Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (828)

Search Parameters:
Keywords = recreational waters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 23037 KB  
Article
Blue Space and Healthy Aging: Effects on Older Adults’ Walking in 15-Minute Living Circles—Evidence from Tianjin Binhai New Area
by Xin Zhang, Yi Yu and Lei Cao
Sustainability 2025, 17(22), 10225; https://doi.org/10.3390/su172210225 (registering DOI) - 15 Nov 2025
Abstract
As global population ageing accelerates and urban governance increasingly prioritizes livability and age-friendly services, the 15-minute living circles concept has emerged as a key strategy to support daily walking exercise, social participation, and healthy ageing. In waterfront cities, blue spaces function as important [...] Read more.
As global population ageing accelerates and urban governance increasingly prioritizes livability and age-friendly services, the 15-minute living circles concept has emerged as a key strategy to support daily walking exercise, social participation, and healthy ageing. In waterfront cities, blue spaces function as important everyday settings that contribute to environmental quality, recreational opportunities, and ecosystem services for older adults. This study extends the conventional 5D built environment framework by explicitly integrating blue space elements and characterizes older adults’ walking behaviour using four indicators across two dimensions (temporal and preference-based). We applied XGBoost regression and multiscale geographically weighted regression (MGWR) to identify threshold effects and spatial heterogeneity of blue space elements on older adults’ walking, and used K-means clustering to delineate blue space advantage zones within living circles. The results show that blue space accessibility, street scale, and water body density exhibit significant nonlinear relationships with older adults’ walking. Blue space elements shape walking behavior differentially and with pronounced spatial variation: in some living circles they encourage longer, recreational walks, while in others they stimulate high-frequency, short-distance walking. These effects produce destination preferences and time period preferences. The study highlights the pivotal role of blue spaces in age-friendly living circles and, based on spatial synergies among blue space advantage zones and their components, proposes renewal strategies including expanding the functional reach of blue spaces, constructing blue slow-walking corridors, and integrating blue–green symbiotic networks. Full article
Show Figures

Figure 1

23 pages, 1872 KB  
Article
The Indoor Environment During Swimming Competitions and Its Impact on Construction Materials: Airborne Trichloramine as a Degradation Factor
by Małgorzata Kieszkowska-Krzewicka, Katarzyna Ratajczak, Katarzyna Peta and Robert Artur Cichowicz
Appl. Sci. 2025, 15(22), 12040; https://doi.org/10.3390/app152212040 - 12 Nov 2025
Viewed by 63
Abstract
Swimming is one of the most popular forms of recreational sport worldwide, recommended for people of all ages as a healthy activity. While numerous studies have focused on the impact of indoor air quality on the health of pool users, relatively few have [...] Read more.
Swimming is one of the most popular forms of recreational sport worldwide, recommended for people of all ages as a healthy activity. While numerous studies have focused on the impact of indoor air quality on the health of pool users, relatively few have addressed how specific airborne parameters in indoor swimming facilities affect the durability of construction materials. This article analyzes the current state of knowledge on the influence of the pool indoor environment on structural reliability, with trichloramine (NCl3) emphasized as a degradation factor. Indoor pool environments are classified as chemically aggressive, due to elevated air temperature (~30 °C), high humidity (often exceeding 60%), and the presence of volatile chlorine compounds released from disinfected water. Our case study demonstrates that during swimming competitions, the average concentration of airborne NCl3 reached a value of 900 µg/m3, with peaks up to 1200 µg/m3, i.e., about ten times higher than on typical usage days. The median trichloramine concertation during the competition was 1071 µg/m3. Such exposure conditions accelerate corrosion processes in stainless steels and other building materials, reducing service life and requiring targeted monitoring and preventive maintenance. Based on the findings, recommendations are provided regarding material selection, highlighting the importance of surface texture, ventilation strategies, and protective measures tailored to periods of intensive facility use. Full article
(This article belongs to the Special Issue Surface Metrology in Advanced and Precision Manufacturing)
Show Figures

Figure 1

23 pages, 1991 KB  
Article
Assessment of Glyphosate Runoff Pollution in Water Samples from Agricultural, Touristic and Ecologically Protected Areas
by Anna Maria Sulej-Suchomska, Joanna Katarzyna Jóźwik, Katarzyna Kozłowska-Tylingo, Marek Ruman, Sara Lehmann-Konera, Piotr Przybyłowski, Aleksander Maria Astel and Żaneta Polkowska
Sustainability 2025, 17(22), 10054; https://doi.org/10.3390/su172210054 - 11 Nov 2025
Viewed by 219
Abstract
The global spread of glyphosate (GLY) via agricultural runoff poses a significant threat to ecosystems, human health, and the environment, underscoring the need for sustainable agricultural practices. A comprehensive study on glyphosate contamination in runoff water, flowing surface waters, groundwater-influenced, and stagnant water [...] Read more.
The global spread of glyphosate (GLY) via agricultural runoff poses a significant threat to ecosystems, human health, and the environment, underscoring the need for sustainable agricultural practices. A comprehensive study on glyphosate contamination in runoff water, flowing surface waters, groundwater-influenced, and stagnant water samples was conducted from 2019 to 2021, across a diverse range of landscape types and environmental zones. This research constitutes a novel contribution to the field, focused on several distinct regions, including agricultural regions, tourist zones, and ecologically sensitive areas, including the Beka Natura Reserve, Natura 2000 sites and the Coastal Landscape Park in Poland. Glyphosate residues, with a maximum concentration range of 43.0–8406 ng/L, were detected in 63.5% of water samples collected from protected and unprotected areas. Glyphosate concentrations in water at high-tourism areas were highest in runoff samples from recreational and protected areas, including the Czarna Wda River in Ostrowo (512 ± 9.91 ng/L). Investigated water samples showed target hazard quotient values for glyphosate < 1, indicating no human health risk, and risk quotient values for GLY < 0.1, indicating a low ecotoxicological risk. The presented study is aligned with the United Nations’ 2030 Agenda for Sustainable Development, aiming to contribute to global sustainability goals. Full article
Show Figures

Figure 1

10 pages, 971 KB  
Article
Acute Exposure to a Common Organic UV Filter Does Not Alter the mRNA of Gonadal Estrogen or Growth Hormone Receptors in Mozambique Tilapia (Oreochromis mossambicus) In Vitro
by Glenna Maur, Kelly Silva-Picazo, Camila Dores, David Marancik and Euan R. O. Allan
Genes 2025, 16(11), 1357; https://doi.org/10.3390/genes16111357 - 10 Nov 2025
Viewed by 193
Abstract
Background/Objectives: Organic UV filters are chemical compounds that are commonly used in sunscreen products to absorb UV radiation from the Sun. To date, the filters have been detected in aquatic environments worldwide, as well as in aquatic organisms, including fish and coral. Hydroxy-4-methoxybenzophenone [...] Read more.
Background/Objectives: Organic UV filters are chemical compounds that are commonly used in sunscreen products to absorb UV radiation from the Sun. To date, the filters have been detected in aquatic environments worldwide, as well as in aquatic organisms, including fish and coral. Hydroxy-4-methoxybenzophenone (BP-3) is a common organic UV filter and it is well documented to be among the filters that are detectable worldwide in water samples and aquatic organisms. Long-term exposure in vivo studies have demonstrated that high doses of BP-3 can cause endocrine-disrupting effects in aquatic organisms. Methods: Using gonadal cell culture and quantitative RT-PCR, our study aimed to ascertain the effect of environmentally relevant doses of BP-3 (detected in aquatic systems) on the gene expression of reproductive targets, estrogen and growth hormone receptors (ERs and GHRs), in Mozambique tilapia (Oreochromis mossambicus) after an acute 24 h treatment. Results/Conclusions: Our study is the first to use an in vitro design to investigate the mechanism of the action of BP-3 on gonadal tissue in fish. Our results show that BP-3 does not induce gene regulation directly on the gonads of tilapia at doses that are comparable to what is detectable in aquatic environments after 24 h. We do verify, as seen in other teleost species, homologous regulation of ERβ in male tilapia gonadal tissue. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

32 pages, 1709 KB  
Review
The Role of Artificial Intelligence in Bathing Water Quality Assessment: Trends, Challenges, and Opportunities
by M Usman Saeed Khan, Ashenafi Yohannes Battamo, Rajendran Ravindar and M Salauddin
Water 2025, 17(21), 3176; https://doi.org/10.3390/w17213176 - 6 Nov 2025
Viewed by 336
Abstract
Bathing water quality (BWQ) monitoring and prediction are essential to safeguard public health by informing bathers about the risk of exposure to faecal indicator bacteria (FIBs). Traditional monitoring approaches, such as manual sampling and laboratory analysis, while effective, are often constrained by delayed [...] Read more.
Bathing water quality (BWQ) monitoring and prediction are essential to safeguard public health by informing bathers about the risk of exposure to faecal indicator bacteria (FIBs). Traditional monitoring approaches, such as manual sampling and laboratory analysis, while effective, are often constrained by delayed reporting, limited spatial and temporal coverage, and high operational costs. The integration of artificial intelligence (AI), particularly machine learning (ML), with automated data sources such as environmental sensors and satellite imagery has offered novel predictive and real-time monitoring opportunities in BWQ assessment. This systematic literature review synthesises current research on the application of AI in BWQ assessment, focusing on predictive modelling techniques and remote sensing approaches. Following the PRISMA methodology, 63 relevant studies are reviewed. The review identifies dominant modelling techniques such as Artificial Neural Networks (ANN), Deep Learning (DL), Decision Tree (DT), Random Forest (RF), Multiple Linear Regression (MLR), Support Vector Machine (SVM), and Hybrid and Ensemble Boosting algorithms. The integration of AI with remote sensing platforms such as Google Earth Engine (GEE) has improved the spatial and temporal solution of BWQ monitoring systems. The performance of modelling approaches varied depending on data availability, model flexibility, and integration with alternative data sources like remote sensing. Notable research gaps include short-term faecal pollution prediction and incomplete datasets on key environmental variables, data scarcity, and model interpretability of complex AI models. Emerging trends point towards the potential of near-real-time modelling, Internet of Things (IoT) integration, standardised data protocols, global data sharing, the development of explainable AI models, and integrating remote sensing and cloud-based systems. Future research should prioritise these areas while promoting the integration of AI-driven BWQ systems into public health monitoring and environmental management through multidisciplinary collaboration. Full article
Show Figures

Figure 1

17 pages, 11657 KB  
Article
Multi-Objective Spatial Suitability Evaluations for Marine Spatial Planning Optimization in Dalian Coast, China
by Lu Yang, Wenhai Lu, Jie Liu, Zhaoyang Liu, Angel Borja, Yijun Tao, Xiaoli Wang, Rong Zeng, Guocheng Zuo and Tao Wang
Sustainability 2025, 17(21), 9851; https://doi.org/10.3390/su17219851 - 4 Nov 2025
Viewed by 352
Abstract
Marine spatial planning (MSP) has emerged as a fundamental process for achieving the balanced development of marine ecology, economy, and society. However, increasing conflicts among multiple marine uses, particularly between port development, industrial activities, fisheries, recreation, and ecological protection, highlight the pressing demand [...] Read more.
Marine spatial planning (MSP) has emerged as a fundamental process for achieving the balanced development of marine ecology, economy, and society. However, increasing conflicts among multiple marine uses, particularly between port development, industrial activities, fisheries, recreation, and ecological protection, highlight the pressing demand for robust and science-based planning tools. In this study, we propose an integrated analytical framework for multi-objective spatial suitability evaluation to optimize MSP. Using the coastal waters of Dalian, China, as a case study, we evaluated the spatial suitability of five key marine activities (ecological protection, mariculture, port construction, wind energy farm development, and coastal tourism) and applied a multi-criteria decision-making approach to inform spatial zoning. The results emphasize the region’s ecological significance as providing critical habitats and migratory corridors for protected and threatened species as well as fishery resources, while also revealing substantial spatial overlaps between conservation priorities and human activities, particularly in nearshore zones. The optimized zoning scheme classifies 22.0% of the coastal waters as Ecological Redline Zones, 32.4% as Ecological Control Zones, and 45.6% as Marine Exploitation Zones. This science-based spatial classification effectively reconciles ecological priorities with development needs, providing a spatially explicit and policy-relevant decision support tool for MSP. Full article
Show Figures

Figure 1

23 pages, 4920 KB  
Article
Exploring Coastal Tourism Experience Through Social Media Text Mining: Sentiment and Thematic Patterns
by Yu Wang, Zhiyu Zhang and Zhijun Zhang
Appl. Sci. 2025, 15(21), 11721; https://doi.org/10.3390/app152111721 - 3 Nov 2025
Viewed by 532
Abstract
Research on coastal recreational activities has grown substantially, yet studies focusing on user perceptions of these spaces—critical for optimizing tourism experiences and management—remain fragmented and underdeveloped. This study addresses this gap by examining tourist sentiment in Xiamen, a renowned coastal city in China, [...] Read more.
Research on coastal recreational activities has grown substantially, yet studies focusing on user perceptions of these spaces—critical for optimizing tourism experiences and management—remain fragmented and underdeveloped. This study addresses this gap by examining tourist sentiment in Xiamen, a renowned coastal city in China, using social media data. Text mining tools were utilized to process the Weibo contents through text segmentation, frequency analysis and cluster analysis. The Two-way Neural Network Fusion Model Based on the BERT (TNNFMB) deep learning approach was employed using transfer learning for sentiment analysis, while the Latent Dirichlet Allocation (LDA) model was used to uncover latent thematic patterns. Sentiment polarity analysis revealed that positive comments constituted 56.47%, negative comments only 16.3%, and neutral comments 27.2%, confirming a generally positive perception of visitors’ coastal experiences. Tourists’ social media posts primarily revolve around five core themes in coastal areas: coastal waters, waterfronts, adjacent environments, culture and creativity, and reputation and expectation. The spatial and temporal changes in sentiment scores were discovered. Areas emphasizing sea–land landscapes, cultural theme reinforcement, and open public activities generally achieved high and stable sentiment scores. Natural and natural–artificial mixed coastlines experienced significant seasonal variations in sentiment. The recommendations of this study, generated from a sentiment perspective, include shaping a harmonious coastal environment by improving coastal management and support services to enhance the comfort of the tourist experience. This study advances understanding of user-centric coastal tourism dynamics, providing evidence-based tools for managers to enhance tourist experiences and spatial quality. Full article
Show Figures

Figure 1

12 pages, 558 KB  
Article
Recreational Water Risk from Extended-Spectrum Beta-Lactamase-Producing Escherichia coli of Broiler Origin: A Quantitative Microbial Risk Assessment
by Nunzio Sarnino, Subhasish Basak, Lucie Collineau and Roswitha Merle
Environments 2025, 12(11), 403; https://doi.org/10.3390/environments12110403 - 27 Oct 2025
Viewed by 609
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing E. coli from broiler farms can reach watersheds used for recreational swimming. We assessed short-term swimmer exposure by extending a modular quantitative microbial risk assessment (QMRA) to the recreational water pathway linking land manure application to in-stream fate and transport [...] Read more.
Extended-spectrum beta-lactamase (ESBL)-producing E. coli from broiler farms can reach watersheds used for recreational swimming. We assessed short-term swimmer exposure by extending a modular quantitative microbial risk assessment (QMRA) to the recreational water pathway linking land manure application to in-stream fate and transport with dilution and decay. We modeled single-event exposure doses and estimated loss of disability-adjusted life years (DALYs). We ran sensitivity analyses on several parameters and compared outputs to published recreational water assessments that include ESBL E. coli. Assuming a worst-case scenario, single-event doses were lower for adults (2.95 CFU; UI 0.14–6.11) and higher for children (8.78 CFU; UI 0.56–17.20) on day 1 after land application, then dropped below 0.01 CFU by day 200, with DALY losses from 10−7 to 10−10. Uncertainty was dominated by fate and transport. Stronger particle binding, faster in-stream decay, and larger effective volumes lowered exposure, while higher shedding, greater flow, and larger wash-off raised it. Estimates fell at the low end of prior studies. Swimmer exposure appears to be extremely low and short-lived. The modular QMRA links farm contamination to bathing-site risk and supports risk-based monitoring (after spreading or storms) and short-term forecasts that focus advisories on short, higher-risk windows after litter application. Full article
Show Figures

Figure 1

25 pages, 519 KB  
Article
Restoring European Coastal Wetlands for Climate and Biodiversity: Do EU Policies and International Agreements Support Restoration?
by Eleftheria Kampa, Evgeniya Elkina, Benedict Bueb and María del Mar Otero Villanueva
Sustainability 2025, 17(21), 9469; https://doi.org/10.3390/su17219469 - 24 Oct 2025
Viewed by 507
Abstract
Coastal wetlands provide crucial ecosystem services, including habitats for wildlife, carbon storage, greenhouse gas emission reduction, storm surge and flood protection, water purification, recreation, and nature-based tourism. Their protection and restoration are therefore of growing importance to conservationists, scientists, local communities, and policymakers. [...] Read more.
Coastal wetlands provide crucial ecosystem services, including habitats for wildlife, carbon storage, greenhouse gas emission reduction, storm surge and flood protection, water purification, recreation, and nature-based tourism. Their protection and restoration are therefore of growing importance to conservationists, scientists, local communities, and policymakers. This paper analyses the European Union’s (EU) policy framework, alongside international and regional agreements relevant to wetland conservation and restoration, focusing on coastal ecosystems. Drawing on policy content analysis, it assesses how 36 EU policies and multilateral agreements support or limit coastal wetland restoration and conservation efforts in Europe. The findings reveal two key gaps: first, an absence of a consistent definition of coastal wetlands within the EU policy framework; and second, the limited number of explicit policy references to these ecosystems. These shortcomings restrict opportunities for their effective inclusion in action plans and undermine coordinated conservation and restoration efforts. Most binding targets and objectives addressing coastal wetlands stem from EU policies and multilateral agreements on nature conservation, including regional sea conventions. This reliance risks overlooking opportunities within other policy sectors. While EU climate policies increasingly recognise the importance of wetland restoration, they often do so through non-binding provisions and voluntary action. To unlock the full potential of coastal wetlands for biodiversity and climate benefits, it is essential to embed coastal wetlands more explicitly within policy targets and to leverage emerging opportunities within the EU policy framework to further upscale coastal wetland restoration. Full article
Show Figures

Figure 1

14 pages, 1092 KB  
Article
Factors Influencing Eating Habits of Video Gamers and Professional eSports Gamers in Peru
by Jimena Mujica Caycho, Michelle Lozada-Urbano, Rubén Aguirre-Ipenza and Pavel J. Contreras
Foods 2025, 14(21), 3597; https://doi.org/10.3390/foods14213597 - 22 Oct 2025
Viewed by 658
Abstract
eSports and recreational video gaming are expanding in Peru, yet evidence on gamers’ dietary habits and correlates is scarce. We aimed to identify factors associated with eating habits among Peruvian video gamers and professional eSports players. Quantitative and cross-sectional study (Peru, 2023). A [...] Read more.
eSports and recreational video gaming are expanding in Peru, yet evidence on gamers’ dietary habits and correlates is scarce. We aimed to identify factors associated with eating habits among Peruvian video gamers and professional eSports players. Quantitative and cross-sectional study (Peru, 2023). A culturally adapted version of the German Sport University Cologne questionnaire (28 items; Cronbach’s α = 0.86) was administered online using non-probability snowball sampling. The primary outcome was eating-habit classification (adequate vs. inadequate) based on the instrument’s scoring. Associations with hypothesized correlates (e.g., gaming-related influences, peer interaction, advertising) were assessed with χ2 or Fisher’s exact test (α = 0.05). We analyzed 288 respondents (median age 21 years). Overall, 77.8% exhibited inadequate eating habits. Daily water intake was reported by 72%, whereas daily fruit and vegetable consumption was 21% and 32%, respectively. Peer interaction within the gaming environment (p = 0.037) and the perceived influence of video games (p = 0.031) were significantly associated with poorer eating habits. Sitting time, number of meals per day, daily water intake volume, and weekly gaming hours showed no significant association (all p > 0.05). Most Peruvian gamers report suboptimal diets. Social dynamics in the gamer community and gaming-related influences are linked to poorer eating habits, suggesting that nutrition strategies should be embedded in gamer ecosystems (teams, communities, platforms). Longitudinal and interventional studies are warranted to test targeted behavior-change approaches. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Graphical abstract

21 pages, 8380 KB  
Article
Comprehensive Study of Some Cyanobacteria in Moscow Waterbodies (Russia), Including Characteristics of the Toxigenic Microcystis aeruginosa Strains
by Elena Kezlya, Elina Mironova, Ekaterina Chernova, Maria Gololobova, Andrei Mironov, Ekaterina Voyakina, Yevhen Maltsev, Dina Snarskaya and Maxim Kulikovskiy
Toxins 2025, 17(10), 506; https://doi.org/10.3390/toxins17100506 - 14 Oct 2025
Viewed by 642
Abstract
The current study focuses on the diversity, distribution and toxic potential of cyanobacteria in the waterbodies of Moscow, Russia. The research involves the sampling of natural and artificial water environments situated within the Moscow city agglomeration, including the waterbodies of recreational importance. A [...] Read more.
The current study focuses on the diversity, distribution and toxic potential of cyanobacteria in the waterbodies of Moscow, Russia. The research involves the sampling of natural and artificial water environments situated within the Moscow city agglomeration, including the waterbodies of recreational importance. A total of 20 strains of cyanobacteria, namely representatives of Anabaena, Aphanizomenon, Argonema, Dolichospermum, Microcystis and Woronichinia, are isolated from the collected samples. The morphology of the newly obtained strains is analyzed through light microscopy. The results of morphological identification are compared to the molecular data. The molecular phylogeny of the cyanobacterial strains is assessed on the basis of 16S rRNA sequencing. The detection of cyanotoxin-producing genes through PCR reveals two strains of Microcystis aeruginosa capable of microcystin synthesis. Further analysis using HPLC-HRMS demonstrates that microcystin production includes a high proportion (20–28%) of exceptionally toxic microcystin–leucine arginine compounds. Hereby, we discuss the morphology and phylogeny of the analyzed strains and provide comments on the toxic potential of cyanobacteria within the waterbodies of Moscow. Full article
(This article belongs to the Special Issue Prospective Studies on Harmful Cyanobacteria and Cyanotoxins)
Show Figures

Figure 1

42 pages, 6873 KB  
Article
Sustainable Water and Energy Management Through a Solar-Hydrodynamic System in a Lake Velence Settlement, Hungary
by Attila Kálmán, Antal Bakonyi, Katalin Bene and Richard Ray
Infrastructures 2025, 10(10), 275; https://doi.org/10.3390/infrastructures10100275 - 13 Oct 2025
Viewed by 630
Abstract
The Lake Velence watershed faces increasing challenges driven by local and global factors, including the impacts of climate change, energy resource limitations, and greenhouse gas emissions. These issues, particularly acute in water management, are exacerbated by prolonged droughts, growing population pressures, and shifting [...] Read more.
The Lake Velence watershed faces increasing challenges driven by local and global factors, including the impacts of climate change, energy resource limitations, and greenhouse gas emissions. These issues, particularly acute in water management, are exacerbated by prolonged droughts, growing population pressures, and shifting land use patterns. Such dynamics strain the region’s scarce water resources, negatively affecting the environment, tourism, recreation, agriculture, and economic prospects. Nadap, a hilly settlement within the watershed, experiences frequent flooding and poor water retention, yet it also boasts the highest solar panel capacity per property in Hungary. This research addresses these interconnected challenges by designing a solar-hydrodynamic network comprising four multi-purpose water reservoirs. By leveraging the settlement’s solar capacity and geographical features, the reservoirs provide numerous benefits to local stakeholders and extend their impact far beyond their borders. These include stormwater management with flash flood mitigation, seasonal green energy storage, water security for agriculture and irrigation, wildlife conservation, recreational opportunities, carbon-smart winery developments, and the creation of sustainable blue-green settlements. Reservoir locations and dimensions were determined by analyzing geographical characteristics, stormwater volume, energy demand, solar panel performance, and rainfall data. The hydrodynamic system, modeled in Matlab, was optimized to ensure efficient water usage for irrigation, animal hydration, and other needs while minimizing evaporation losses and carbon emissions. This research presents a design framework for low-carbon and cost-effective solutions that address water management and energy storage, promoting environmental, social, and economic sustainability. The multi-purpose use of retained rainwater solves various existing problems/challenges, strengthens a community’s self-sustainability, and fosters regional growth. This integrated approach can serve as a model for other municipalities and for developing cost-effective inter-settlement and cross-catchment solutions, with a short payback period, facing similar challenges. Full article
(This article belongs to the Section Sustainable Infrastructures)
Show Figures

Figure 1

23 pages, 4097 KB  
Article
Quantitative Microbial Risk Assessment of E. coli in Riverine and Deltaic Waters of Northeastern Greece: Monte Carlo Simulation and Predictive Perspectives
by Agathi Voltezou, Elpida Giorgi, Christos Stefanis, Konstantinos Kalentzis, Elisavet Stavropoulou, Agathangelos Stavropoulos, Evangelia Nena, Chrysoula (Chrysa) Voidarou, Christina Tsigalou, Theodoros C. Konstantinidis and Eugenia Bezirtzoglou
Toxics 2025, 13(10), 863; https://doi.org/10.3390/toxics13100863 - 11 Oct 2025
Viewed by 540
Abstract
This study presents a comprehensive Quantitative Microbial Risk Assessment (QMRA) for Escherichia coli in northeastern Greece’s riverine and deltaic aquatic systems, evaluating potential human health risks from recreational water exposure. The analysis integrates seasonal microbiological monitoring data—E. coli, total coliforms, enterococci, [...] Read more.
This study presents a comprehensive Quantitative Microbial Risk Assessment (QMRA) for Escherichia coli in northeastern Greece’s riverine and deltaic aquatic systems, evaluating potential human health risks from recreational water exposure. The analysis integrates seasonal microbiological monitoring data—E. coli, total coliforms, enterococci, Salmonella spp., Clostridium perfringens (spores and vegetative forms), and physicochemical parameters (e.g., pH, temperature, BOD5)—across multiple sites. A beta-Poisson dose–response model within a Monte Carlo simulation framework (10,000 iterations) was applied to five exposure scenarios, simulating varying ingestion volumes for different population groups. Median annual infection risks ranged from negligible to high, with several locations (e.g., Mandra River, Konsynthos South, and Delta Evros) surpassing the World Health Organization (WHO)’s benchmark of 10−4 infections per person per year. A Gradient Boosting Regressor (GBR) model was developed to enhance predictive capacity, demonstrating superior accuracy metrics. Permutation Importance analysis identified enterococci, total coliforms, BOD5, temperature, pH, and seasons as critical predictors of E. coli concentrations. Additionally, sensitivity analysis highlighted the dominant role of ingestion volume and E. coli levels across all scenarios and sites. These findings support the integration of ML-based tools and probabilistic modelling in water quality risk governance, enabling proactive public health strategies in vulnerable or high-use recreational zones. Full article
Show Figures

Figure 1

30 pages, 12726 KB  
Article
Ecological Sensitivity Zoning and Functional Optimization of the Longyuwan National Forest Park
by Jing He, Yigeng Zhu, Wenwen Zhong, Qiupeng Yuan, Rui Zhang, Jue Li, Shuang Yao, Tailin Zhong and Zhi Li
Forests 2025, 16(10), 1565; https://doi.org/10.3390/f16101565 - 10 Oct 2025
Viewed by 432
Abstract
In the context of sustainable forest resource development, balancing ecological conservation with rational utilization is essential to achieving forest multifunctionality. Longyuwan National Forest Park, located in Luanchuan County, Henan Province, serves as a transitional zone between rural mountainous ecosystems and nearby urban settlements. [...] Read more.
In the context of sustainable forest resource development, balancing ecological conservation with rational utilization is essential to achieving forest multifunctionality. Longyuwan National Forest Park, located in Luanchuan County, Henan Province, serves as a transitional zone between rural mountainous ecosystems and nearby urban settlements. Increasingly, this area faces urbanization pressures such as tourism expansion, infrastructure development, and intensified land use, which may threaten ecological stability. This study aims to evaluate the ecological sensitivity of the park and optimize its spatial functional zoning. Using the Analytic Hierarchy Process (AHP), we followed four key steps: constructing the hierarchical model, generating the pairwise judgment matrices, computing the weights and conducting the consistency check, and determining the final weights. A hierarchical evaluation framework was constructed using the AHP, incorporating twelve ecological indicators across geomorphological, hydrological, atmospheric, biological, and anthropogenic dimensions. Spatial analysis tools in ArcGIS 10.2, including reclassification and weighted overlay, were employed for single-factor and integrated sensitivity assessments. The results indicated that land-use type, elevation, and water-body distribution were the most influential indicators. Ecological sensitivity across the park was categorized into five levels: extremely high (0.02%), high (11.99%), moderate (73.53%), low (14.19%), and extremely low (0.28%). Based on these findings, four functional zones were delineated: ecological conservation (50.99%), core landscape (22.86%), general recreation (23.94%), and management and service (2.21%). This research provides spatially explicit insights into forest management under anthropogenic stress, offering theoretical support for the sustainable governance of forest–urban interface landscapes. Full article
(This article belongs to the Special Issue Litter Decomposition and Soil Nutrient Cycling in Forests)
Show Figures

Figure 1

17 pages, 6612 KB  
Article
Seasonal Macroplastic Distribution and Composition: Insights from Safety Nets for Coastal Management in Recreational Waters of Zhanjiang Bay, China
by Chairunnisa Br Sembiring, Peng Zhang, Jintian Xu, Sheng Ke and Jibiao Zhang
Oceans 2025, 6(4), 64; https://doi.org/10.3390/oceans6040064 - 9 Oct 2025
Viewed by 503
Abstract
Macroplastic pollution is a growing environmental concern, threatening the marine environment. Despite growing awareness of marine plastic pollution, few studies have assessed the effectiveness of in situ technologies such as safety nets for macroplastic interception. This study aims to evaluate the effectiveness of [...] Read more.
Macroplastic pollution is a growing environmental concern, threatening the marine environment. Despite growing awareness of marine plastic pollution, few studies have assessed the effectiveness of in situ technologies such as safety nets for macroplastic interception. This study aims to evaluate the effectiveness of safety net (SN) systems in intercepting macroplastic debris in the different zones of recreational Yugang Park Beach (YPB), Zhanjiang Bay, China. Safety nets were installed at stations representing different hydrodynamic conditions, and macroplastic debris (2.5–80 cm) was collected and analyzed for size, color, and shape characteristics. Two survey comparisons revealed a higher debris density in the winter survey (1.8 ± 0.3 items m2) than in the summer survey (1.5 ± 0.3 items m2). Most debris fell within the 10–40 cm range, with transparent low-density polyethylene plastic bags being the dominant type, particularly in the winter survey (80.7%). Statistical analysis indicated that plastic size was likely related to net retention characteristics, while tidal influences accounted for a major portion of spatial variability in debris accumulation. These findings suggest that SN systems are effective tools for macroplastic interception and could inform evidence-based coastal management strategies to reduce plastic pollution in similar coastal environments. Full article
Show Figures

Figure 1

Back to TopTop