NGLY1 as an Emerging Critical Modulator for Neurodevelopment and Pathogenesis in the Brain
Abstract
1. Introduction
2. NGLY1 Function in the CNS
2.1. Deglycosylation Activity of NGLY1 and Its Relevance to Proteostasis
2.2. Non-Enzymatic Function of NGLY1
2.3. Expression of NGLY1 in the CNS
3. Neural Abnormalities Caused by NGLY1 Dysfunction
3.1. NGLY1 Gene Mutations Discovered in Humans
3.2. Clinical Findings and Neurological Symptoms in NGLY1-Deficiency Patients
3.3. The Relevance of NGLY1 Dysregulation with Other Neuropathological Conditions
3.4. The Difference of Defective NGLY1 on Neurodevelopment in Humans and Rodents
3.5. Abnormal Neurodevelopment Due to NGLY1 Deficiency Modeled by Human Neural Organoids
3.6. Defective NGLY1-Induced Dysregulation of Cell Stress Responses and Immune Signaling
4. Development of Potential Therapeutic Strategies and Clinical Translation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suzuki, T.; Seko, A.; Kitajima, K.; Inoue, Y.; Inoue, S. Purification and enzymatic properties of peptide: N-glycanase from C3H mouse-derived L-929 fibroblast cells. Possible widespread occurrence of post-translational remodification of proteins by N-deglycosylation. J. Biol. Chem. 1994, 269, 17611–17618. [Google Scholar] [CrossRef]
- Pandey, A.; Adams, J.M.; Han, S.Y.; Jafar-Nejad, H. NGLY1 Deficiency, a Congenital Disorder of Deglycosylation: From Disease Gene Function to Pathophysiology. Cells 2022, 11, 1155. [Google Scholar] [CrossRef]
- Smith, M.H.; Ploegh, H.L.; Weissman, J.S. Road to ruin: Targeting proteins for degradation in the endoplasmic reticulum. Science 2011, 334, 1086–1090. [Google Scholar] [CrossRef]
- Suzuki, T.; Fujihira, H. NGLY1: A fascinating, multifunctional molecule. Biochim. Biophys. Acta Gen. Subj. 2024, 1868, 130379. [Google Scholar] [CrossRef] [PubMed]
- Need, A.C.; Shashi, V.; Hitomi, Y.; Schoch, K.; Shianna, K.V.; McDonald, M.T.; Meisler, M.H.; Goldstein, D.B. Clinical application of exome sequencing in undiagnosed genetic conditions. J. Med. Genet. 2012, 49, 353–361. [Google Scholar] [CrossRef]
- Lam, C.; Ferreira, C.; Krasnewich, D.; Toro, C.; Latham, L.; Zein, W.M.; Lehky, T.; Brewer, C.; Baker, E.H.; Thurm, A.; et al. Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of deglycosylation. Genet. Med. 2017, 19, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Fujihira, H.; Masahara-Negishi, Y.; Tamura, M.; Huang, C.; Harada, Y.; Wakana, S.; Takakura, D.; Kawasaki, N.; Taniguchi, N.; Kondoh, G.; et al. Lethality of mice bearing a knockout of the Ngly1-gene is partially rescued by the additional deletion of the Engase gene. PLoS Genet. 2017, 13, e1006696. [Google Scholar] [CrossRef]
- Asahina, M.; Fujinawa, R.; Nakamura, S.; Yokoyama, K.; Tozawa, R.; Suzuki, T. Ngly1−/− rats develop neurodegenerative phenotypes and pathological abnormalities in their peripheral and central nervous systems. Hum. Mol. Genet. 2020, 29, 1635–1647. [Google Scholar] [CrossRef]
- Mesika, A.; Nadav, G.; Shochat, C.; Kalfon, L.; Jackson, K.; Khalaileh, A.; Karasik, D.; Falik-Zaccai, T.C. NGLY1 Deficiency Zebrafish Model Manifests Abnormalities of the Nervous and Musculoskeletal Systems. Front. Cell Dev. Biol. 2022, 10, 902969. [Google Scholar] [CrossRef] [PubMed]
- Mesika, A.; Nadav, G.; Ben-David, S.; Kalfon, L.; Shochat, C.; Nasra, R.; Livoff, A.; Karasik, D.; Falik-Zaccai, T.C. Impaired Proteostasis is Linked to Neurological Pathology in a Zebrafish NGLY1 Deficiency Model. J. Inherit. Metab. Dis. 2025, 48, e70050. [Google Scholar] [CrossRef]
- Pandey, A.; Jafar-Nejad, H. Tracing the NGLY1 footprints: Insights from Drosophila. J. Biochem. 2022, 171, 153–160. [Google Scholar] [CrossRef]
- Lehrbach, N.J. NGLY1: Insights from Caenorhabditis elegans. J. Biochem. 2022, 171, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Asahina, M.; Fujinawa, R.; Hirayama, H.; Tozawa, R.; Kajii, Y.; Suzuki, T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol. Brain 2021, 14, 91. [Google Scholar] [CrossRef]
- Lin, V.J.T.; Hu, J.; Zolekar, A.; Salick, M.R.; Mittal, P.; Bird, J.T.; Hoffmann, P.; Kaykas, A.; Byrum, S.D.; Wang, Y.C. Deficiency of N-glycanase 1 perturbs neurogenesis and cerebral development modeled by human organoids. Cell Death Dis. 2022, 13, 262. [Google Scholar] [CrossRef] [PubMed]
- Abbott, J.; Tambe, M.; Pavlinov, I.; Farkhondeh, A.; Nguyen, H.N.; Xu, M.; Pradhan, M.; York, T.; Might, M.; Baumgartel, K.; et al. Generation and characterization of NGLY1 patient-derived midbrain organoids. Front. Cell Dev. Biol. 2023, 11, 1039182. [Google Scholar] [CrossRef]
- Suzuki, T.; Kitajima, K.; Inoue, S.; Inoue, Y. Does an animal peptide: N-glycanase have the dual role as an enzyme and a carbohydrate-binding protein? Glycoconj. J. 1994, 11, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Huang, C.; Fujihira, H. The cytoplasmic peptide:N-glycanase (NGLY1)—Structure, expression and cellular functions. Gene 2016, 577, 1–7. [Google Scholar] [CrossRef]
- Suzuki, T.; Kitajima, K.; Inoue, Y.; Inoue, S. Carbohydrate-binding property of peptide: N-glycanase from mouse fibroblast L-929 cells as evaluated by inhibition and binding experiments using various oligosaccharides. J. Biol. Chem. 1995, 270, 15181–15186. [Google Scholar] [CrossRef]
- Suzuki, T.; Hara, I.; Nakano, M.; Zhao, G.; Lennarz, W.J.; Schindelin, H.; Taniguchi, N.; Totani, K.; Matsuo, I.; Ito, Y. Site-specific labeling of cytoplasmic peptide: N-glycanase by N,N’-diacetylchitobiose-related compounds. J. Biol. Chem. 2006, 281, 22152–22160. [Google Scholar] [CrossRef]
- Zhao, G.; Li, G.; Zhou, X.; Matsuo, I.; Ito, Y.; Suzuki, T.; Lennarz, W.J.; Schindelin, H. Structural and mutational studies on the importance of oligosaccharide binding for the activity of yeast PNGase. Glycobiology 2009, 19, 118–125. [Google Scholar] [CrossRef]
- Doerks, T.; Copley, R.R.; Schultz, J.; Ponting, C.P.; Bork, P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 2002, 12, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, G.; Truglio, J.J.; Wang, L.; Li, G.; Lennarz, W.J.; Schindelin, H. Structural and biochemical studies of the C-terminal domain of mouse peptide-N-glycanase identify it as a mannose-binding module. Proc. Natl. Acad. Sci. USA 2006, 103, 17214–17219. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Park, H.; Till, E.A.; Lennarz, W.J. The PUB domain: A putative protein–protein interaction domain implicated in the ubiquitin-proteasome pathway. Biochem. Biophys. Res. Commun. 2001, 287, 1083–1087. [Google Scholar] [CrossRef]
- Allen, M.D.; Buchberger, A.; Bycroft, M. The PUB domain functions as a p97 binding module in human peptide N-glycanase. J. Biol. Chem. 2006, 281, 25502–25508. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Park, H.; Hollingsworth, N.M.; Sternglanz, R.; Lennarz, W.J. PNG1, a yeast gene encoding a highly conserved peptide:N-glycanase. J. Cell Biol. 2000, 149, 1039–1052. [Google Scholar] [CrossRef]
- Suzuki, T.; Park, H.; Lennarz, W.J. Cytoplasmic peptide:N-glycanase (PNGase) in eukaryotic cells: Occurrence, primary structure, and potential functions. FASEB J. 2002, 16, 635–641. [Google Scholar] [CrossRef]
- Suzuki, T.; Kwofie, M.A.; Lennarz, W.J. Ngly1, a mouse gene encoding a deglycosylating enzyme implicated in proteasomal degradation: Expression, genomic organization, and chromosomal mapping. Biochem. Biophys. Res. Commun. 2003, 304, 326–332. [Google Scholar] [CrossRef]
- Kitajima, K.; Suzuki, T.; Kouchi, Z.; Inoue, S.; Inoue, Y. Identification and distribution of peptide:N-glycanase (PNGase) in mouse organs. Arch. Biochem. Biophys. 1995, 319, 393–401. [Google Scholar] [CrossRef]
- Wiertz, E.J.; Tortorella, D.; Bogyo, M.; Yu, J.; Mothes, W.; Jones, T.R.; Rapoport, T.A.; Ploegh, H.L. Sec6l-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 1996, 384, 432–438. [Google Scholar] [CrossRef]
- Suzuki, T.; Kitajima, K.; Emori, Y.; Inoue, Y.; Inoue, S. Site-specific de-N-glycosylation of diglycosylated ovalbumin in hen oviduct by endogenous peptide: N-glycanase as a quality control system for newly synthesized proteins. Proc. Natl. Acad. Sci. USA 1997, 94, 6244–6249. [Google Scholar] [CrossRef]
- Mosse, C.A.; Meadows, L.; Luckey, C.J.; Kittlesen, D.J.; Huczko, E.L.; Slingluff, C.L.; Shabanowitz, J.; Hunt, D.F.; Engelhard, V.H. The class I antigen-processing pathway for the membrane protein tyrosinase involves translation in the endoplasmic reticulum and processing in the cytosol. J. Exp. Med. 1998, 187, 37–48. [Google Scholar] [CrossRef]
- Hirsch, C.; Blom, D.; Ploegh, H.L. A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J. 2003, 22, 1036–1046. [Google Scholar] [CrossRef]
- Blom, D.; Hirsch, C.; Stern, P.; Tortorella, D.; Ploegh, H.L. A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J. 2004, 23, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Misaghi, S.; Pacold, M.E.; Blom, D.; Ploegh, H.L.; Korbel, G.A. Using a small molecule inhibitor of peptide: N-glycanase to probe its role in glycoprotein turnover. Chem. Biol. 2004, 11, 1677–1687. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Jang, I.; Zuber, C.; Lee, Y.; Cho, J.W.; Matsuo, I.; Ito, Y.; Roth, J. ERADication of EDEM1 occurs by selective autophagy and requires deglycosylation by cytoplasmic peptide N-glycanase. Histochem. Cell Biol. 2014, 142, 153–169. [Google Scholar] [CrossRef]
- Huang, C.; Harada, Y.; Hosomi, A.; Masahara-Negishi, Y.; Seino, J.; Fujihira, H.; Funakoshi, Y.; Suzuki, T.; Dohmae, N.; Suzuki, T. Endo-β-N-acetylglucosaminidase forms N-GlcNAc protein aggregates during ER-associated degradation in Ngly1-defective cells. Proc. Natl. Acad. Sci. USA 2015, 112, 1398–1403. [Google Scholar] [CrossRef]
- Tambe, M.A.; Ng, B.G.; Freeze, H.H. N-Glycanase 1 Transcriptionally Regulates Aquaporins Independent of Its Enzymatic Activity. Cell Rep. 2019, 29, 4620–4631.e4. [Google Scholar] [CrossRef] [PubMed]
- Tomlin, F.M.; Gerling-Driessen, U.I.M.; Liu, Y.C.; Flynn, R.A.; Vangala, J.R.; Lentz, C.S.; Clauder-Muenster, S.; Jakob, P.; Mueller, W.F.; Ordonez-Rueda, D.; et al. Inhibition of NGLY1 Inactivates the Transcription Factor Nrf1 and Potentiates Proteasome Inhibitor Cytotoxicity. ACS Cent. Sci. 2017, 3, 1143–1155. [Google Scholar] [CrossRef]
- Du, A.; Yang, K.; Zhou, X.; Ren, L.; Liu, N.; Zhou, C.; Liang, J.; Yan, N.; Gao, G.; Wang, D. Systemic gene therapy corrects the neurological phenotype in a mouse model of NGLY1 deficiency. JCI Insight 2024, 9, e183189. [Google Scholar] [CrossRef]
- Enns, G.M.; Shashi, V.; Bainbridge, M.; Gambello, M.J.; Zahir, F.R.; Bast, T.; Crimian, R.; Schoch, K.; Platt, J.; Cox, R.; et al. Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum-associated degradation pathway. Genet. Med. 2014, 16, 751–758. [Google Scholar] [CrossRef]
- Abuduxikuer, K.; Zou, L.; Wang, L.; Chen, L.; Wang, J.S. Novel NGLY1 gene variants in Chinese children with global developmental delay, microcephaly, hypotonia, hypertransaminasemia, alacrimia, and feeding difficulty. J. Hum. Genet. 2020, 65, 387–396. [Google Scholar] [CrossRef]
- Dabaj, I.; Sudrie-Arnaud, B.; Lecoquierre, F.; Raymond, K.; Ducatez, F.; Guerrot, A.M.; Snanoudj, S.; Coutant, S.; Saugier-Veber, P.; Marret, S.; et al. NGLY1 Deficiency: A Rare Newly Described Condition with a Typical Presentation. Life 2021, 11, 187. [Google Scholar] [CrossRef]
- Fujihria, H.; Hirayama, H.; Suzuki, T. NGLY1 deficiency–clinical features and therapeutic strategy. J. Hum. Genet. 2025, 1–7. [Google Scholar] [CrossRef]
- Budhraja, R.; Saraswat, M.; De Graef, D.; Ranatunga, W.; Ramarajan, M.G.; Mousa, J.; Kozicz, T.; Pandey, A.; Morava, E. N-glycoproteomics reveals distinct glycosylation alterations in NGLY1-deficient patient-derived dermal fibroblasts. J. Inherit. Metab. Dis. 2023, 46, 76–91. [Google Scholar] [CrossRef]
- Caglayan, A.O.; Comu, S.; Baranoski, J.F.; Parman, Y.; Kaymakcalan, H.; Akgumus, G.T.; Caglar, C.; Dolen, D.; Erson-Omay, E.Z.; Harmanci, A.S.; et al. NGLY1 mutation causes neuromotor impairment, intellectual disability, and neuropathy. Eur. J. Med. Genet. 2015, 58, 39–43. [Google Scholar] [CrossRef]
- Stanclift, C.R.; Dwight, S.S.; Lee, K.; Eijkenboom, Q.L.; Wilsey, M.; Wilsey, K.; Kobayashi, E.S.; Tong, S.; Bainbridge, M.N. NGLY1 deficiency: Estimated incidence, clinical features, and genotypic spectrum from the NGLY1 Registry. Orphanet J. Rare Dis. 2022, 17, 440. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.J.; Frater, C.H.; Gallentine, W.B.; Phillips, J.M.; Ruzhnikov, M.R. Delineating the epilepsy phenotype of NGLY1 deficiency. J. Inherit. Metab. Dis. 2022, 45, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Cahan, E.M.; Frick, S.L. Orthopaedic phenotyping of NGLY1 deficiency using an international, family-led disease registry. Orphanet J. Rare Dis. 2019, 14, 148. [Google Scholar] [CrossRef] [PubMed]
- Heeley, J.; Shinawi, M. Multi-systemic involvement in NGLY1-related disorder caused by two novel mutations. Am. J. Med. Genet. A 2015, 167, 816–820. [Google Scholar] [CrossRef]
- Lam, C.; Lynne, W.; Anna, N.; Vandana, S.; Gregory, E. NGLY1-Related Congenital Disorder of Deglycosylation; GeneReviews® [Internet]: Seattle, WA, USA, 2018. [Google Scholar]
- Batra, S.; Vaquer-Alicea, J.I.; Valdez, C.; Taylor, S.P.; Manon, V.A.; Vega, A.R.; Kashmer, O.M.; Kolay, S.; Lemoff, A.; Cairns, N.J.; et al. VCP regulates early tau seed amplification via specific cofactors. Mol. Neurodegener. 2025, 20, 2. [Google Scholar] [CrossRef]
- Ruz, C.; Alcantud, J.L.; Vives Montero, F.; Duran, R.; Bandres-Ciga, S. Proteotoxicity and Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 5646. [Google Scholar] [CrossRef] [PubMed]
- Habibi-Babadi, N.; Su, A.; de Carvalho, C.E.; Colavita, A. The N-glycanase png-1 acts to limit axon branching during organ formation in Caenorhabditis elegans. J. Neurosci. 2010, 30, 1766–1776. [Google Scholar] [CrossRef]
- Yang, K.; Huang, R.; Fujihira, H.; Suzuki, T.; Yan, N. N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1. J. Exp. Med. 2018, 215, 2600–2616. [Google Scholar] [CrossRef]
- Yang, K.; Torres-Ramirez, G.; Dobbs, N.; Han, J.; Asahina, M.; Fujinawa, R.; Song, K.; Liu, Y.; Lin, W.; Oviedo, A.; et al. The STING pathway drives noninflammatory neurodegeneration in NGLY1 deficiency. J. Exp. Med. 2025, 222, e20242296. [Google Scholar] [CrossRef]
- Dehay, C.; Kennedy, H.; Kosik, K.S. The outer subventricular zone and primate-specific cortical complexification. Neuron 2015, 85, 683–694. [Google Scholar] [CrossRef]
- Eichmuller, O.L.; Knoblich, J.A. Human cerebral organoids—A new tool for clinical neurology research. Nat. Rev. Neurol. 2022, 18, 661–680. [Google Scholar] [CrossRef]
- Du, M.; Li, L.; Hu, Y.; Mi, H.; Wang, T. Derivation of a human induced pluripotent stem cell (hiPSC) line (PUMCSMi001-A) from peripheral blood mononuclear cells of one healthy female donor. Stem Cell Res. 2021, 53, 102312. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Cheng, Y.S.; Li, R.; Pradhan, M.; Hong, J.; Beers, J.; Zou, J.; Liu, C.; Might, M.; Rodems, S.; et al. An induced pluripotent stem cell line (TRNDi010-C) from a patient carrying a homozygous p.R401X mutation in the NGLY1 gene. Stem Cell Res. 2019, 39, 101496. [Google Scholar] [CrossRef]
- Shyr, Z.A.; Amniouel, S.; Owusu-Ansah, K.; Tambe, M.; Abbott, J.; Might, M.; Zheng, W. Increased oxidative stress and autophagy in NGLY1 patient iPSC-derived neural stem cells. Exp. Cell Res. 2025, 448, 114540. [Google Scholar] [CrossRef]
- Pradhan, M.; Farkhondeh, A.; Cheng, Y.S.; Xu, M.; Beers, J.; Zou, J.; Liu, C.; Might, M.; Rodems, S.; Baumgartel, K.; et al. An induced pluripotent stem cell line (NCATS-CL9075) from a patient carrying compound heterozygote mutations, p.R390P and p.L318P, in the NGLY1 gene. Stem Cell Res. 2021, 54, 102400. [Google Scholar] [CrossRef] [PubMed]
- Manole, A.; Wong, T.; Rhee, A.; Novak, S.; Chin, S.M.; Tsimring, K.; Paucar, A.; Williams, A.; Newmeyer, T.F.; Schafer, S.T.; et al. NGLY1 mutations cause protein aggregation in human neurons. Cell Rep. 2023, 42, 113466. [Google Scholar] [CrossRef] [PubMed]
- Sasserath, T.; Robertson, A.L.; Mendez, R.; Hays, T.T.; Smith, E.; Cooper, H.; Akanda, N.; Rumsey, J.W.; Guo, X.; Farkhondeh, A.; et al. An induced pluripotent stem cell-derived NMJ platform for study of the NGLY1-Congenital Disorder of Deglycosylation. Adv. Ther. 2022, 5, 2200009. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Song, C.; Liu, Y.; Zhang, J.; Song, W. IGFBP2 promotes neural stem cell maintenance and proliferation differentially associated with glioblastoma subtypes. Brain Res. 2019, 1704, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Harland, A.J.; Perks, C.M. IGFBP-2 and IGF-II: Key Components of the Neural Stem Cell Niche? Implications for Glioblastoma Pathogenesis. Int. J. Mol. Sci. 2025, 26, 4749. [Google Scholar] [CrossRef]
- Yun, K.; Mantani, A.; Garel, S.; Rubenstein, J.; Israel, M.A. Id4 regulates neural progenitor proliferation and differentiation in vivo. Development 2004, 131, 5441–5448. [Google Scholar] [CrossRef]
- Bedford, L.; Walker, R.; Kondo, T.; van Cruchten, I.; King, E.R.; Sablitzky, F. Id4 is required for the correct timing of neural differentiation. Dev. Biol. 2005, 280, 386–395. [Google Scholar] [CrossRef]
- Eze, U.C.; Bhaduri, A.; Haeussler, M.; Nowakowski, T.J.; Kriegstein, A.R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 2021, 24, 584–594. [Google Scholar] [CrossRef]
- Zolekar, A.; Lin, V.J.T.; Mishra, N.M.; Ho, Y.Y.; Hayatshahi, H.S.; Parab, A.; Sampat, R.; Liao, X.; Hoffmann, P.; Liu, J.; et al. Stress and interferon signalling-mediated apoptosis contributes to pleiotropic anticancer responses induced by targeting NGLY1. Br. J. Cancer 2018, 119, 1538–1551. [Google Scholar] [CrossRef]
- Wu, Z.; Cao, Z.; Yao, H.; Yan, X.; Xu, W.; Zhang, M.; Jiao, Z.; Zhang, Z.; Chen, J.; Liu, Y.; et al. Coupled deglycosylation-ubiquitination cascade in regulating PD-1 degradation by MDM2. Cell Rep. 2023, 42, 112693. [Google Scholar] [CrossRef]
- Zhu, L.; Tan, B.; Dwight, S.S.; Beahm, B.; Wilsey, M.; Crawford, B.E.; Schweighardt, B.; Cook, J.W.; Wechsler, T.; Mueller, W.F. AAV9-NGLY1 gene replacement therapy improves phenotypic and biomarker endpoints in a rat model of NGLY1 Deficiency. Mol. Ther. Methods Clin. Dev. 2022, 27, 259–271. [Google Scholar] [CrossRef]
- Hirayama, H.; Fujihira, H.; Suzuki, T. Development of new NGLY1 assay systems—Toward developing an early screening method for NGLY1 deficiency. Glycobiology 2024, 34, cwae067. [Google Scholar] [CrossRef]
- Pavlinov, I.; Farkhondeh, A.; Yang, S.; Xu, M.; Cheng, Y.S.; Beers, J.; Zou, J.; Liu, C.; Might, M.; Rodems, S.; et al. Generation of two gene corrected human isogenic iPSC lines (NCATS-CL6104 and NCATS-CL6105) from a patient line (NCATS-CL6103) carrying a homozygous p.R401X mutation in the NGLY1 gene using CRISPR/Cas9. Stem Cell Res. 2021, 56, 102554. [Google Scholar] [CrossRef]
- Mueller, W.F.; Zhu, L.; Tan, B.; Dwight, S.; Beahm, B.; Wilsey, M.; Wechsler, T.; Mak, J.; Cowan, T.; Pritchett, J.; et al. GlcNAc-Asn is a biomarker for NGLY1 deficiency. J. Biochem. 2022, 171, 177–186. [Google Scholar] [CrossRef]
- Tong, S.; Ventola, P.; Frater, C.H.; Klotz, J.; Phillips, J.M.; Muppidi, S.; Dwight, S.S.; Mueller, W.F.; Beahm, B.J.; Wilsey, M.; et al. NGLY1 deficiency: A prospective natural history study. Hum. Mol. Genet. 2023, 32, 2787–2796. [Google Scholar] [CrossRef]
- Moat, S.J.; George, R.S.; Carling, R.S. Use of Dried Blood Spot Specimens to Monitor Patients with Inherited Metabolic Disorders. Int. J. Neonatal Screen. 2020, 6, 26. [Google Scholar] [CrossRef]
- Slade, A.; Isa, F.; Kyte, D.; Pankhurst, T.; Kerecuk, L.; Ferguson, J.; Lipkin, G.; Calvert, M. Patient reported outcome measures in rare diseases: A narrative review. Orphanet J. Rare Dis. 2018, 13, 61. [Google Scholar] [CrossRef] [PubMed]
- Baylot, V.; Le, T.K.; Taïeb, D.; Rocchi, P.; Colleaux, L. Between hope and reality: Treatment of genetic diseases through nucleic acid-based drugs. Commun. Biol. 2024, 7, 489. [Google Scholar] [CrossRef] [PubMed]
- Videnovic, A.; Pfeiffer, H.C.V.; Tylki-Szymanska, A.; Berry-Kravis, E.; Ezgu, F.; Ganju, J.; Jurecka, A.; Lang, A.E. Study design challenges and strategies in clinical trials for rare diseases: Lessons learned from pantothenate kinase-associated neurodegeneration. Front. Neurol. 2023, 14, 1098454. [Google Scholar] [CrossRef] [PubMed]
Clinical Feature | Prevalence (Patient Count) | Variant Types | Severity | References |
---|---|---|---|---|
Motor/speech delay | >97% (~36/37) | Frameshift, missense | Moderate to severe | [40,45,46] |
Epilepsy (myoclonic/atonic) | ≈58.6% (~17/29) | Nonsense, missense | Moderate | [47] |
Motor dysfunction (ataxia, hypotonia) | Common (>44/47) | Frameshift, premature stop | Severe | [40,45,46] |
Intellectual disability | Highly variable (~9/12) | Various | Mild to severe | [6] |
Microcephaly | ≈47% (~22/47) | Various | Moderate | [40,45,46] |
Hepatic abnormalities | ≈65% (~30/46) | No specific variant association | Mild | [40,41,45,46] |
Alacrima (absent tear production) | ≈86.6% (~39/45) | Premature stop | Mild | [6,40,41,46] |
Orthopedic phenotype | ≈80% (~23/29) | Various | Mild | [48,49] |
Strategy | Mechanism of Action | Delivery Method/Model | Current Development Stage | References |
---|---|---|---|---|
AAV9-mediated gene therapy | Restores NGLY1 gene expression in CNS | Intracerebroventricular or systemic AAV9 injection in rats/mice | Advanced preclinical multiple rodent efficacy studies; IND-enabling work underway | [13,39,71,72] |
CRISPR/Cas9 gene editing | Genome correction of pathogenic NGLY1 mutations | Viral or non-viral vectors in human iPSCs | Preclinical (cell models); proof-of-concept correction in patient iPSCs | [14,73] |
iPSC-based drug screening | High-throughput identification of phenotype modifiers | Human patient-derived iPSCs | Discovery stage; ongoing high-throughput screens | [14,15,60,63] |
Biomarker-guided monitoring | Use GlcNAc-Asn levels to track disease activity and therapeutic response | Rat models, patient blood/CSF samples | Early clinical utility validated in patient samples; under consideration for trial endpoints | [71,74,75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Xue, H.; Wang, Y.-C.; Liu, Y. NGLY1 as an Emerging Critical Modulator for Neurodevelopment and Pathogenesis in the Brain. Int. J. Mol. Sci. 2025, 26, 9705. https://doi.org/10.3390/ijms26199705
Zhang H, Xue H, Wang Y-C, Liu Y. NGLY1 as an Emerging Critical Modulator for Neurodevelopment and Pathogenesis in the Brain. International Journal of Molecular Sciences. 2025; 26(19):9705. https://doi.org/10.3390/ijms26199705
Chicago/Turabian StyleZhang, Haiwei, Haipeng Xue, Yu-Chieh Wang, and Ying Liu. 2025. "NGLY1 as an Emerging Critical Modulator for Neurodevelopment and Pathogenesis in the Brain" International Journal of Molecular Sciences 26, no. 19: 9705. https://doi.org/10.3390/ijms26199705
APA StyleZhang, H., Xue, H., Wang, Y.-C., & Liu, Y. (2025). NGLY1 as an Emerging Critical Modulator for Neurodevelopment and Pathogenesis in the Brain. International Journal of Molecular Sciences, 26(19), 9705. https://doi.org/10.3390/ijms26199705