Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (33,806)

Search Parameters:
Keywords = recent advancements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1439 KB  
Review
Unlocking the Secrets of the Endometrium: Stem Cells, Niches and Modern Methodologies
by Lijun Huang, Miaoxian Ou, Dunjin Chen and Shuang Zhang
Biomedicines 2025, 13(10), 2435; https://doi.org/10.3390/biomedicines13102435 (registering DOI) - 6 Oct 2025
Abstract
The endometrium is a highly dynamic tissue central to female reproductive function, undergoing nearly 500 cycles of proliferation, differentiation, shedding, and regeneration throughout a woman’s reproductive life. This remarkable regenerative capacity is driven by a reservoir of endometrial stem/progenitor cells (ESCs), which are [...] Read more.
The endometrium is a highly dynamic tissue central to female reproductive function, undergoing nearly 500 cycles of proliferation, differentiation, shedding, and regeneration throughout a woman’s reproductive life. This remarkable regenerative capacity is driven by a reservoir of endometrial stem/progenitor cells (ESCs), which are crucial for maintaining tissue homeostasis. Dysregulation of these cells is linked to a variety of clinical disorders, including menstrual abnormalities, infertility, recurrent pregnancy loss, and serious gynecological conditions such as endometriosis and endometrial cancer. Recent advancements in organoid technology and lineage-tracing models have provided insights into the complex cellular hierarchy that underlies endometrial regeneration and differentiation. This review highlights the latest breakthroughs in endometrial stem cell biology, focusing particularly on 3D in vitro platforms that replicate endometrial physiology and disease states. By integrating these cutting-edge approaches, we aim to offer new perspectives on the pathogenesis of endometrial disorders and establish a comprehensive framework for developing precision regenerative therapies. Full article
Show Figures

Figure 1

60 pages, 2685 KB  
Review
Cellulose-Based Ion Exchange Membranes for Electrochemical Energy Systems: A Review
by Nur Syahirah Faiha Shawalludin, Saidatul Sophia Sha’rani, Mohamed Azlan Suhot, Shamsul Sarip and Mohamed Mahmoud Nasef
Membranes 2025, 15(10), 304; https://doi.org/10.3390/membranes15100304 (registering DOI) - 6 Oct 2025
Abstract
Cellulose, the most abundant polysaccharide on earth, possesses desirable properties such as biodegradability, low cost, and low toxicity, making it suitable for a wide range of applications. Being a non-conductive material, the structure of the nanocellulose can be modified or incorporated with conductive [...] Read more.
Cellulose, the most abundant polysaccharide on earth, possesses desirable properties such as biodegradability, low cost, and low toxicity, making it suitable for a wide range of applications. Being a non-conductive material, the structure of the nanocellulose can be modified or incorporated with conductive filler to facilitate charge transport between the polymer matrix and conductive components. Recently, cellulose-based ion exchange membranes (IEMs) have gained strong attention as alternatives to environmentally burdening synthetic polymers in electrochemical energy systems, owing to their renewable nature and versatile chemical structure. This article provides a comprehensive review of the structures, fabrication aspects and properties of various cellulose-based membranes for fuel cells and water electrolyzers, batteries, supercapacitors, and reverse electrodialysis (RED) applications. The scope includes an overview of various cellulose-based membrane fabrication methods, different forms of cellulose, and their applications in energy conversion and energy storage systems. The review also discusses the fundamentals of electrochemical energy systems, the role of IEMs, and recent advancements in the cellulose-based membranes’ research and development. Finally, it highlights current challenges to their performance and sustainability, along with recommendations for future research directions. Full article
(This article belongs to the Section Membrane Applications for Energy)
33 pages, 3145 KB  
Article
Backstepping Sliding Mode Control of Quadrotor UAV Trajectory
by Yohannes Lisanewerk Mulualem, Gang Gyoo Jin, Jaesung Kwon and Jongkap Ahn
Mathematics 2025, 13(19), 3205; https://doi.org/10.3390/math13193205 (registering DOI) - 6 Oct 2025
Abstract
Unmanned Aerial Vehicles (UAVs), commonly known as drones, have become widely used in many fields, ranging from agriculture to military operations, due to recent advances in technology and decreases in costs. Quadrotors are particularly important UAVs, but their complex, coupled dynamics and sensitivity [...] Read more.
Unmanned Aerial Vehicles (UAVs), commonly known as drones, have become widely used in many fields, ranging from agriculture to military operations, due to recent advances in technology and decreases in costs. Quadrotors are particularly important UAVs, but their complex, coupled dynamics and sensitivity to outside disturbances make them challenging to control. This paper introduces a new control method for quadrotors called Backstepping Sliding Mode Control (BSMC), which combines the strengths of two established techniques: Backstepping Control (BC) and Sliding Mode Control (SMC). Its primary goal is to improve trajectory tracking while also reducing chattering, a common problem with SMC that causes rapid, high-frequency oscillations. The BSMC method achieves this by integrating the SMC switching gain directly into the BC through a process of differential iteration. Herein, a Lyapunov stability analysis confirms the system’s asymptotic stability; a genetic algorithm is used to optimize controller parameters; and the proposed control strategy is evaluated under diverse payload conditions and dynamic wind disturbances. The simulation results demonstrated its capability to handle payload variations ranging from 0.5 kg to 18 kg in normal environments, and up to 12 kg during gusty wind scenarios. Furthermore, the BSMC effectively minimized chattering and achieved a superior performance in tracking accuracy and robustness compared to the traditional SMC and BC. Full article
(This article belongs to the Special Issue Dynamic Modeling and Simulation for Control Systems, 3rd Edition)
20 pages, 1133 KB  
Review
Exercise, Epigenetics, and Body Composition: Molecular Connections
by Ashley Williams, Danielle D. Wadsworth and Thangiah Geetha
Cells 2025, 14(19), 1553; https://doi.org/10.3390/cells14191553 - 6 Oct 2025
Abstract
Exercise plays a crucial role in promoting overall health by activating molecular pathways that contribute to the prevention and management of chronic diseases, slowing epigenetic aging, improving body composition, and reducing the risk of obesity. In skeletal muscle, these benefits are largely mediated [...] Read more.
Exercise plays a crucial role in promoting overall health by activating molecular pathways that contribute to the prevention and management of chronic diseases, slowing epigenetic aging, improving body composition, and reducing the risk of obesity. In skeletal muscle, these benefits are largely mediated by exercise-induced transcriptional and epigenetic responses. Recent advances in epigenetics have intensified interest in understanding how physical activity influences long-term health and body composition at the molecular level. Epigenetic modifications, which regulate gene expression without altering the DNA sequence, are key mechanisms in this process. Emerging research has provided deeper insights into the processes such as DNA methylation, histone modification, and non-coding RNAs, and their connection to exercise. While numerous studies have demonstrated the influence of exercise on the epigenome, fewer have directly examined how these molecular changes relate to alterations in fat mass, lean body mass, and other components of body composition. This comprehensive review synthesizes the current evidence on the interplay between exercise, epigenetic regulation, and body composition, with a focus on adolescents and adults. We highlight key genes involved in metabolism, fat storage, muscle development, and epigenetic aging, and explore how their regulation may contribute to individual variability in exercise response. Understanding these molecular pathways may provide valuable insights for optimizing exercise interventions aimed at improving health outcomes across the lifespan. Full article
Show Figures

Figure 1

13 pages, 1160 KB  
Article
MicroRNA-371a-3p Represents a Novel and Effective Diagnostic Marker for Testicular Germ Cell Tumours: A Real-World Prospective Comparison with Conventional Approaches
by Margherita Palermo, Carolina D’Elia, Giovanni Mazzucato, Christine Mian, Christine Schwienbacher, Esther Hanspeter, Silvia Clauser, Salvatore Mario Palermo, Armin Pycha, Isabel Heidegger, Igor Tsaur and Emanuela Trenti
Pathophysiology 2025, 32(4), 54; https://doi.org/10.3390/pathophysiology32040054 - 6 Oct 2025
Abstract
Background/Objectives: Testicular germ cell tumours (GCT) have high cure rates, especially in early stages. MicroRNA-371a-3p (M371) has recently emerged as a highly sensitive biomarker for malignant GCTs, except teratoma. This study aimed to evaluate the diagnostic performance of M371-test in a real-life clinical [...] Read more.
Background/Objectives: Testicular germ cell tumours (GCT) have high cure rates, especially in early stages. MicroRNA-371a-3p (M371) has recently emerged as a highly sensitive biomarker for malignant GCTs, except teratoma. This study aimed to evaluate the diagnostic performance of M371-test in a real-life clinical setting, compared to conventional markers alpha-fetoprotein (AFP), lactate-dehydrogenase (LDH), and beta-human chorionic gonadotropin (β-HCG) in patients with suspected GCT. Methods: The study, approved by the Ethic-Committee of the Provincial Hospital of Bolzano (N.97-2021), included 91 M371-tests, performed from March 2021 to May 2025. A total of 75 patients had suspected GCT; 19 healthy males served as control. Serum levels of M371, AFP, LDH, and β-HCG were compared with final histopathological diagnosis. M371 was also assessed in controls to evaluate test performance. Secondary analyses investigated correlations between preoperative M371 levels and tumour size in non-metastatic patients, and between M371-levels and clinical stage in the entire GCT cohort. A cut-off of RQ > 5 (relative quantification) was used to calculate sensitivity, specificity, and predictive values. Results: M371 showed a sensitivity of 90.9% and specificity of 89.3%, outperforming in terms of sensitivity AFP (20.4%/96.4%), LDH (40.9%/96.4%), and β-HCG (43.1%/100%). Positive predictive value (PPV) and negative predictive value (NPV) were 93.0% and 86.2%, respectively. Sensitivity was 95% for non-seminomas and 87.5% for seminomas. In non-metastatic patients, M371 levels correlated with tumour size and were significantly higher in advanced stages (median RQ 1128.35 vs. 98.36; p = 0.015). Conclusions: M371 showed excellent diagnostic performance, even for small tumours, supporting its clinical use. Further studies are needed to define its role in treatment planning and follow-up. Full article
Show Figures

Figure 1

33 pages, 1866 KB  
Review
Advances and Challenges in Bio-Based Lubricants for Sustainable Tribological Applications: A Comprehensive Review of Trends, Additives, and Performance Evaluation
by Jay R. Patel, Kamlesh V. Chauhan, Sushant Rawal, Nicky P. Patel and Dattatraya Subhedar
Lubricants 2025, 13(10), 440; https://doi.org/10.3390/lubricants13100440 - 6 Oct 2025
Abstract
Bio-based lubricants are rapidly gaining prominence as sustainable alternatives to petroleum-derived counterparts, driven by their inherent biodegradability, low ecotoxicity, and strong alignment with global environmental and regulatory imperatives. Despite their promising tribological properties, their widespread adoption continues to confront significant challenges, particularly related [...] Read more.
Bio-based lubricants are rapidly gaining prominence as sustainable alternatives to petroleum-derived counterparts, driven by their inherent biodegradability, low ecotoxicity, and strong alignment with global environmental and regulatory imperatives. Despite their promising tribological properties, their widespread adoption continues to confront significant challenges, particularly related to oxidative and thermal instability, cold-flow behavior, and cost competitiveness in demanding high-performance applications. This comprehensive review critically synthesizes the latest advancements in bio-based lubricant technology, spanning feedstock innovations, sophisticated chemical modification strategies, and the development of advanced additive systems. Notably, recent formulations demonstrate remarkable performance enhancements, achieving friction reductions of up to 40% and contributing to substantial CO2 emission reductions, ranging from 30 to 60%, as evidenced by comparative life-cycle assessments and energy efficiency studies. Distinguishing this review from existing literature, this study offers a unique, holistic perspective by integrally analyzing global market trends, industrial adoption dynamics, and evolving regulatory frameworks, such as the European Union Eco-Label and the U.S. EPA Vessel General Permit, alongside technological advancements. This study critically assesses emerging methodologies for tribological evaluation and benchmark performance across diverse, critical sectors including automotive, industrial, and marine applications. By connecting in-depth technical innovations with crucial socio-economic and environmental considerations, this paper not only identifies key research gaps but also outlines a pragmatic roadmap for accelerating the mainstream adoption of bio-based lubricants, positioning them as an indispensable cornerstone of sustainable tribology. Full article
(This article belongs to the Special Issue Tribological Properties of Biolubricants)
31 pages, 1677 KB  
Review
A Taxonomy of Robust Control Techniques for Hybrid AC/DC Microgrids: A Review
by Pooya Parvizi, Alireza Mohammadi Amidi, Mohammad Reza Zangeneh, Jordi-Roger Riba and Milad Jalilian
Eng 2025, 6(10), 267; https://doi.org/10.3390/eng6100267 - 6 Oct 2025
Abstract
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating [...] Read more.
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating points, often fail to maintain stability under large load and generation fluctuations. Optimization-based methods are highly sensitive to model inaccuracies and parameter uncertainties, reducing their reliability in dynamic environments. Intelligent approaches, such as fuzzy logic and ML-based controllers, provide adaptability but suffer from high computational demands, limited interpretability, and challenges in real-time deployment. These limitations highlight the need for robust control strategies that can guarantee reliable operation despite disturbances, uncertainties, and varying operating conditions. Numerical performance indices demonstrate that the reviewed robust control strategies outperform conventional linear, optimization-based, and intelligent controllers in terms of system stability, voltage and current regulation, and dynamic response. This paper provides a comprehensive review of recent robust control strategies for hybrid AC/DC microgrids, systematically categorizing classical model-based, intelligent, and adaptive approaches. Key research gaps are identified, including the lack of unified benchmarking, limited experimental validation, and challenges in integrating decentralized frameworks. Unlike prior surveys that broadly cover microgrid types, this work focuses exclusively on hybrid AC/DC systems, emphasizing hierarchical control architectures and outlining future directions for scalable and certifiable robust controllers. Also, comparative results demonstrate that state of the art robust controllers—including H∞-based, sliding mode, and hybrid intelligent controllers—can achieve performance improvements for metrics such as voltage overshoot, frequency settling time, and THD compared to conventional PID and droop controllers. By synthesizing recent advancements and identifying critical research gaps, this work lays the groundwork for developing robust control strategies capable of ensuring stability and adaptability in future hybrid AC/DC microgrids. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

19 pages, 1234 KB  
Review
Recent Advancement in Non-Enzymatic Electrochemical Detection of Lactate Based on Metal Nanomaterials: A Review
by Chenxin Wang and Guanglei Li
Sensors 2025, 25(19), 6194; https://doi.org/10.3390/s25196194 - 6 Oct 2025
Abstract
Lactate is a vital biomarker for disease diagnosis and healthcare management. With the development of wearable sensors, by analyzing biofluids, such as sweat, saliva, and tears, it is possible to implement the in situ detection of lactate, which could provide clinical-grade data for [...] Read more.
Lactate is a vital biomarker for disease diagnosis and healthcare management. With the development of wearable sensors, by analyzing biofluids, such as sweat, saliva, and tears, it is possible to implement the in situ detection of lactate, which could provide clinical-grade data for early disease detection and personalized healthcare. Among them, non-enzymatic lactate electrochemical sensors (NELESs) are on the rise due to their quick response, are easily miniaturized, and have the ability to overcome the intrinsic disadvantages of enzymatic sensors. Compared with enzyme-based lactate sensors, NELESs could simplify the electrode preparation process, reduce the cost, and improve the sensing stability and service life. In this review, we introduce the significance of the real-time monitoring of lactate and highlight recent advances in wearable electrochemical sensors toward continuous lactate analysis in biofluids. In particular, metal nanomaterials have great potential in constructing NELESs due to their unique physical and chemical properties, which can be divided into four categories: bimetallic nanomaterials, transition metal chalcogenides (TMC), metal oxides, and layered double hydroxides. We discuss recent advances of these non-enzymatic lactate oxidation materials in detail, and provide some insights for the further development of NELESs through a comprehensive analysis. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

27 pages, 1512 KB  
Review
Triple-Negative Breast Cancer Unveiled: Bridging Science, Treatment Strategy, and Economic Aspects
by Valeriia Lebedeva, Mira Ebbinghaus, José Villacorta Hidalgo, Olaf Hardt and Rita Pfeifer
Int. J. Mol. Sci. 2025, 26(19), 9714; https://doi.org/10.3390/ijms26199714 - 6 Oct 2025
Abstract
Triple-negative breast cancer (TNBC) has historically been challenging to treat due to limited therapeutic options. Since 2018, the treatment landscape has evolved substantially with the approval of precision therapies, including immune checkpoint inhibitors, poly (ADP-ribose) polymerase inhibitors, and antibody–drug conjugates. Despite these advancements, [...] Read more.
Triple-negative breast cancer (TNBC) has historically been challenging to treat due to limited therapeutic options. Since 2018, the treatment landscape has evolved substantially with the approval of precision therapies, including immune checkpoint inhibitors, poly (ADP-ribose) polymerase inhibitors, and antibody–drug conjugates. Despite these advancements, the therapeutic benefit remains limited due to various clinical challenges, largely driven by TNBC heterogeneity and an incomplete understanding of drug–tumor crosstalk mechanisms—both contributing to a restricted pool of eligible patients and variable treatment responses. Concurrently, emerging drugs tested in recent pivotal TNBC trials have demonstrated variable outcomes. Additionally, the associated economic burden has become a pressing global concern, as several approved drugs provide insufficient clinical benefit in relation to high expenditures, often driven by drug pricing. The situation is particularly critical in low- and middle-income countries, where TNBC is highly prevalent, yet access to even chemotherapeutic treatment remains limited. These factors collectively hinder real-world patient outcomes. This review provides a comprehensive analysis of TNBC management, integrating clinical advancements with economic perspectives and raising awareness of underdiscussed topics. The overview presented herein highlights the necessity for a global, interdisciplinary approach and patient centered care in TNBC drug development. Full article
(This article belongs to the Special Issue Progress in New Agents to Treat Breast Cancer)
Show Figures

Figure 1

24 pages, 669 KB  
Review
Nutrient-Element-Mediated Alleviation of Cadmium Stress in Plants: Mechanistic Insights and Practical Implications
by Xichao Sun, Liwen Zhang, Yingchen Gu, Peng Wang, Haiwei Liu, Liwen Qiang and Qingqing Huang
Plants 2025, 14(19), 3081; https://doi.org/10.3390/plants14193081 - 6 Oct 2025
Abstract
Cadmium (Cd), a pervasive and highly phytotoxic metal pollutant, poses severe threats to agricultural productivity, ecosystem stability, and human health through its entry into the food chain. Plants have evolved intricate defense mechanisms, among which the strategic manipulation of nutrient elements emerges as [...] Read more.
Cadmium (Cd), a pervasive and highly phytotoxic metal pollutant, poses severe threats to agricultural productivity, ecosystem stability, and human health through its entry into the food chain. Plants have evolved intricate defense mechanisms, among which the strategic manipulation of nutrient elements emerges as a critical physiological and biochemical strategy for mitigating Cd stress. This comprehensive review delves deeply into the multifaceted roles of essential macronutrient elements (nitrogen, phosphorus, potassium, calcium, magnesium, sulfur), essential micronutrient elements (zinc, iron, manganese, copper) and non-essential beneficial elements (silicon, selenium) in modulating plant responses to Cd toxicity. We meticulously dissect the physiological, biochemical, and molecular underpinnings of how these nutrients influence Cd bioavailability in the rhizosphere, Cd uptake and translocation pathways, sequestration and compartmentalization within plant tissues, and the activation of antioxidant defense systems. Nutrient elements exert their influence through diverse mechanisms: competing with Cd for root uptake transporters, promoting the synthesis of complexes that reduce Cd mobility, stabilizing cell walls and plasma membranes to restrict apoplastic flow and symplastic influx, modulating redox homeostasis by enhancing antioxidant enzyme activities and non-enzymatic antioxidant pools, regulating signal transduction pathways, and influencing gene expression profiles related to metal transport, chelation, and detoxification. The complex interactions between nutrients themselves further shape the plant’s capacity to withstand Cd stress. Recent advances elucidating nutrient-mediated epigenetic regulation, microRNA involvement, and the role of nutrient-sensing signaling hubs in Cd responses are critically evaluated. Furthermore, we synthesize the practical implications of nutrient management strategies, including optimized fertilization regimes, selection of nutrient-efficient genotypes, and utilization of nutrient-enriched amendments, for enhancing phytoremediation efficiency and developing low-Cd-accumulating crops, thereby contributing to safer food production and environmental restoration in Cd-contaminated soils. The intricate interplay between plant nutritional status and Cd stress resilience underscores the necessity for a holistic, nutrient-centric approach in managing Cd toxicity in agroecosystems. Full article
(This article belongs to the Special Issue Plant Ecotoxicology and Remediation Under Heavy Metal Stress)
Show Figures

Figure 1

16 pages, 2921 KB  
Review
NGLY1 as an Emerging Critical Modulator for Neurodevelopment and Pathogenesis in the Brain
by Haiwei Zhang, Haipeng Xue, Yu-Chieh Wang and Ying Liu
Int. J. Mol. Sci. 2025, 26(19), 9705; https://doi.org/10.3390/ijms26199705 - 6 Oct 2025
Abstract
N-glycanase 1 (NGLY1) is a cytoplasmic glycoenzyme that removes N-linked glycans from misfolded glycoproteins. It plays an important role in the endoplasmic reticulum-associated degradation (ERAD) pathway in mammalian cells. NGLY1 dysfunction in humans causes NGLY1 deficiency as a rare autosomal recessive disorder that [...] Read more.
N-glycanase 1 (NGLY1) is a cytoplasmic glycoenzyme that removes N-linked glycans from misfolded glycoproteins. It plays an important role in the endoplasmic reticulum-associated degradation (ERAD) pathway in mammalian cells. NGLY1 dysfunction in humans causes NGLY1 deficiency as a rare autosomal recessive disorder that is characterized by neurodevelopmental delay, hypotonia, movement disorders, seizures, and multi-system involvement. In this review, we summarize recent advances in understanding the neural functions of NGLY1 and the neuropathological phenotypes associated with its deficiency. We discuss the molecular basis of NGLY1 deficiency in the central nervous system (CNS) and pathophysiological insights from animal and human induced pluripotent stem cell (iPSC)-based models. We also highlight emerging gene therapy approaches aimed at restoring NGLY1 activity and alleviating neurological symptoms. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanism in Neuroinflammation Research)
Show Figures

Figure 1

49 pages, 2570 KB  
Review
Therapeutic Strategies Targeting Oxidative Stress and Inflammation: A Narrative Review
by Charles F. Manful, Eric Fordjour, Emmanuel Ikumoinein, Lord Abbey and Raymond Thomas
BioChem 2025, 5(4), 35; https://doi.org/10.3390/biochem5040035 - 6 Oct 2025
Abstract
Oxidative stress and inflammation are deeply interconnected processes implicated in the onset and progression of numerous chronic diseases. Despite promising mechanistic insights, conventional antioxidant and anti-inflammatory therapies such as NSAIDs, corticosteroids, and dietary antioxidants have shown limited and inconsistent success in long-term clinical [...] Read more.
Oxidative stress and inflammation are deeply interconnected processes implicated in the onset and progression of numerous chronic diseases. Despite promising mechanistic insights, conventional antioxidant and anti-inflammatory therapies such as NSAIDs, corticosteroids, and dietary antioxidants have shown limited and inconsistent success in long-term clinical applications due to challenges with efficacy, safety, and bioavailability. This review explores the molecular interplay between redox imbalance and inflammatory signaling and highlights why conventional therapeutic translation has often been inconsistent. It further examines emerging strategies that aim to overcome these limitations, including mitochondrial-targeted antioxidants, Nrf2 activators, immunometabolic modulators, redox enzyme mimetics, and advanced delivery platforms such as nanoparticle-enabled delivery. Natural polyphenols, nutraceuticals, and regenerative approaches, including stem cell-derived exosomes, are also considered for their dual anti-inflammatory and antioxidant potential. By integrating recent preclinical and clinical evidence, this review underscores the need for multimodal, personalized interventions that target the redox-inflammatory axis more precisely. These advances offer renewed promise for addressing complex diseases rooted in chronic inflammation and oxidative stress. Full article
Show Figures

Graphical abstract

52 pages, 1054 KB  
Review
Advancements in Microbial Applications for Sustainable Food Production
by Alane Beatriz Vermelho, Verônica da Silva Cardoso, Levy Tenório Sousa Domingos, Ingrid Teixeira Akamine, Bright Amenu, Bernard Kwaku Osei and Athayde Neves Junior
Foods 2025, 14(19), 3427; https://doi.org/10.3390/foods14193427 - 5 Oct 2025
Abstract
This review consolidates recent advancements in microbial biotechnology for sustainable food systems. It focuses on the fermentation processes used in this sector, emphasizing precision fermentation as a source of innovation for alternative proteins, fermented foods, and applications of microorganisms and microbial bioproducts in [...] Read more.
This review consolidates recent advancements in microbial biotechnology for sustainable food systems. It focuses on the fermentation processes used in this sector, emphasizing precision fermentation as a source of innovation for alternative proteins, fermented foods, and applications of microorganisms and microbial bioproducts in the food industry. Additionally, it explores food preservation strategies and methods for controlling microbial contamination. These biotechnological approaches are increasingly replacing synthetic additives, contributing to enhanced food safety, nutritional functionality, and product shelf stability. Examples include bacteriocins from lactic acid bacteria, biodegradable microbial pigments, and exopolysaccharide-based biopolymers, such as pullulan and xanthan gum, which are used in edible coatings and films. A comprehensive literature search was conducted across Scopus, PubMed, ScienceDirect, and Google Scholar, covering publications from 2014 to 2025. A structured Boolean search strategy was applied, targeting core concepts in microbial fermentation, bio-based food additives, and contamination control. The initial search retrieved 5677 articles, from which 370 studies were ultimately selected after applying criteria such as duplication removal, relevance to food systems, full-text accessibility, and scientific quality. This review highlights microbial biotransformation as a route to minimize reliance on synthetic inputs, valorize agri-food byproducts, and support circular bioeconomy principles. It also discusses emerging antimicrobial delivery systems and regulatory challenges. Overall, microbial innovations offer viable and scalable pathways for enhancing food system resilience, functionality, and environmental stewardship. Full article
Show Figures

Graphical abstract

19 pages, 943 KB  
Review
Could Novel Spinal Braces with Flexibility, Robotic Components, and Individualized Design Generate Sufficient Biomechanical Treatment Efficacy in Patients with Scoliosis?
by Chen He, Jinkun Xie, Rong Pang, Bingshan Hu and Christina Zong-Hao Ma
Bioengineering 2025, 12(10), 1083; https://doi.org/10.3390/bioengineering12101083 - 5 Oct 2025
Abstract
Background: Patients with adolescent idiopathic scoliosis (AIS) require effective bracing to control curve progression. However, most traditional spinal braces commonly pose challenges in terms of undesired bulkiness and restricted mobility. Recent advancements have focused on innovative brace designs, utilizing novel materials and structural [...] Read more.
Background: Patients with adolescent idiopathic scoliosis (AIS) require effective bracing to control curve progression. However, most traditional spinal braces commonly pose challenges in terms of undesired bulkiness and restricted mobility. Recent advancements have focused on innovative brace designs, utilizing novel materials and structural configurations to improve wearability and functionality. However, it remains unclear how effective these next-generation braces are biomechanically compared to traditional braces. Objectives: This review aimed to analyze the design features of next-generation AIS braces and assess their biomechanical effectiveness via reviewing contemporary studies. Methods: Studies on newly designed scoliosis braces over the past decade were searched in databases, including Web of Science, PubMed, ScienceDirect, Wiley, EBCOHost and SpringerLink. The Joanna Briggs Institute Critical Appraisal Checklist for Cohort Studies was adopted to evaluate the quality of the included studies. The data extracted for biomechanical effect analysis included brace components/materials, design principle, interfacial pressure, morphological changes, and intercomparison parameters. Results: A total of 19 studies encompassing 12 different kinds of braces met the inclusion/exclusion criteria. Clinical effectiveness was reported in 14 studies, with an average short-term Cobb angle correction of 25.4% (range: 12.41–34.3%) and long-term correction of 18.22% (range: 15.79–19.3%). This result aligned broadly with the previously reported efficacy of the traditional braces in short-term cases (range: 12.36–31.33%), but was lower than the long-term ones (range: 23.02–33.6%). Two included studies reported an interface pressure range between 6.0 kPa and 24.4 kPa for novel braces, which was comparable to that of the traditional braces (4.8–30.0 kPa). Additionally, five of six studies reported the trunk asymmetric parameters and demonstrated improvement in trunk alignment. Conclusions: This study demonstrates that most newly designed scoliosis braces could achieve comparable biomechanical efficacy to the conventional designs, particularly in interface pressure management and Cobb angle correction. However, future clinical adoption of these novel braces requires further improvements of ergonomic design and three-dimensional correction, as well as more investigation and rigorous evidence on the long-term treatment outcomes and cost-effectiveness. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
19 pages, 1928 KB  
Review
Deep Brain Stimulation for Parkinson’s Disease—A Narrative Review
by Rafał Wójcik, Anna Dębska, Karol Zaczkowski, Bartosz Szmyd, Małgorzata Podstawka, Ernest J. Bobeff, Michał Piotrowski, Paweł Ratajczyk, Dariusz J. Jaskólski and Karol Wiśniewski
Biomedicines 2025, 13(10), 2430; https://doi.org/10.3390/biomedicines13102430 - 5 Oct 2025
Abstract
Deep brain stimulation (DBS) is an established neurosurgical treatment for Parkinson’s disease (PD), mainly targeting motor symptoms resistant to pharmacological therapy. This review examines strategies to optimize DBS using advanced anatomical, functional, and imaging approaches. The subthalamic nucleus (STN) remains the principal target [...] Read more.
Deep brain stimulation (DBS) is an established neurosurgical treatment for Parkinson’s disease (PD), mainly targeting motor symptoms resistant to pharmacological therapy. This review examines strategies to optimize DBS using advanced anatomical, functional, and imaging approaches. The subthalamic nucleus (STN) remains the principal target for alleviating bradykinesia and rigidity, while recent evidence highlights the dentato-rubro-thalamic tract (DRTt) as an additional promising target, especially for tremor control. Clinical data demonstrate that co-stimulation of both STN and DRTt via electrode electric fields results in superior motor outcomes, including greater reductions in UPDRS-III scores and lower levodopa requirements. The review highlights the use of high-resolution MRI and diffusion tensor imaging tractography in visualizing STN and DRTt with high precision. These methods support accurate targeting and individualized treatment planning. Electric field modelling is discussed as a tool to quantify stimulation overlap with target structures and predict clinical efficacy. Anatomical variability in DRTt positioning relative to the STN is emphasized, supporting the need for patient-specific DBS approaches. Alternative and emerging DBS targets—including the pedunculopontine nucleus, zona incerta, globus pallidus internus, and nucleus basalis of Meynert—are discussed for their potential in treating axial and cognitive symptoms. The review concludes with a forward-looking discussion on network-based DBS paradigms, the integration of adaptive stimulation technologies, and the potential of multimodal imaging and electrophysiological biomarkers to guide therapy. Together, these advances support a paradigm shift from focal to network-based neuromodulation in PD management. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

Back to TopTop