Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,707)

Search Parameters:
Keywords = realistic scenarios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 533 KiB  
Article
You Understand, So I Understand: How a “Community of Knowledge” Shapes Trust and Credibility in Expert Testimony Evidence
by Ashley C. T. Jones and Morgan Haga
Behav. Sci. 2025, 15(8), 1071; https://doi.org/10.3390/bs15081071 - 6 Aug 2025
Abstract
Sloman and Rabb found support for the existence of the community of knowledge (CK) effect, which occurs when individuals are more likely to report understanding and being able to explain even fake scientific information when told that an expert understands the information. To [...] Read more.
Sloman and Rabb found support for the existence of the community of knowledge (CK) effect, which occurs when individuals are more likely to report understanding and being able to explain even fake scientific information when told that an expert understands the information. To date, no studies have been conducted that attempted to replicate original findings, let alone test the presence of the CK effect in realistic, legal scenarios. Therefore, Study One replicated original CK effect studies in a jury-eligible M-Turk sample (N = 291) using both Sloman and Rabb’s experimental stimuli as well as new stimuli. Study Two then tested the presence of the CK effect using scientific testimony in a mock court hearing from a forensic evaluator (N = 396). Not only did the CK effect improve laypeople’s perceptions of the scientific information in court, but it also improved their perceptions of the expert witness’s credibility, increased the weight assigned to the scientific information, and increased the weight assigned to the expert testimony. This effect was mediated by participants’ perceived similarity to the expert, supporting the theory behind the CK effect. These studies have important implications for the use of scientific information in court, which are discussed. Full article
(This article belongs to the Special Issue Social Cognitive Processes in Legal Decision Making)
21 pages, 365 KiB  
Article
The Effect of Data Leakage and Feature Selection on Machine Learning Performance for Early Parkinson’s Disease Detection
by Jonathan Starcke, James Spadafora, Jonathan Spadafora, Phillip Spadafora and Milan Toma
Bioengineering 2025, 12(8), 845; https://doi.org/10.3390/bioengineering12080845 (registering DOI) - 6 Aug 2025
Abstract
If we do not urgently educate current and future medical professionals to critically evaluate and distinguish credible AI-assisted diagnostic tools from those whose performance is artificially inflated by data leakage or improper validation, we risk undermining clinician trust in all AI diagnostics and [...] Read more.
If we do not urgently educate current and future medical professionals to critically evaluate and distinguish credible AI-assisted diagnostic tools from those whose performance is artificially inflated by data leakage or improper validation, we risk undermining clinician trust in all AI diagnostics and jeopardizing future advances in patient care. For instance, machine learning models have shown high accuracy in diagnosing Parkinson’s Disease when trained on clinical features that are themselves diagnostic, such as tremor and rigidity. This study systematically investigates the impact of data leakage and feature selection on the true clinical utility of machine learning models for early Parkinson’s Disease detection. We constructed two experimental pipelines: one excluding all overt motor symptoms to simulate a subclinical scenario and a control including these features. Nine machine learning algorithms were evaluated using a robust three-way data split and comprehensive metric analysis. Results reveal that, without overt features, all models exhibited superficially acceptable F1 scores but failed catastrophically in specificity, misclassifying most healthy controls as Parkinson’s Disease. The inclusion of overt features dramatically improved performance, confirming that high accuracy was due to data leakage rather than genuine predictive power. These findings underscore the necessity of rigorous experimental design, transparent reporting, and critical evaluation of machine learning models in clinically realistic settings. Our work highlights the risks of overestimating model utility due to data leakage and provides guidance for developing robust, clinically meaningful machine learning tools for early disease detection. Full article
(This article belongs to the Special Issue Mathematical Models for Medical Diagnosis and Testing)
Show Figures

Figure 1

24 pages, 8197 KiB  
Article
Reuse of Decommissioned Tubular Steel Wind Turbine Towers: General Considerations and Two Case Studies
by Sokratis Sideris, Charis J. Gantes, Stefanos Gkatzogiannis and Bo Li
Designs 2025, 9(4), 92; https://doi.org/10.3390/designs9040092 (registering DOI) - 6 Aug 2025
Abstract
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach [...] Read more.
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach is deemed far more efficient than ordinary steel recycling, due to the fact that it contributes towards reducing both the cost of the new project and the associated carbon emissions. Along these lines, the feasibility of utilizing steel wind turbine towers (WTTs) as part of a new structure is investigated herein, considering that wind turbines are decommissioned after a nominal life of approximately 25 years due to fatigue limitations. General principles of structural steel reuse are first presented in a systematic manner, followed by two case studies. Realistic data about the geometry and cross-sections of previous generation models of WTTs were obtained from the Greek Center for Renewable Energy Sources and Savings (CRES), including drawings and photographic material from their demonstrative wind farm in the area of Keratea. A specific wind turbine was selected that is about to exceed its life expectancy and will soon be decommissioned. Two alternative applications for the reuse of the tower were proposed and analyzed, with emphasis on the structural aspects. One deals with the use of parts of the tower as a small-span pedestrian bridge, while the second addresses the transformation of a tower section into a water storage tank. Several decision factors have contributed to the selection of these two reuse scenarios, including, amongst others, the geometric compatibility of the decommissioned wind turbine tower with the proposed applications, engineering intuition about the tower having adequate strength for its new role, the potential to minimize fatigue loads in the reused state, the minimization of cutting and joining processes as much as possible to restrain further CO2 emissions, reduction in waste material, the societal contribution of the potential reuse applications, etc. The two examples are briefly presented, aiming to demonstrate the concept and feasibility at the preliminary design level, highlighting the potential of decommissioned WTTs to find proper use for their future life. Full article
Show Figures

Figure 1

22 pages, 3217 KiB  
Article
A Deep Reinforcement Learning Approach for Energy Management in Low Earth Orbit Satellite Electrical Power Systems
by Silvio Baccari, Elisa Mostacciuolo, Massimo Tipaldi and Valerio Mariani
Electronics 2025, 14(15), 3110; https://doi.org/10.3390/electronics14153110 - 5 Aug 2025
Abstract
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement [...] Read more.
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement Learning approach using Deep-Q Network to develop an adaptive energy management framework for Low Earth Orbit satellites. Compared to traditional techniques, the proposed solution autonomously learns from environmental interaction, offering robustness to uncertainty and online adaptability. It adjusts to changing conditions without manual retraining, making it well-suited for handling modeling uncertainties and non-stationary dynamics typical of space operations. Training is conducted using a realistic satellite electric power system model with accurate component parameters and single-orbit power profiles derived from real space missions. Numerical simulations validate the controller performance across diverse scenarios, including multi-orbit settings, demonstrating superior adaptability and efficiency compared to conventional Maximum Power Point Tracking methods. Full article
Show Figures

Figure 1

20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

20 pages, 4007 KiB  
Article
Sublethal and Lethal Effects of Low-Dose Prothioconazole Alone and in Combination with Low-Dose Lambda-Cyhalothrin on Carabid Beetles in a Field-Realistic Scenario
by Enno Merivee, Anne Mürk, Karin Nurme, Mati Koppel, Angela Ploomi and Marika Mänd
Pollutants 2025, 5(3), 24; https://doi.org/10.3390/pollutants5030024 - 4 Aug 2025
Viewed by 84
Abstract
Environmental risk assessment (ERA) for pesticide approval in the context of predatory insects remains inadequate as it often overlooks the influence of agricultural practices. An increasing number of studies have shown that prolonged and synergistic pesticide exposure can elevate insect mortality. However, such [...] Read more.
Environmental risk assessment (ERA) for pesticide approval in the context of predatory insects remains inadequate as it often overlooks the influence of agricultural practices. An increasing number of studies have shown that prolonged and synergistic pesticide exposure can elevate insect mortality. However, such effects remain largely unstudied in non-target predatory carabid beetles. The carabid beetle Platynus assimilis was subjected to repeated oral and continuous contact exposure to low doses of prothioconazole (20 g ha−1), lambda-cyhalothrin (0.4 g ha−1), or their combination over a 64-day period. The food consumption rate, body mass, locomotor activity, and mortality were monitored throughout the experiment. All pesticide-treated groups showed significantly increased final mortality, with median lethal times (LT50) of 51.6 days for prothioconazole, 60.3 days for lambda-cyhalothrin, and 12.2 days for their combination. A significant synergistic effect on mortality was observed in the combined treatment group, with the highest synergistic ratio detected 20 days after the first exposure. Pesticide-treated beetles exhibited significant abnormalities in locomotor activity and body mass compared to the untreated group. These findings demonstrate that both time-cumulative mortality and potential synergistic interactions, reflecting field-realistic conditions, must be considered in ERA. Failure to do so may lead to an underestimation of pesticide toxicity to predatory carabids. Full article
Show Figures

Graphical abstract

25 pages, 861 KiB  
Article
Designing a Board Game to Expand Knowledge About Parental Involvement in Teacher Education
by Zsófia Kocsis, Zsolt Csák, Dániel Bodnár and Gabriella Pusztai
Educ. Sci. 2025, 15(8), 986; https://doi.org/10.3390/educsci15080986 (registering DOI) - 2 Aug 2025
Viewed by 340
Abstract
Research highlights a growing demand for active, experiential learning methods in higher education, especially in teacher education. While the benefits of parental involvement (PI) are well-documented, Hungary lacks tools to effectively prepare teacher trainees for fostering family–school cooperation. This study addresses this gap [...] Read more.
Research highlights a growing demand for active, experiential learning methods in higher education, especially in teacher education. While the benefits of parental involvement (PI) are well-documented, Hungary lacks tools to effectively prepare teacher trainees for fostering family–school cooperation. This study addresses this gap by introducing a custom-designed board game as an innovative teaching tool. The game simulates real-world challenges in PI through a cooperative, scenario-based framework. Exercises are grounded in international and national research, ensuring their relevance and evidence-based design. Tested with 110 students, the game’s educational value was assessed via post-gameplay questionnaires. Participants emphasized the strengths of its cooperative structure, realistic scenarios, and integration of humor. Many reported gaining new insights into parental roles and strategies for effective home–school partnerships. Practical applications include integrating the game into teacher education curricula and adapting it for other educational contexts. This study demonstrates how board games can bridge theory and practice, offering an engaging, effective medium to prepare future teachers for the challenges of PI. Full article
(This article belongs to the Section Teacher Education)
Show Figures

Figure 1

26 pages, 2843 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 - 1 Aug 2025
Viewed by 154
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
Show Figures

Figure 1

29 pages, 1132 KiB  
Article
Generating Realistic Synthetic Patient Cohorts: Enforcing Statistical Distributions, Correlations, and Logical Constraints
by Ahmad Nader Fasseeh, Rasha Ashmawy, Rok Hren, Kareem ElFass, Attila Imre, Bertalan Németh, Dávid Nagy, Balázs Nagy and Zoltán Vokó
Algorithms 2025, 18(8), 475; https://doi.org/10.3390/a18080475 - 1 Aug 2025
Viewed by 199
Abstract
Large, high-quality patient datasets are essential for applications like economic modeling and patient simulation. However, real-world data is often inaccessible or incomplete. Synthetic patient data offers an alternative, and current methods often fail to preserve clinical plausibility, real-world correlations, and logical consistency. This [...] Read more.
Large, high-quality patient datasets are essential for applications like economic modeling and patient simulation. However, real-world data is often inaccessible or incomplete. Synthetic patient data offers an alternative, and current methods often fail to preserve clinical plausibility, real-world correlations, and logical consistency. This study presents a patient cohort generator designed to produce realistic, statistically valid synthetic datasets. The generator uses predefined probability distributions and Cholesky decomposition to reflect real-world correlations. A dependency matrix handles variable relationships in the right order. Hard limits block unrealistic values, and binary variables are set using percentiles to match expected rates. Validation used two datasets, NHANES (2021–2023) and the Framingham Heart Study, evaluating cohort diversity (general, cardiac, low-dimensional), data sparsity (five correlation scenarios), and model performance (MSE, RMSE, R2, SSE, correlation plots). Results demonstrated strong alignment with real-world data in central tendency, dispersion, and correlation structures. Scenario A (empirical correlations) performed best (R2 = 86.8–99.6%, lowest SSE and MAE). Scenario B (physician-estimated correlations) also performed well, especially in a low-dimensions population (R2 = 80.7%). Scenario E (no correlation) performed worst. Overall, the proposed model provides a scalable, customizable solution for generating synthetic patient cohorts, supporting reliable simulations and research when real-world data is limited. While deep learning approaches have been proposed for this task, they require access to large-scale real datasets and offer limited control over statistical dependencies or clinical logic. Our approach addresses this gap. Full article
(This article belongs to the Collection Feature Papers in Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

25 pages, 3590 KiB  
Article
Effectiveness of Firefighter Training for Indoor Intervention: Analysis of Temperature Profiles and Extinguishing Effectiveness
by Jan Hora
Fire 2025, 8(8), 304; https://doi.org/10.3390/fire8080304 - 1 Aug 2025
Viewed by 194
Abstract
This study assessed the effectiveness of stress-based cognitive-behavioral training compared to standard training in firefighters, emphasizing their ability to distribute extinguishing water and cool environments evenly during enclosure fires. Experiments took place at the Zbiroh training facility with two firefighter teams (Team A [...] Read more.
This study assessed the effectiveness of stress-based cognitive-behavioral training compared to standard training in firefighters, emphasizing their ability to distribute extinguishing water and cool environments evenly during enclosure fires. Experiments took place at the Zbiroh training facility with two firefighter teams (Team A with stress-based training and Team B with standard training) under realistic conditions. Using 58 thermocouples and 4 radiometers, temperature distribution and radiant heat flux were measured to evaluate water distribution efficiency and cooling performance during interventions. Team A consistently achieved temperature reductions of approximately 320 °C in the upper layers and 250–400 °C in the middle layers, maintaining stable conditions, whereas Team B only achieved partial cooling, with upper-layer temperatures remaining at 750–800 °C. Additionally, Team A recorded lower radiant heat flux densities (e.g., 20.74 kW/m2 at 0°) compared to Team B (21.81 kW/m2), indicating more effective water application and adaptability. The findings confirm that stress-based training enhances firefighters’ operational readiness and their ability to distribute water effectively during interventions. This skill is essential for safer and effective management of indoor fires under extreme conditions. This study supports the inclusion of stress-based and scenario-based training in firefighter education to enhance safety and operational performance. Full article
Show Figures

Figure 1

26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 - 1 Aug 2025
Viewed by 163
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

28 pages, 437 KiB  
Article
The General Semimartingale Market Model
by Moritz Sohns
AppliedMath 2025, 5(3), 97; https://doi.org/10.3390/appliedmath5030097 (registering DOI) - 1 Aug 2025
Viewed by 138
Abstract
This paper develops a unified framework for mathematical finance under general semimartingale models that allow for dividend payments, negative asset prices, and unbounded jumps. We present a rigorous approach to the mathematical modeling of financial markets with dividend-paying assets by defining appropriate concepts [...] Read more.
This paper develops a unified framework for mathematical finance under general semimartingale models that allow for dividend payments, negative asset prices, and unbounded jumps. We present a rigorous approach to the mathematical modeling of financial markets with dividend-paying assets by defining appropriate concepts of numéraires, discounted processes, and self-financing trading strategies. While most of the mathematical results are not new, this unified framework has been missing in the literature. We carefully examine the transition between nominal and discounted price processes and define appropriate notions of admissible strategies that work naturally in both settings. By establishing the equivalence between these models and providing clear conditions for their applicability, we create a mathematical foundation that encompasses a wide range of realistic market scenarios and can serve as a basis for future work on mathematical finance and derivative pricing. We demonstrate the practical relevance of our framework through a comprehensive application to dividend-paying equity markets where the framework naturally handles discrete dividend payments. This application shows that our theoretical framework is not merely abstract but provides the rigorous foundation for pricing derivatives in real-world markets where classical assumptions need extension. Full article
Show Figures

Figure 1

29 pages, 7249 KiB  
Article
Application of Multi-Objective Optimization for Path Planning and Scheduling: The Edible Oil Transportation System Framework
by Chin S. Chen, Chia J. Lin, Yu J. Lin and Feng C. Lin
Appl. Sci. 2025, 15(15), 8539; https://doi.org/10.3390/app15158539 (registering DOI) - 31 Jul 2025
Viewed by 216
Abstract
This study proposes a multi-objective optimization scheduling method for edible oil transportation in smart manufacturing, focusing on centralized control and addressing challenges such as complex pipelines and shared resource constraints. The method employs the A* and Dijkstra pathfinding algorithm to determine the shortest [...] Read more.
This study proposes a multi-objective optimization scheduling method for edible oil transportation in smart manufacturing, focusing on centralized control and addressing challenges such as complex pipelines and shared resource constraints. The method employs the A* and Dijkstra pathfinding algorithm to determine the shortest pipeline route for each task, and estimates pipeline resource usage to derive a node cost weight function. Additionally, the transport time is calculated using the Hagen–Poiseuille law by considering the viscosity coefficients of different oil types. To minimize both cost and time, task execution sequences are optimized based on a Pareto front approach. A 3D digital model of the pipeline system was developed using C#, SolidWorks Professional, and the Helix Toolkit V2.24.0 to simulate a realistic production environment. This model is integrated with a 3D visual human–machine interface(HMI) that displays the status of each task before execution and provides real-time scheduling adjustment and decision-making support. Experimental results show that the proposed method improves scheduling efficiency by over 43% across various scenarios, significantly enhancing overall pipeline transport performance. The proposed method is applicable to pipeline scheduling and transportation management in digital factories, contributing to improved operational efficiency and system integration. Full article
Show Figures

Figure 1

29 pages, 3400 KiB  
Article
Synthetic Data Generation for Machine Learning-Based Hazard Prediction in Area-Based Speed Control Systems
by Mariusz Rychlicki and Zbigniew Kasprzyk
Appl. Sci. 2025, 15(15), 8531; https://doi.org/10.3390/app15158531 (registering DOI) - 31 Jul 2025
Viewed by 243
Abstract
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a [...] Read more.
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a continuous vehicle speed monitoring system to minimize the risk of traffic accidents caused by speeding. The SUMO traffic simulator was used to model driver behavior in the analyzed area and within a given road network. Data from OpenStreetMap and field measurements from over a dozen speed detectors were integrated. Preliminary tests were carried out to record vehicle speeds. Based on these data, several simulation scenarios were run and compared to real-world observations using average speed, the percentage of speed limit violations, root mean square error (RMSE), and percentage compliance. A new metric, the Combined Speed Accuracy Score (CSAS), has been introduced to assess the consistency of simulation results with real-world data. For this study, a basic hazard prediction model was developed using LoRaWAN sensor network data and environmental contextual variables, including time, weather, location, and accident history. The research results in a method for evaluating and selecting the simulation scenario that best represents reality and drivers’ propensities to exceed speed limits. The results and findings demonstrate that it is possible to produce synthetic data with a level of agreement exceeding 90% with real data. Thus, it was shown that it is possible to generate synthetic data for machine learning in hazard prediction for area-based speed control systems using traffic simulators. Full article
Show Figures

Figure 1

24 pages, 2410 KiB  
Article
Predictive Modeling and Simulation of CO2 Trapping Mechanisms: Insights into Efficiency and Long-Term Sequestration Strategies
by Oluchi Ejehu, Rouzbeh Moghanloo and Samuel Nashed
Energies 2025, 18(15), 4071; https://doi.org/10.3390/en18154071 - 31 Jul 2025
Viewed by 249
Abstract
This study presents a comprehensive analysis of CO2 trapping mechanisms in subsurface reservoirs by integrating numerical reservoir simulations, geochemical modeling, and machine learning techniques to enhance the design and evaluation of carbon capture and storage (CCS) strategies. A two-dimensional reservoir model was [...] Read more.
This study presents a comprehensive analysis of CO2 trapping mechanisms in subsurface reservoirs by integrating numerical reservoir simulations, geochemical modeling, and machine learning techniques to enhance the design and evaluation of carbon capture and storage (CCS) strategies. A two-dimensional reservoir model was developed to simulate CO2 injection dynamics under realistic geomechanical and geochemical conditions, incorporating four primary trapping mechanisms: residual, solubility, mineralization, and structural trapping. To improve computational efficiency without compromising accuracy, advanced machine learning models, including random forest, gradient boosting, and decision trees, were deployed as smart proxy models for rapid prediction of trapping behavior across multiple scenarios. Simulation outcomes highlight the critical role of hysteresis, aquifer dynamics, and producer well placement in enhancing CO2 trapping efficiency and maintaining long-term storage stability. To support the credibility of the model, a qualitative validation framework was implemented by comparing simulation results with benchmarked field studies and peer-reviewed numerical models. These comparisons confirm that the modeled mechanisms and trends align with established CCS behavior in real-world systems. Overall, the study demonstrates the value of combining traditional reservoir engineering with data-driven approaches to optimize CCS performance, offering scalable, reliable, and secure solutions for long-term carbon sequestration. Full article
Show Figures

Figure 1

Back to TopTop