdei, Francesco Dalena, Davide Cornacchia, Davide Digiaro, Giuseppe Incampo, Davide Salamone, Pasquale Venerito, Francesco Faretra, Franco Nigro and Stefania Pollastro
Plants 2026, 15(2), 188; https://doi.org/10.3390/plants15020188 - 7 Jan 2026
Viewed by 205
Abstract
Polystigma amygdalinum the causal agent of Red Leaf Blotch (RLB), is responsible for one of the most important foliar diseases affecting almond [Prunus dulcis (Miller) D.A. Webb] in the Mediterranean Basin and the Middle East. The study is aimed at improving knowledge [...] Read more.
Polystigma amygdalinum the causal agent of Red Leaf Blotch (RLB), is responsible for one of the most important foliar diseases affecting almond [Prunus dulcis (Miller) D.A. Webb] in the Mediterranean Basin and the Middle East. The study is aimed at improving knowledge on RLB epidemiology and the role of environmental conditions in disease development. Field monitoring was conducted from 2022 to 2025 in three almond orchards located in Apulia (southern Italy) and characterized by different microclimatic conditions. A total of 39 cultivars, including Apulian local germplasm and international cultivars (‘Belona’, ‘Genco’, ‘Guara’, ‘Ferragnès’, ‘Filippo Ceo’, ‘Lauranne® Avijor’, ‘Soleta’, and ‘Supernova’), were evaluated. Symptoms occurred from late spring to summer, resulting particularly severe on ‘Guara’ and ‘Lauranne® Avijor’, whereas ‘Belona’, ‘Ferragnès’, ‘Genco’, and ‘Supernova’ exhibited the highest tolerance. To our knowledge, this is also the first report of RLB tolerance by ‘Filippo Ceo’, ‘Ficarazza’, ‘Centopezze’, and ‘Rachele piccola’ representing potential genetic resources for breeding programs. Moreover, these findings reinforced previous observations proving that RLB was less severe on medium-late and late cultivars. Disease incidence varied significantly among sites and years and was strongly associated with increased rainfall, higher relative humidity, and mild temperatures recorded in November, influencing disease occurrence in the following growing season. P. amygdalinum was consistently detected by qPCR in all RLB-affected tissues and, in some cases, from mixed early RLB + Pseudomonas-like symptoms. From some leaves with early RLB symptoms, P. amygdalinum was also successfully isolated in pure culture. Overall, our results provide clear evidence that P. amygdalinum is the sole fungal pathogen consistently associated with typical RLB symptoms in Apulia (southern Italy) and highlight important cultivar-dependent differences. Its frequent molecular detection in leaves showing atypical or mixed symptoms suggests unresolved epidemiological aspects requiring further investigation. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

16 pages, 2156 KB  
Article
Comparative Acquisition, Transmission, and Retention of Distinct Grapevine Red Blotch Virus Isolates in Relation to the Genotype and Sex of Spissistilus festinus, the Treehopper Vector
by Victoria J. Hoyle, Anna O. Wunsch, Heather McLane, Scottie Browning, Madison T. Flasco, Elizabeth J. Cieniewicz and Marc Fuchs
Viruses 2025, 17(9), 1274; https://doi.org/10.3390/v17091274 - 20 Sep 2025
Viewed by 712
Abstract
Grapevine red blotch virus (GRBV), the causal agent of red blotch disease of grapevines, is transmitted by Spissistilus festinus, the threecornered alfalfa hopper. Isolates of GRBV belong to two phylogenetic clades (I and II) and S. festinus is a dimorphic insect, with [...] Read more.
Grapevine red blotch virus (GRBV), the causal agent of red blotch disease of grapevines, is transmitted by Spissistilus festinus, the threecornered alfalfa hopper. Isolates of GRBV belong to two phylogenetic clades (I and II) and S. festinus is a dimorphic insect, with two genotypes found in the western (California, CA) and the southeastern (SE) regions of the United States. The transmission of GRBV by S. festinus is circulative and nonpropagative, yet some parameters of transmission remain to be characterized. Here, we compared the acquisition, transmission, and retention of GRBV isolates from phylogenetic clades I and II by S. festinus males and females of the two genotypes. Results indicated that the SE genotype acquired GRBV more efficiently (72.5%, 29/40) than the CA genotype (22.5%, 18/80), with differences in acquisition observed between males (32.5%, 26/80) and females (52.5%, 21/40) of the two S. festinus genotypes and between GRBV isolates of phylogenetic clades I (29%, 23/80) and II (60%, 24/40). Following acquisition, both S. festinus genotypes and sexes retained GRBV isolates of phylogenetic clades I and II for at least 60 days without access to an infected plant. For transmission, the GRBV isolate of phylogenetic clade II was more efficiently transmitted by the SE genotype (54%, 13/24) than the CA genotype (17%, 4/24) and SE females (75%, 12/16) were significantly more efficient transmitters of GRBV than CA females (19%, 3/16). Together, our findings revealed that S. festinus genotype, sex, and virus isolate influence GRBV acquisition and transmission but not retention. This research addressed important knowledge gaps in S. festinus-mediated transmission of GRBV that are essential for advancing red blotch disease epidemiology and developing appropriate disease management responses. Full article
(This article belongs to the Special Issue Emerging and Reemerging Plant Viruses in a Changing World)
Show Figures

Figure 1

24 pages, 11989 KB  
Article
Deep Learning-Based System for Early Symptoms Recognition of Grapevine Red Blotch and Leafroll Diseases and Its Implementation on Edge Computing Devices
by Carolina Lazcano-García, Karen Guadalupe García-Resendiz, Jimena Carrillo-Tripp, Everardo Inzunza-Gonzalez, Enrique Efrén García-Guerrero, David Cervantes-Vasquez, Jorge Galarza-Falfan, Cesar Alberto Lopez-Mercado and Oscar Adrian Aguirre-Castro
AgriEngineering 2025, 7(3), 63; https://doi.org/10.3390/agriengineering7030063 - 3 Mar 2025
Cited by 4 | Viewed by 2221
Abstract
In recent years, the agriculture sector has undergone a significant digital transformation, integrating artificial intelligence (AI) technologies to harness and analyze the growing volume of data from diverse sources. Machine learning (ML), a powerful branch of AI, has emerged as an essential tool [...] Read more.
In recent years, the agriculture sector has undergone a significant digital transformation, integrating artificial intelligence (AI) technologies to harness and analyze the growing volume of data from diverse sources. Machine learning (ML), a powerful branch of AI, has emerged as an essential tool for developing knowledge-based agricultural systems. Grapevine red blotch disease (GRBD) and grapevine leafroll disease (GLD) are viral infections that severely impact grapevine productivity and longevity, leading to considerable economic losses worldwide. Conventional diagnostic methods for these diseases are costly and time-consuming. To address this, ML-based technologies have been increasingly adopted by researchers for early detection by analyzing the foliar symptoms linked to viral infections. This study focused on detecting GRBD and GLD symptoms using Convolutional Neural Networks (CNNs) in computer vision. YOLOv5 outperformed the other deep learning (DL) models tested, such as YOLOv3, YOLOv8, and ResNet-50, where it achieved 95.36% Precision, 95.77% Recall, and an F1-score of 95.56%. These metrics underscore the model’s effectiveness at accurately classifying grapevine leaves with and without GRBD and/or GLD symptoms. Furthermore, benchmarking was performed with two edge computer devices, where Jetson NANO obtained the best cost–benefit performance. The findings support YOLOv5 as a reliable tool for early diagnosis, offering potential economic benefits for large-scale agricultural monitoring. Full article
Show Figures

Figure 1

15 pages, 3307 KB  
Article
Lack of Vertical Transmission of Grapevine Red Blotch Virus by Spissistilus festinus and Sex-Associated Differences in Horizontal Transmission
by Victoria J. Hoyle, Mackenzi Schultz, Elliot J. McGinnity Schneider, Brandon G. Roy and Marc Fuchs
Insects 2024, 15(12), 1014; https://doi.org/10.3390/insects15121014 - 21 Dec 2024
Cited by 5 | Viewed by 1154
Abstract
Grapevine red blotch is an emerging disease that threatens vineyard productions in North America. Grapevine red blotch virus (GRBV, species Grablovirus vitis, genus Grablovirus, family Geminiviridae), the causal agent of red blotch disease, is transmitted by Spissistilus festinus (Hemiptera: Membracidae) [...] Read more.
Grapevine red blotch is an emerging disease that threatens vineyard productions in North America. Grapevine red blotch virus (GRBV, species Grablovirus vitis, genus Grablovirus, family Geminiviridae), the causal agent of red blotch disease, is transmitted by Spissistilus festinus (Hemiptera: Membracidae) in a circulative, non-propagative mode. To gain new insight into GRBV-S. festinus interactions, we delved into vertical transmission and documented a lack of transovarial transmission. In addition, we investigated S. festinus sex differences in the horizontal transmission of GRBV by creating small arenas with 30 detached trifoliates of common snap bean, an experimental host of GRBV, and a preferred feeding host of S. festinus. Tracking the movement of viruliferous males, females, or a combination of the two sexes over two weeks in replicated experiments demonstrated that male S. festinus dispersed more than females with specimens of both sexes predominantly grouping together on trifoliates spatially surrounding the trifoliate onto which they were released. These behaviors resulted in a greater rate of GRBV transmission by S. festinus males (17%, 20 of 120) than females (4%, 5 of 120) or mixed-sex cohorts (9%, 17 of 180). In arenas with aviruliferous S. festinus and one (single) or four (hotspot) GRBV-infected trifoliates out of 30 total trifoliates, a higher GRBV transmission rate by males was confirmed in both single infection (50%, 30 of 60) and hotspot infection (83%, 50 of 60) arenas than by females in single infection (35%, 21 of 60) and hotspot infection (67%, 40 of 60) arenas. These findings highlighted sex-associated differences in the transmission of GRBV by S. festinus and a positive correlation between the initial virus prevalence and the rate of transmission. Finally, the secondary spread of GRBV resulted primarily from S. festinus dispersal by walking or jumping. Together, these unique GRBV transmission features support the need to characterize dispersal behaviors of S. festinus in vineyard ecosystems. Full article
(This article belongs to the Special Issue Plant–Insect Vector–Pathogen Interactions)
Show Figures

Figure 1

13 pages, 507 KB  
Article
Molecular and Metagenomic Analyses Reveal High Prevalence and Complexity of Viral Infections in French-American Hybrids and North American Grapes
by Huogen Xiao and Baozhong Meng
Viruses 2023, 15(9), 1949; https://doi.org/10.3390/v15091949 - 19 Sep 2023
Cited by 4 | Viewed by 2018
Abstract
French-American hybrids and North American grape species play a significant role in Canada’s grape and wine industry. Unfortunately, the occurrence of viruses and viral diseases among these locally important non-vinifera grapes remains understudied. We report here the results from a large-scale survey [...] Read more.
French-American hybrids and North American grape species play a significant role in Canada’s grape and wine industry. Unfortunately, the occurrence of viruses and viral diseases among these locally important non-vinifera grapes remains understudied. We report here the results from a large-scale survey to assess the prevalence of 14 viruses among 533 composite samples representing 2665 vines from seven French-American hybrid wine grape cultivars, two North American juice grape cultivars (Concord and Niagara), and the table grape cultivar Sovereign coronation. Based on reverse transcription polymerase chain reaction (RT-PCR) assays, ten viruses were detected. Grapevine rupestris stem pitting-associated virus, grapevine leafroll-associated virus 3, grapevine Pinot gris virus and grapevine red blotch virus were detected with the highest frequency. As expected, mixed infections were common; 62% of the samples contained two or more viruses. Overall, hybrid wine grapes were infected with more viruses and a higher prevalence of individual viruses than juice and table grapes. To validate these findings and to refine the virome of these non-European grapes, high-throughput sequencing (HTS) analyses of five composite samples representing each category of grapevine cultivars was performed. Results from HTS agreed with those from RT-PCR. Importantly, Vidal, a widely grown white-wine grape with international recognition due to its use in the award-winning icewine, is host to 14 viruses, four of which comprise multiple and distinct genetic variants. This comprehensive survey represents the most extensive examination of viruses among French-American hybrids and North American grapes to date. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

1 pages, 186 KB  
Correction
Correction: Torguet et al. Evaluation of Fungicides and Application Strategies for the Management of the Red Leaf Blotch Disease of Almond. Horticulturae 2022, 8, 501
by Laura Torguet, Lourdes Zazurca, Guillem Martínez, Gemma Pons-Solé, Jordi Luque and Xavier Miarnau
Horticulturae 2023, 9(7), 810; https://doi.org/10.3390/horticulturae9070810 - 14 Jul 2023
Viewed by 945
Abstract
The authors wish to add the following statement to the Acknowledgments section of article [...] Full article
23 pages, 3449 KB  
Article
Genome-Wide Association Analysis for Resistance to Coniothyrium glycines Causing Red Leaf Blotch Disease in Soybean
by Musondolya Mathe Lukanda, Isaac Onziga Dramadri, Emmanuel Amponsah Adjei, Arfang Badji, Perpetua Arusei, Hellen Wairimu Gitonga, Peter Wasswa, Richard Edema, Mildred Ochwo-Ssemakula, Phinehas Tukamuhabwa, Harun Murithi Muthuri and Geoffrey Tusiime
Genes 2023, 14(6), 1271; https://doi.org/10.3390/genes14061271 - 15 Jun 2023
Cited by 5 | Viewed by 3386
Abstract
Soybean is a high oil and protein-rich legume with several production constraints. Globally, several fungi, viruses, nematodes, and bacteria cause significant yield losses in soybean. Coniothyrium glycines (CG), the causal pathogen for red leaf blotch disease, is the least researched and [...] Read more.
Soybean is a high oil and protein-rich legume with several production constraints. Globally, several fungi, viruses, nematodes, and bacteria cause significant yield losses in soybean. Coniothyrium glycines (CG), the causal pathogen for red leaf blotch disease, is the least researched and causes severe damage to soybean. The identification of resistant soybean genotypes and mapping of genomic regions associated with resistance to CG is critical for developing improved cultivars for sustainable soybean production. This study used single nucleotide polymorphism (SNP) markers generated from a Diversity Arrays Technology (DArT) platform to conduct a genome-wide association (GWAS) analysis of resistance to CG using 279 soybean genotypes grown in three environments. A total of 6395 SNPs was used to perform the GWAS applying a multilocus model Fixed and random model Circulating Probability Unification (FarmCPU) with correction of the population structure and a statistical test p-value threshold of 5%. A total of 19 significant marker–trait associations for resistance to CG were identified on chromosomes 1, 5, 6, 9, 10, 12, 13, 15, 16, 17, 19, and 20. Approximately 113 putative genes associated with significant markers for resistance to red leaf blotch disease were identified across soybean genome. Positional candidate genes associated with significant SNP loci-encoding proteins involved in plant defense responses and that could be associated with soybean defenses against CG infection were identified. The results of this study provide valuable insight for further dissection of the genetic architecture of resistance to CG in soybean. They also highlight SNP variants and genes useful for genomics-informed selection decisions in the breeding process for improving resistance traits in soybean. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 2414 KB  
Article
Distinct Red Blotch Disease Epidemiological Dynamics in Two Nearby Vineyards
by Madison T. Flasco, Elizabeth J. Cieniewicz, Sarah J. Pethybridge and Marc F. Fuchs
Viruses 2023, 15(5), 1184; https://doi.org/10.3390/v15051184 - 17 May 2023
Cited by 9 | Viewed by 6000
Abstract
Grapevine red blotch virus (GRBV) causes red blotch disease and is transmitted by the three-cornered alfalfa hopper, Spissistilus festinus. GRBV isolates belong to a minor phylogenetic clade 1 and a predominant clade 2. Spatiotemporal disease dynamics were monitored in a 1-hectare ‘Merlot’ [...] Read more.
Grapevine red blotch virus (GRBV) causes red blotch disease and is transmitted by the three-cornered alfalfa hopper, Spissistilus festinus. GRBV isolates belong to a minor phylogenetic clade 1 and a predominant clade 2. Spatiotemporal disease dynamics were monitored in a 1-hectare ‘Merlot’ vineyard planted in California in 2015. Annual surveys first revealed disease onset in 2018 and a 1.6% disease incidence in 2022. Ordinary runs and phylogenetic analyses documented significant aggregation of vines infected with GRBV clade 1 isolates in one corner of the vineyard (Z = −4.99), despite being surrounded by clade 2 isolates. This aggregation of vines harboring isolates from a non-prevalent clade is likely due to infected rootstock material at planting. GRBV clade 1 isolates were predominant in 2018–2019 but displaced by clade 2 isolates in 2021–2022, suggesting an influx of the latter isolates from outside sources. This study is the first report of red blotch disease progress immediately after vineyard establishment. A nearby 1.5-hectare ‘Cabernet Sauvignon’ vineyard planted in 2008 with clone 4 (CS4) and 169 (CS169) vines was also surveyed. Most CS4 vines that exhibited disease symptoms one-year post-planting, likely due to infected scion material, were aggregated (Z = −1.73). GRBV isolates of both clades were found in the CS4 vines. Disease incidence was only 1.4% in non-infected CS169 vines in 2022 with sporadic infections of isolates from both clades occurring via secondary spread. Through disentangling GRBV infections due to the planting material and S. festinus-mediated transmission, this study illustrated how the primary virus source influences epidemiological dynamics of red blotch disease. Full article
(This article belongs to the Special Issue Geminiviruses 2023)
Show Figures

Figure 1

20 pages, 2907 KB  
Article
Investigating Grapevine Red Blotch Virus Infection in Vitis vinifera L. cv. Cabernet Sauvignon Grapes: A Multi-Omics Approach
by Arran C. Rumbaugh, Blythe Durbin-Johnson, Emily Padhi, Larry Lerno, Raul Cauduro Girardello, Monica Britton, Carolyn Slupsky, Mysore R. Sudarshana and Anita Oberholster
Int. J. Mol. Sci. 2022, 23(21), 13248; https://doi.org/10.3390/ijms232113248 - 31 Oct 2022
Cited by 10 | Viewed by 3671
Abstract
Grapevine red blotch virus (GRBV) is a recently identified virus. Previous research indicates primarily a substantial impact on berry ripening in all varieties studied. The current study analyzed grapes’ primary and secondary metabolism across grapevine genotypes and seasons to reveal both conserved and [...] Read more.
Grapevine red blotch virus (GRBV) is a recently identified virus. Previous research indicates primarily a substantial impact on berry ripening in all varieties studied. The current study analyzed grapes’ primary and secondary metabolism across grapevine genotypes and seasons to reveal both conserved and variable impacts to GRBV infection. Vitis vinifera cv. Cabernet Sauvignon (CS) grapevines grafted on two different rootstocks (110R and 420A) were analyzed in 2016 and 2017. Metabolite profiling revealed a considerable impact on amino acid and malate acid levels, volatile aroma compounds derived from the lipoxygenase pathway, and anthocyanins synthesized in the phenylpropanoid pathway. Conserved transcriptional responses to GRBV showed induction of auxin-mediated pathways and photosynthesis with inhibition of transcription and translation processes mainly at harvest. There was an induction of plant-pathogen interactions at pre-veraison, for all genotypes and seasons, except for CS 110R in 2017. Lastly, differential co-expression analysis revealed a transcriptional shift from metabolic synthesis and energy metabolism to transcription and translation processes associated with a virus-induced gene silencing transcript. This plant-derived defense response transcript was only significantly upregulated at veraison for all genotypes and seasons, suggesting a phenological association with disease expression and plant immune responses. Full article
(This article belongs to the Special Issue Plant Pathogen Interactions)
Show Figures

Figure 1

16 pages, 2295 KB  
Article
Composition of Pinot Noir Wine from Grapevine Red Blotch Disease-Infected Vines Managed with Exogenous Abscisic Acid Applications
by Ling Huang, Armando Alcazar Magana, Patricia A. Skinkis, James Osborne, Yanping L. Qian and Michael C. Qian
Molecules 2022, 27(14), 4520; https://doi.org/10.3390/molecules27144520 - 15 Jul 2022
Cited by 3 | Viewed by 2996
Abstract
Grapevine red blotch disease (GRBD) has negative effects on grape development and impacts berry ripening. Abscisic acid (ABA) is a plant growth regulator involved in the initiation of berry ripening. Exogenous abscisic acid application was compared to an unsprayed control on GRBD-positive Pinot [...] Read more.
Grapevine red blotch disease (GRBD) has negative effects on grape development and impacts berry ripening. Abscisic acid (ABA) is a plant growth regulator involved in the initiation of berry ripening. Exogenous abscisic acid application was compared to an unsprayed control on GRBD-positive Pinot noir vines during two vintages, and the total monomeric anthocyanin, total phenolics, phenolic composition, and volatile profile were measured in wines. In addition, untargeted metabolites were profiled using high-resolution LC-MS/MS. Results showed that the wine composition varied by vintage year and was not consistent with ABA application. Wines from the ABA treatment had a lower total anthocyanin and total phenolic content in one year. The untargeted high-resolution LC-MS/MS analysis showed a higher abundance of phenolic compounds in ABA wines in 2019, but lower in 2018. The wine volatile compounds of ABA treatments varied by vintage. There were higher levels of free β-damascenone, β-ionone, nerol, and several fermentation-derived esters, acids, and alcohols in ABA wines, but these were not observed in 2019. Lower 3-isobutyl-2-methoxypyrazine (IBMP) was also observed in wines with ABA treatment in 2019. The results demonstrated that ABA application to the fruit zones did not consistently mitigate the adverse impacts of GRBD on Pinot noir wines. Full article
Show Figures

Graphical abstract

13 pages, 1614 KB  
Article
Evaluation of Fungicides and Application Strategies for the Management of the Red Leaf Blotch Disease of Almond
by Laura Torguet, Lourdes Zazurca, Guillem Martínez, Gemma Pons-Solé, Jordi Luque and Xavier Miarnau
Horticulturae 2022, 8(6), 501; https://doi.org/10.3390/horticulturae8060501 - 4 Jun 2022
Cited by 13 | Viewed by 7581 | Correction
Abstract
Red leaf blotch (RLB) of almond, caused by Polystigma amygdalinum, is an important foliar disease of this nut tree in the Mediterranean basin and especially in Spain. In recent years, the control of this disease has become a key factor in the [...] Read more.
Red leaf blotch (RLB) of almond, caused by Polystigma amygdalinum, is an important foliar disease of this nut tree in the Mediterranean basin and especially in Spain. In recent years, the control of this disease has become a key factor in the management of Spanish almond orchards. The management of RLB is not easy due to intrinsic factors of the disease (e.g., long infection and latency periods) and the low number of registered fungicides in this country. From 2015 to 2019, different field trials were conducted in the Lleida region, NE Spain, to evaluate the efficacy of several fungicide products and of application strategies to control this disease. Systemic fungicides, which included fluopyram, trifloxystrobin, and mixtures of fluopyram + trifloxystrobin and pyraclostrobin + boscalid, performed better than contact and penetrant products and showed up to 90% control against RLB. However, the efficacy of the tested fungicides varied depending on the year. In terms of application strategies, when fungicide applications were conducted following specific meteorological conditions (after 15 days from >15 mm rainfalls with ≈10–15 °C as the minimum average temperature), their efficacy was comparable to that of calendar-based treatments (every 14, 21, or 31 days from petal fall) but with fewer applications (depending on the year, 2–4 applications as compared with 5–9 for calendar treatments). Full article
(This article belongs to the Special Issue Pathogens and Disease Control of Fruit Trees)
Show Figures

Figure 1

14 pages, 1892 KB  
Article
Transmission of Grapevine Red Blotch Virus by Spissistilus festinus [Say, 1830] (Hemiptera: Membracidae) between Free-Living Vines and Vitis vinifera ‘Cabernet Franc’
by Victoria Hoyle, Madison T. Flasco, Jiyeong Choi, Elizabeth J. Cieniewicz, Heather McLane, Keith Perry, Gerald Dangl, Maher Al Rwahnih, Michelle Heck, Greg Loeb and Marc F. Fuchs
Viruses 2022, 14(6), 1156; https://doi.org/10.3390/v14061156 - 26 May 2022
Cited by 24 | Viewed by 4501
Abstract
Grapevine red blotch disease emerged within the past decade, disrupting North American vine stock production and vineyard profitability. Our understanding of how grapevine red blotch virus (GRBV), the causal agent of the disease, interacts with its Vitis hosts and insect vector, Spissistilus festinus [...] Read more.
Grapevine red blotch disease emerged within the past decade, disrupting North American vine stock production and vineyard profitability. Our understanding of how grapevine red blotch virus (GRBV), the causal agent of the disease, interacts with its Vitis hosts and insect vector, Spissistilus festinus, is limited. Here, we studied the capabilities of S. festinus to transmit GRBV from and to free-living vines, identified as first-generation hybrids of V. californica and V. vinifera ‘Sauvignon blanc’ (Vcal hybrids), and to and from V. vinifera ‘Cabernet franc’ (Vvin Cf) vines. The transmission rate of GRBV was high from infected Vcal hybrid vines to healthy Vcal hybrid vines (77%, 10 of 13) and from infected Vvin Cf vines to healthy Vcal hybrid vines (100%, 3 of 3). In contrast, the transmission rate of GRBV was low from infected Vcal hybrid vines to healthy Vvin Cf vines (15%, 2 of 13), and from infected Vvin Cf vines to healthy Vvin Cf vines (19%, 5 of 27). No association was found between transmission rates and GRBV titer in donor vines used in transmission assays, but the virus titer was higher in the recipient leaves of Vcal hybrid vines compared with recipient leaves of Vvin Cf vines. The transmission of GRBV from infected Vcal hybrid vines was also determined to be trans-stadial. Altogether, our findings revealed that free-living vines can be a source for the GRBV inoculum that is transmissible by S. festinus to other free-living vines and a wine grape cultivar, illustrating the interconnected roles of the two virus hosts in riparian areas and commercial vineyards, respectively, for virus spread. These new insights into red blotch disease epidemiology will inform the implementation of disease management strategies. Full article
(This article belongs to the Special Issue Emerging Fruit and Vegetable Viruses)
Show Figures

Figure 1

14 pages, 3081 KB  
Review
Grapevine Red Blotch Disease Etiology and Its Impact on Grapevine Physiology and Berry and Wine Composition
by Arran C. Rumbaugh, Mysore R. Sudarshana and Anita Oberholster
Horticulturae 2021, 7(12), 552; https://doi.org/10.3390/horticulturae7120552 - 4 Dec 2021
Cited by 19 | Viewed by 9467
Abstract
Grapevine red blotch virus (GRBV) has become widespread in the United States since its identification in 2012. GRBV is the causative agent of grapevine red blotch disease (GRBD), which has caused detrimental economic impacts to the grape and wine industry. Understanding viral function, [...] Read more.
Grapevine red blotch virus (GRBV) has become widespread in the United States since its identification in 2012. GRBV is the causative agent of grapevine red blotch disease (GRBD), which has caused detrimental economic impacts to the grape and wine industry. Understanding viral function, plant–pathogen interactions, and the effects of GRBV on grapevine performance remains essential to developing potential mitigation strategies. This comprehensive review examines the current body of knowledge regarding GRBV, to highlight gaps in the knowledge and potential mitigation strategies for grape growers and winemakers. Full article
Show Figures

Figure 1

19 pages, 3902 KB  
Article
Mitigating Grapevine Red Blotch Virus Impact on Final Wine Composition
by Arran Rumbaugh, Raul Cauduro Girardello, Annegret Cantu, Charles Brenneman, Hildegarde Heymann and Anita Oberholster
Beverages 2021, 7(4), 76; https://doi.org/10.3390/beverages7040076 - 29 Nov 2021
Cited by 4 | Viewed by 4219
Abstract
Grapevine red blotch virus (GRBV), the causative agent of red blotch disease, causes significant decreases in sugar and anthocyanin accumulation in grapes, suggesting a delay in ripening events. Two mitigation strategies were investigated to alleviate the impact of GRBV on wine composition. Wines [...] Read more.
Grapevine red blotch virus (GRBV), the causative agent of red blotch disease, causes significant decreases in sugar and anthocyanin accumulation in grapes, suggesting a delay in ripening events. Two mitigation strategies were investigated to alleviate the impact of GRBV on wine composition. Wines were made from Cabernet Sauvignon (CS) (Vitis vinifera) grapevines, grafted onto 110R and 420A rootstocks, in 2016 and 2017. A delayed harvest and chaptalization of diseased grapes were employed to decrease chemical and sensory impacts on wines caused by GRBV. Extending the ripening of the diseased fruit produced wines that were overall higher in aroma compounds such as esters and terpenes and alcohol-related (hot and alcohol) sensory attributes compared to wines made from diseased fruit harvested at the same time as healthy fruit. In 2016 only, a longer hangtime of GRBV infected fruit resulted in wines with increased anthocyanin concentrations compared to wines made from GRBV diseased fruit that was harvested at the same time as healthy fruit. Chaptalization of the diseased grapes in 2017 produced wines chemically more similar to wines made from healthy fruit. However, this was not supported by sensory analysis, potentially due to high alcohol content masking aroma characteristics. Full article
Show Figures

Graphical abstract

16 pages, 3360 KB  
Article
Impact of Rootstock and Season on Red Blotch Disease Expression in Cabernet Sauvignon (V. vinifera)
by Arran C. Rumbaugh, Raul C. Girardello, Monica L. Cooper, Cassandra Plank, S. Kaan Kurtural and Anita Oberholster
Plants 2021, 10(8), 1583; https://doi.org/10.3390/plants10081583 - 31 Jul 2021
Cited by 23 | Viewed by 3367
Abstract
Grapevine red blotch virus (GRBV), the causative agent of grapevine red blotch disease, is widespread across the United States and causes a delay in ripening events in grapes. This study evaluates the effects of GRBV on Cabernet Sauvignon grape berry composition, grafted on [...] Read more.
Grapevine red blotch virus (GRBV), the causative agent of grapevine red blotch disease, is widespread across the United States and causes a delay in ripening events in grapes. This study evaluates the effects of GRBV on Cabernet Sauvignon grape berry composition, grafted on two different rootstocks (110R and 420A) in two seasons (2016 and 2017). Total soluble solids, acidity, and anthocyanin concentrations were monitored through ripening and at harvest. Phenolic and volatile compounds were also analyzed at harvest to determine genotypic and environmental influences on disease outcome. Sugar accumulation through ripening was lower in diseased fruit (RB (+)) than healthy fruit across rootstock and season. GRBV impact was larger in 2016 than 2017, indicating a seasonal effect on disease expression. In general, anthocyanin levels and volatile compound accumulation was lower in RB (+) fruit than healthy fruit. Total phenolic composition and tannin content was higher in RB (+) fruit than healthy fruit in only 110R rootstock. Overall, GRBV impacted Cabernet Sauvignon grape composition crafted on rootstock 110R more than those crafted on rootstock 420A. Full article
Show Figures

Figure 1

Back to TopTop