Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = realignment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1066 KB  
Article
Liner Schedule Reliability Problem: An Empirical Analysis of Disruptions and Recovery Measures in Container Shipping
by Jakov Karmelić, Marija Jović Mihanović, Ana Perić Hadžić and David Brčić
Logistics 2025, 9(4), 149; https://doi.org/10.3390/logistics9040149 - 20 Oct 2025
Viewed by 396
Abstract
Background: Schedule reliability in container liner services is essential for the efficiency of maritime and inland transport, terminal operations, and the overall supply chain. Disruptions to vessel schedules can trigger a series of disruptions at other points, generating additional operational costs for carriers, [...] Read more.
Background: Schedule reliability in container liner services is essential for the efficiency of maritime and inland transport, terminal operations, and the overall supply chain. Disruptions to vessel schedules can trigger a series of disruptions at other points, generating additional operational costs for carriers, terminal operators, inland transport providers, and ultimately, for importers, exporters, and end consumers. Methods: The research paper combines literature reviews and shipping company data. A qualitative analysis contains specific causes of vessel delays and corrective actions used to realign schedules with the pro forma plan. The analysis was expanded to include transport of cargo in containers from origin to the final inland destination. Results: Disruption factors are identified and classified by their place of occurrence: (1) inland transport, (2) anchorage, (3) ports, and (4) navigation between ports. The research produced several new disruptive factors previously not identified and published. It has been confirmed that port congestion acts as the principal cause of delay in liner service. Conclusions: The findings indicate that while the number and complexity of disruptive factors are increasing due to global and regional dynamics, the range of recovery measures remains narrow. A deeper understanding of these causes enables more effective prevention, aiming to minimize supply chain disruptions and costs and increase the reliability of door-to-door container transport. Full article
Show Figures

Figure 1

10 pages, 1042 KB  
Article
Comparative Analysis of Bone Resection Volume and Lateral Overhang in Four Closed-Wedge High Tibial Osteotomy Techniques—A 3D-CT Computational Simulation Study of Eleven Knees
by Seok Jin Jung, Kyoung Won Park, Seung Joon Rhee, Young Woong Jang and Seong Jin Kim
J. Clin. Med. 2025, 14(20), 7291; https://doi.org/10.3390/jcm14207291 - 15 Oct 2025
Viewed by 344
Abstract
Purpose: This study aimed to quantitatively compare the resected bony wedge volume and evaluate discrepancies in the non-overlapping lateral osteotomy surface areas among four closed-wedge high tibial osteotomy (CWHTO) techniques. Materials and Methods: Eleven knees from 10 patients who underwent high [...] Read more.
Purpose: This study aimed to quantitatively compare the resected bony wedge volume and evaluate discrepancies in the non-overlapping lateral osteotomy surface areas among four closed-wedge high tibial osteotomy (CWHTO) techniques. Materials and Methods: Eleven knees from 10 patients who underwent high tibial osteotomy at our hospital (2016–2023) were analyzed using preoperative three-dimensional computed tomography. Representative cases were selected based on sex, the presence of proximal tibia vara, and a high joint line convergence angle. A subgroup analysis was then conducted. Surgical simulations were performed on reconstructed bone models using four different CWHTO techniques (conventional, oblique, hybrid 2:1, and hybrid 3:1) at three target angles (12°, 15°, and 18°). Osteotomy surface area and bony wedge volume were calculated and compared. Results: Distal osteotomy surface areas for the oblique, hybrid 1, and hybrid 2 techniques were 91%, 83%, and 72% of the conventional technique, respectively. Resected bony wedge volumes were 86%, 52%, and 38% of the conventional technique, respectively. Volumes decreased in the order of conventional, oblique, hybrid 3:1, and hybrid 2:1. Hybrid techniques showed significantly smaller resection volumes than the conventional and oblique techniques. The non-overlapping lateral osteotomy surface areas for oblique, hybrid 1, and hybrid 2 were 41% (lateral), 22% (medial), and 22% (medial) of the conventional technique, respectively. Only the conventional technique showed a statistically significant difference. Conclusions: Hybrid CWHTO techniques resulted in less bony wedge resection and fewer non-overlapping osteotomy surfaces compared with conventional and oblique techniques. Hybrid CWHTO may offer potential advantages in bone stock preservation and reduced lateral overhanging area. Full article
(This article belongs to the Special Issue Clinical Perspectives on Surgical Management of Knee Injuries)
Show Figures

Figure 1

9 pages, 1700 KB  
Proceeding Paper
Implementation of Industry 5.0 in SME: Scoping Review
by Zineb Bentassil, Anass Ben Abdelouahab and Aniss Moumen
Eng. Proc. 2025, 112(1), 14; https://doi.org/10.3390/engproc2025112014 - 14 Oct 2025
Viewed by 301
Abstract
Industry 5.0 (I5) represents a significant evolution in the trajectory of industrial development, emphasizing a human-centric approach that integrates advanced technologies with the goal of promoting sustainable growth, resilience, and enhanced human well-being. While Industry 4.0 already posed considerable challenges for industrial organizations, [...] Read more.
Industry 5.0 (I5) represents a significant evolution in the trajectory of industrial development, emphasizing a human-centric approach that integrates advanced technologies with the goal of promoting sustainable growth, resilience, and enhanced human well-being. While Industry 4.0 already posed considerable challenges for industrial organizations, particularly in terms of technological integration, workforce adaptation, and strategic realignment, the shift toward Industry 5.0 has introduced additional complexities. The accelerated pace of innovation and the evolving expectations for human–machine collaboration have intensified these challenges. Large manufacturing corporations are already facing difficulties in adapting to this new paradigm; thus, the question arises: how are Small and Medium-sized Enterprises (SMEs), which typically operate with limited resources, infrastructure, and financial capacity, managing this transition? This paper presents a scoping review of 17 research papers, chosen from an initial set of 37 publications sourced from Scopus, Web of Science and ScienceDirect on the implementation of Industry 5.0 in SMEs. A comprehensive synthesis of existing research was conducted to elucidate the current state of the topic, identify the research questions addressed, and outline future directions for this emerging paradigm. Full article
Show Figures

Figure 1

14 pages, 600 KB  
Article
A Retrospective Study on Wilson Osteotomy with Intramedullary Locking Plate for Failed Hallux Valgus Correction: Insights from a Single-Surgeon Experience
by Yi Ping Wei, Meng Chen Kuo and Yi Jiun Chou
Life 2025, 15(10), 1592; https://doi.org/10.3390/life15101592 - 12 Oct 2025
Viewed by 317
Abstract
Background/Objective: The recurrence of hallux valgus (HV) after primary surgical correction remains a clinical challenge, often requiring combined approaches to address both bony realignment and soft tissue imbalance. While locking plates have shown some biomechanical advantages in HV correction, evidence regarding their [...] Read more.
Background/Objective: The recurrence of hallux valgus (HV) after primary surgical correction remains a clinical challenge, often requiring combined approaches to address both bony realignment and soft tissue imbalance. While locking plates have shown some biomechanical advantages in HV correction, evidence regarding their application in revision procedures is limited. This study presents a retrospective single-surgeon experience with a small cohort, aiming to describe radiographic and functional outcomes and to share practical insights rather than provide definitive conclusions. Methods: In this retrospective case series, patients undergoing revision surgery for failed HV correction over the past ten years at a single tertiary institution were analyzed. Radiographic parameters—hallux valgus angle (HVA), intermetatarsal angle (IMA), distal metatarsal articular angle (DMAA), and sesamoid position—were assessed. Functional outcomes included the American Orthopaedic Foot and Ankle Society (AOFAS) score and the Visual Analog Scale for pain. Surgical strategies were tailored according to recurrence mechanisms, and some cases involved Wilson osteotomy with intramedullary plate fixation. The Mann–Whitney U test and the Wilcoxon signed-rank test were applied to assess efficacy. Results: A total of 11 feet treated by one surgeon were included. Both soft tissue procedures and combined osteotomy with intramedullary plate fixation led to statistically significant but preliminary improvements in HVA, IMA, DMAA, and sesamoid alignment. Functional scores improved, and the complication rate was within the range reported in the previous literature. Conclusions: This retrospective single-surgeon study with a limited sample size suggests that Wilson osteotomy combined with intramedullary plate fixation may represent a joint-preserving and biomechanically supportive option for recurrent HV, particularly in cases with large DMAAs and severe sesamoid displacement. However, the findings should be interpreted cautiously given the small cohort, retrospective design, and absence of multi-angle radiographic visualization. The results highlight a potential approach in specific clinical settings rather than a definitive solution. Larger, prospective, multi-center studies are required to confirm long-term utility. Full article
(This article belongs to the Special Issue Novel Therapeutics for Musculoskeletal Disorders)
Show Figures

Figure 1

29 pages, 2376 KB  
Systematic Review
Manufacturing Supply Chain Resilience Amid Global Value Chain Reconfiguration: An Enhanced Bibliometric–Systematic Literature Review
by Yan Li, Xinxin Xia, Cong Wang and Qingbo Huang
Systems 2025, 13(10), 873; https://doi.org/10.3390/systems13100873 - 5 Oct 2025
Viewed by 763
Abstract
Global Value Chains (GVCs) have driven the worldwide dispersion of manufacturing but remain highly vulnerable to macro-level shocks, including financial crises, geopolitical tensions, and the COVID-19 pandemic. These shocks expose manufacturing supply chains (MSCs) to systemic risks, but limited research has explored how [...] Read more.
Global Value Chains (GVCs) have driven the worldwide dispersion of manufacturing but remain highly vulnerable to macro-level shocks, including financial crises, geopolitical tensions, and the COVID-19 pandemic. These shocks expose manufacturing supply chains (MSCs) to systemic risks, but limited research has explored how GVC reconfiguration mediates their impact on manufacturing supply chain resilience (MSCR). To address this gap, this study conducts an enhanced bibliometric–systematic literature review (B-SLR) of 120 peer-reviewed articles. The findings reveal that macro-level shocks induce GVC reconfigurations along geographical, value, and governance dimensions, which in turn trigger MSCR through node- and link-level mechanisms. MSCR represents a manufacturer-centered capability that enables MSCs to preserve, realign, and enhance value amid shocks. Building on these insights, this research proposes a multi-tier strategy encompassing firm-level practices, inter-firm collaborations, and policy interventions. This study outlines three key contributions. First, at the theoretical level, it embeds MSCR within a GVC framework, clarifying how GVC reconfiguration mediates SCR under macro-level shocks. Second, at the methodological level, it ensures corpus completeness through snowballing and refines bibliometric mapping with multi-dimensional visualization. Third, at the managerial level, it provides actionable guidance for firms, industry alliances, and policymakers to align MSCR strategies with the dynamics of global production networks. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

34 pages, 8658 KB  
Article
Driving Processes of the Niland Moving Mud Spring: A Conceptual Model of a Unique Geohazard in California’s Eastern Salton Sea Region
by Barry J. Hibbs
GeoHazards 2025, 6(4), 59; https://doi.org/10.3390/geohazards6040059 - 25 Sep 2025
Viewed by 654
Abstract
The Niland Moving Mud Spring, located near the southeastern margin of the Salton Sea, represents a rare and evolving geotechnical hazard. Unlike the typically stationary mud pots of the Salton Trough, this spring is a CO2-driven mud spring that has migrated [...] Read more.
The Niland Moving Mud Spring, located near the southeastern margin of the Salton Sea, represents a rare and evolving geotechnical hazard. Unlike the typically stationary mud pots of the Salton Trough, this spring is a CO2-driven mud spring that has migrated southwestward since 2016, at times exceeding 3 m per month, posing threats to critical infrastructure including rail lines, highways, and pipelines. Emergency mitigation efforts initiated in 2018, including decompression wells, containment berms, and route realignments, have since slowed and recently almost halted its movement and growth. This study integrates hydrochemical, temperature, stable isotope, and tritium data to propose a refined conceptual model of the Moving Mud Spring’s origin and migration. Temperature data from the Moving Mud Spring (26.5 °C to 28.3 °C) and elevated but non-geothermal total dissolved solids (~18,000 mg/L) suggest a shallow, thermally buffered groundwater source influenced by interaction with saline lacustrine sediments. Stable water isotope data follow an evaporative trajectory consistent with imported Colorado River water, while tritium concentrations (~5 TU) confirm a modern recharge source. These findings rule out deep geothermal or residual floodwater origins from the great “1906 flood”, and instead implicate more recent irrigation seepage or canal leakage as the primary water source. A key external forcing may be the 4.1 m drop in Salton Sea water level between 2003 and 2025, which has modified regional groundwater hydraulic head gradients. This recession likely enhanced lateral groundwater flow from the Moving Mud Spring area, potentially facilitating the migration of upwelling geothermal gases and contributing to spring movement. No faults or structural features reportedly align with the spring’s trajectory, and most major fault systems trend perpendicular to its movement. The hydrologically driven model proposed in this paper, linked to Salton Sea water level decline and correlated with the direction, rate, and timing of the spring’s migration, offers a new empirical explanation for the observed movement of the Niland Moving Mud Spring. Full article
Show Figures

Figure 1

15 pages, 3846 KB  
Article
Integrative Multi-Omics Characterization and Structural Insights into the Poorly Annotated Integrin ITGA6 X1X2 Isoform in Mammals
by Ximena Aixa Castro Naser, Alessandro Cestaro, Silvio C. E. Tosatto and Emanuela Leonardi
Genes 2025, 16(10), 1134; https://doi.org/10.3390/genes16101134 - 25 Sep 2025
Viewed by 388
Abstract
Background: Accurate annotation of gene isoforms remains one of the major obstacles in translating genomic data into meaningful biological insight. Laminin-binding integrins, particularly integrin α6 (ITGA6), exemplify this challenge through their complex splicing patterns. The rare ITGA6 X1X2 isoform, generated by the [...] Read more.
Background: Accurate annotation of gene isoforms remains one of the major obstacles in translating genomic data into meaningful biological insight. Laminin-binding integrins, particularly integrin α6 (ITGA6), exemplify this challenge through their complex splicing patterns. The rare ITGA6 X1X2 isoform, generated by the alternative inclusion of exons X1 and X2 within the β-propeller domain, has remained poorly characterized despite decades of integrin research. Methods: We combined comparative genomics across primates with targeted re-alignment to assess exon conservation and annotation fidelity; analyzed RNA-seq for exon-level usage; applied splice-site prediction to evaluate inclusion potential; surveyed cancer mutation resources for exon-specific variants; and used structural/disorder modeling to infer effects on the β-propeller. Results: Exon X2 is conserved at the genomic level but inconsistently annotated, reflecting the limitations of current annotation pipelines rather than genuine evolutionary loss. RNA-seq analyses reveal low but detectable expression of X2, consistent with weak splice site predictions that suggest strict regulatory control and condition-specific expression. Despite its rarity, recurrent mutations in exon X2 are reported in cancer datasets, implying possible roles in disease. Structural modeling further indicates that X2 contributes to a flexible, disordered region within the β-propeller domain, potentially influencing laminin binding or β-subunit dimerization. Conclusions: Altogether, our results suggest that ITGA6 X1X2 could be a rare, tightly regulated isoform with potential functional and pathological relevance. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Graphical abstract

40 pages, 1588 KB  
Review
The Efficacy of Melatonergic Receptor Agonists Used in Clinical Practice in Insomnia Treatment: Melatonin, Tasimelteon, Ramelteon, Agomelatine, and Selected Herbs
by Kacper Żełabowski, Wojciech Pichowicz, Izabela Skowron, Jagoda Szwach, Kamil Biedka, Michał Wesołowski, Katarzyna Błaszczyk, Oliwia Ziobro, Wiktor Petrov, Wirginia Kukula-Koch and Agnieszka Chłopaś-Konowałek
Molecules 2025, 30(18), 3814; https://doi.org/10.3390/molecules30183814 - 19 Sep 2025
Viewed by 2404
Abstract
Insomnia is a common and complex disorder, rooted in the dysregulation of circadian rhythms, impaired neurotransmitter function, and disturbances in sleep–wake homeostasis. While conventional hypnotics such as benzodiazepines and Z-drugs are effective in the short term, their use is limited by a high [...] Read more.
Insomnia is a common and complex disorder, rooted in the dysregulation of circadian rhythms, impaired neurotransmitter function, and disturbances in sleep–wake homeostasis. While conventional hypnotics such as benzodiazepines and Z-drugs are effective in the short term, their use is limited by a high potential for dependence, cognitive side effects, and withdrawal symptoms. In contrast, melatonergic receptor agonists—melatonin, ramelteon, tasimelteon, and agomelatine—represent a pharmacologically targeted alternative that modulates MT1 and MT2 receptors, which are pivotal to the regulation of circadian timing and sleep initiation. Clinical evidence supports the efficacy of these agents in reducing sleep onset latency, extending total sleep duration, and re-aligning disrupted circadian rhythms, particularly among older individuals and patients with non-24 h sleep–wake disorders. Notably, agomelatine offers additional antidepressant properties through selective antagonism of the 5-HT2C receptor in micromolar concentrations. In contrast, its agonistic activity at melatonergic receptors is observed in the low sub-nanomolar range, which illustrates the complexity of this drug’s interactions with the human body. All compounds reviewed demonstrate a generally favorable safety and tolerability profile. Accumulating evidence highlights that selected medicinal plants, such as chamomilla, lemon balm, black cumin, valeriana, passionflower and lavender, may exert relevant hypnotic or anxiolytic effects, thus complementing melatonergic strategies in the management of insomnia. This structured narrative review presents a comprehensive analysis of the molecular pharmacology, receptor affinity, signaling pathways, and clinical outcomes associated with melatonergic agents. It also examines their functional interplay with serotonergic, GABAergic, dopaminergic, and orexinergic systems involved in arousal and sleep regulation. Through comparative synthesis of pharmacokinetics and neurochemical mechanisms, this work aims to inform the development of evidence-based strategies for the treatment of insomnia and circadian rhythm sleep–wake disorders. Full article
(This article belongs to the Special Issue Antioxidant, and Anti-Inflammatory Activities of Natural Plants)
Show Figures

Figure 1

24 pages, 12807 KB  
Article
Oriented-Attachment-Driven Heteroepitaxial Growth During Early Coalescence of Single-Crystal Diamond on Iridium: A Combined Multiscale Simulation and Experimental Validation
by Yang Wang, Junhao Chen, Zhe Li, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(9), 803; https://doi.org/10.3390/cryst15090803 - 12 Sep 2025
Viewed by 700
Abstract
The scalable synthesis of high-quality single-crystal diamond films remains pivotal for next-generation extreme-performance devices. Iridium substrates offer exceptional promise for heteroepitaxy, yet early-stage growth mechanisms limiting crystal quality are poorly understood. An integrated multiscale investigation combining first-principles DFT calculations, molecular dynamics simulations, and [...] Read more.
The scalable synthesis of high-quality single-crystal diamond films remains pivotal for next-generation extreme-performance devices. Iridium substrates offer exceptional promise for heteroepitaxy, yet early-stage growth mechanisms limiting crystal quality are poorly understood. An integrated multiscale investigation combining first-principles DFT calculations, molecular dynamics simulations, and experimental validation is presented to resolve the oriented attachment process governing diamond growth on Ir(100). Robust interfacial bonding at the interface and optimal carbon coverage are revealed to provide thermodynamic driving forces for primary nucleation. A critical angular tolerance enabling defect-free coalescence through crystallographic realignment is identified by molecular dynamics. Concurrent nucleation growth pathways are experimentally confirmed through SEM, AFM, and Raman spectroscopy, where nascent crystallites undergo spontaneous orientational registry to form continuous epitaxial domains. Grain boundary annihilation is observed upon lattice rotation aligning adjacent grains below the critical angle. Crucially, intrinsic atomic steps are generated on the resultant coalesced layer, eliminating conventional etching requirements for homoepitaxial thickening. This work advances fundamental understanding of single-crystal diamond growth mechanisms, facilitating enhanced quality control for semiconductor device manufacturing and quantum applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 1848 KB  
Article
Optimization of DNA Fragmentation Techniques to Maximize Coverage Uniformity of Clinically Relevant Genes Using Whole Genome Sequencing
by Vanessa Process, Madana M.R. Ambavaram, Sameer Vasantgadkar, Sushant Khanal, Martina Werner, Maura A. Berkeley, Zachary T. Herbert, Greg Endress, Ulrich Thomann and Eugenio Daviso
Diagnostics 2025, 15(18), 2294; https://doi.org/10.3390/diagnostics15182294 - 10 Sep 2025
Viewed by 1149
Abstract
Background: Coverage uniformity is pivotal in whole genome sequencing (WGS), as uneven read distributions can obscure clinically relevant variants and compromise downstream analyses. While enzyme-based fragmentation methods for WGS library preparation are widely used, they can introduce sequence-specific biases that disproportionately affect high-GC [...] Read more.
Background: Coverage uniformity is pivotal in whole genome sequencing (WGS), as uneven read distributions can obscure clinically relevant variants and compromise downstream analyses. While enzyme-based fragmentation methods for WGS library preparation are widely used, they can introduce sequence-specific biases that disproportionately affect high-GC or low-GC regions. Here, we compare four PCR-free WGS library preparation workflows—one employing mechanical fragmentation and three based on enzymatic fragmentation—to assess their impact on coverage uniformity and variant detection. Results: Libraries were generated with Coriell NA12878 and DNA isolated from DNA blood, saliva, and formalin-fixed paraffin-embedded (FFPE) samples. Sequencing was performed on an Illumina NovaSeq 6000, followed by alignment to the human reference genome (GRCh38/hg38) and local realignment. We assessed coverage at both chromosomal and gene levels, including 504 clinically relevant genes detected in the TruSight™ Oncology 500 (TSO500) panel. Additionally, we examined the relationship between GC content and normalized coverage, as well as variant detection across high- and low-GC regions. Conclusions: Our findings show that mechanical fragmentation yields a more uniform coverage profile across different sample types and across the GC spectrum. Enzymatic workflows, on the other hand, demonstrated more pronounced coverage imbalances, particularly in high-GC regions, potentially affecting the sensitivity of variant detection. This effect was evident in analyses focusing on the TSO500 gene set, where uniform coverage is critical for accurate identification of disease-associated variants and for minimizing false negatives. Downsampling experiments further revealed that mechanical fragmentation maintained lower Single Nucleotide Polymorphism (SNPs) false-negative and false-positive rates at reduced sequencing depths, thereby highlighting the advantages of consistent coverage for resource-efficient WGS. This study introduces a novel framework for evaluating WGS coverage uniformity, providing guidance for optimizing library preparation protocols in clinical and translational research. By quantifying how fragmentation strategies influence coverage depth and variant calling accuracy, laboratories can refine their sequencing workflows to ensure more reliable detection of clinically actionable variants—especially in high-GC regions often implicated in hereditary disease and oncology. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Graphical abstract

17 pages, 761 KB  
Review
The Gut Microbiota Axis in Social Jetlag: A Novel Framework for Metabolic Dysfunction and Chronotherapeutic Innovation
by Christos Savvidis, Viviana Maggio, Manfredi Rizzo, Lina Zabuliene and Ioannis Ilias
Medicina 2025, 61(9), 1630; https://doi.org/10.3390/medicina61091630 - 9 Sep 2025
Viewed by 1212
Abstract
Social jetlag, the misalignment between internal circadian rhythms and socially imposed schedules, is increasingly recognized as a risk factor for metabolic disorders such as obesity, type 2 diabetes (T2D), and cardiovascular disease. Recent evidence implicates the gut microbiota as a key mediator in [...] Read more.
Social jetlag, the misalignment between internal circadian rhythms and socially imposed schedules, is increasingly recognized as a risk factor for metabolic disorders such as obesity, type 2 diabetes (T2D), and cardiovascular disease. Recent evidence implicates the gut microbiota as a key mediator in this relationship, operating through a microbiota–gut–metabolic axis that influences host metabolism, immune function, and circadian regulation. Mechanistic studies reveal that social jetlag disrupts microbial rhythmicity, reduces short-chain fatty acid (SCFA) production, impairs intestinal barrier function, and promotes systemic inflammation, which contribute to insulin resistance and metabolic dysfunction. Clinical and preclinical interventions, including time-restricted feeding (TRF)/time-restricted eating (TRE), probiotics or melatonin supplementation, and fecal microbiota transplantation (FMT), demonstrate the potential to restore microbial and metabolic homeostasis by realigning host and microbial rhythms. This review synthesizes mechanistic insights with emerging human and clinical evidence, highlighting the gut microbiota as a novel target for chronotherapeutic strategies aimed at mitigating the metabolic consequences of circadian disruption. Recognizing and treating circadian–microbiome misalignment may provide a clinically actionable pathway to prevent or reverse chronic metabolic diseases in modern populations. Full article
(This article belongs to the Section Endocrinology)
Show Figures

Figure 1

13 pages, 1991 KB  
Article
Indications for Additional Pedicle Subtraction Osteotomy in Iatrogenic Flatback After Short-Segment Fusion Surgery
by Sung-Min Kim, In-Seok Son, Yong-Chan Kim, Xiongjie Li and Maolin Jin
Medicina 2025, 61(9), 1624; https://doi.org/10.3390/medicina61091624 - 8 Sep 2025
Viewed by 479
Abstract
Background and Objectives: This study aimed to identify radiographic predictors and optimal cut-off values for determining the need for additional pedicle subtraction osteotomy (PSO) in patients with iatrogenic flatback syndrome following short-segment (≤3 levels) fusion surgery. Materials and Methods: From 2011 [...] Read more.
Background and Objectives: This study aimed to identify radiographic predictors and optimal cut-off values for determining the need for additional pedicle subtraction osteotomy (PSO) in patients with iatrogenic flatback syndrome following short-segment (≤3 levels) fusion surgery. Materials and Methods: From 2011 to 2022, a total of 49 patients who underwent deformity correction for iatrogenic flatback following short-segment fusion at a single institution were included. We divided all patients into group A (n = 33, only anterior column realignment, ACR) and group B (n = 16, ACR combined with PSO). Among group A patients, we further divided them into two subgroups: The Excessive group, who developed excessive anterior disc height distraction (EADH) during surgery, and the Non-excessive group, who did not. The Receiver Operating Characteristic (ROC) curve was used to determine the cut-off values for spinopelvic parameters associated with the decision to perform additional PSO. Results: Group A had a significantly lower number of previously fused segments compared to Group B (p < 0.001). Preoperative C7 sagittal vertical axis (C7SVA, p = 0.026) and its correction (p = 0.003) in group B were greater than those in group A. Group B showed a significantly more kyphotic preoperative fused segment angle (FSA) compared to Group A (p = 0.001). Postoperatively, EADH occurred in 7 patients (21.2%) in Group A, while no cases were observed in Group B. Subgroup analysis revealed that the dynamic segment angle (DA) was significantly lower in the Excessive group compared to the Non-excessive group (p < 0.001). The optimal cut-off values of preoperative radiographic parameters for selecting PSO were: C7-SVA > 242.8 mm, FSA > −3.2°, and DA < 4.3°. Conclusions: ACR alone and ACR combined with PSO showed satisfactory outcomes in patients with iatrogenic flat back. For selected patients with preoperative C7SVA > 242.8 mm, FSA > −3.2°, or DA < 4.3°, additional PSO may be reasonable to help optimize sagittal alignment. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

25 pages, 837 KB  
Article
Hunters’ Perceptions and Protected-Area Governance: Wildlife Decline and Resource-Use Management in the Lomami Landscape, DR Congo
by Gloire Mukaku Kazadi, Médard Mpanda Mukenza, John Kikuni Tchowa, François Malaisse, Dieu-Donné N’Tambwe Nghonda, Jan Bogaert and Yannick Useni Sikuzani
Conservation 2025, 5(3), 49; https://doi.org/10.3390/conservation5030049 - 5 Sep 2025
Viewed by 1247
Abstract
The periphery of Lomami National Park in the Democratic Republic of the Congo (DR Congo) is experiencing intense and increasing hunting pressure, driven by both local subsistence needs and growing urban demand for bushmeat. This situation poses a serious challenge to sustainable natural [...] Read more.
The periphery of Lomami National Park in the Democratic Republic of the Congo (DR Congo) is experiencing intense and increasing hunting pressure, driven by both local subsistence needs and growing urban demand for bushmeat. This situation poses a serious challenge to sustainable natural resource management and underscores the need to realign protected-area policies with the realities faced by surrounding communities. In the absence of comprehensive ecological monitoring, this study used hunters’ perceptions to assess the current availability of mammalian wildlife around the park. From October to December 2023, surveys were conducted using a snowball sampling method with 60 hunters from nine villages bordering the park. Results show that hunting is a male-dominated activity, mainly practiced by individuals aged 30–40 years, with firearms as the primary tools. It occurs both in the park’s buffer zones and, alarmingly, within its core protected area. This practice has contributed to the local disappearance of key species such as African forest elephant (Loxodonta cyclotis), African buffalo (Syncerus caffer), and African leopard (Panthera pardus pardus), and to the marked decline of several Cephalophus species. These patterns of overexploitation reveal critical weaknesses in current conservation strategies and point to the urgent need for integrated, community-based resource management approaches. Strengthening law enforcement, improving ranger support, and enhancing participatory governance mechanisms are essential. Equally important is the promotion of sustainable alternative livelihoods—including livestock farming, aquaculture, and agroforestry—to reduce hunting dependence and build long-term resilience for both biodiversity and local communities. Full article
Show Figures

Figure 1

17 pages, 8152 KB  
Article
Decision Tree-Based Evaluation and Classification of Chemical Flooding Well Groups for Medium-Thick Sandstone Reservoirs
by Zuhua Dong, Man Li, Mingjun Zhang, Can Yang, Lintian Zhao, Zengyuan Zhou, Shuqin Zhang and Chenyu Zheng
Energies 2025, 18(17), 4672; https://doi.org/10.3390/en18174672 - 3 Sep 2025
Viewed by 728
Abstract
Targeting the classification and evaluation of chemical flooding well groups in medium-thick sandstone reservoirs (single-layer thickness: 5–15 m), this study proposes a multi-level classification model based on decision trees. Through the comprehensive analysis of key static factors influencing chemical flooding efficiency, a four-tier [...] Read more.
Targeting the classification and evaluation of chemical flooding well groups in medium-thick sandstone reservoirs (single-layer thickness: 5–15 m), this study proposes a multi-level classification model based on decision trees. Through the comprehensive analysis of key static factors influencing chemical flooding efficiency, a four-tier classification index system was established, comprising: interlayer/baffle development frequency (Level 1), thickness-weighted permeability rush coefficient (Level 2), reservoir rhythm characteristics (Level 3), and pore-throat radius-based reservoir connectivity quality (Level 4) as its core components. The model innovatively transforms common reservoir physical parameters (porosity and permeability) into pore-throat radius parameters to enhance guidance for polymer molecular weight design, while employing a thickness-weighted permeability rush coefficient to simultaneously characterize heterogeneity impacts from both permeability and thickness variations. Unlike existing classification methods primarily designed for thin-interbedded reservoirs—which consider only connectivity or apply fuzzy mathematics-based normalization—this model specifically addresses medium-thick reservoirs’ unique challenges of interlayer development and intra-layer heterogeneity. Furthermore, its decision tree architecture clarifies classification logic and significantly reduces data preprocessing complexity. In terms of engineering practicality, the classification results are directly linked to well-group development bottlenecks, as validated in the J16 field application. By implementing customized chemical flooding formulations tailored to the study area, the production performance in the expansion zone achieved comprehensive improvement: daily oil output dropped from 332 tons to 243 tons, then recovered to 316 tons with sustained stabilization. Concurrently, recognizing that interlayer barriers were underdeveloped in certain well groups during production layer realignment, coupled with strong vertical heterogeneity posing polymer channeling risks, targeted profile modification and zonal injection were implemented prior to flooding conversion. This intervention elevated industrial replacement flooding production in the study area from 69 tons to 145 tons daily post-conversion. This framework provides a theoretical foundation for optimizing chemical flooding pilot well-group selection, scheme design, and dynamic adjustments, offering significant implications for enhancing oil recovery in medium-thick sandstone reservoirs through chemical flooding. Full article
(This article belongs to the Special Issue Coal, Oil and Gas: Lastest Advances and Propects)
Show Figures

Figure 1

18 pages, 6816 KB  
Article
Development of Graphene/Recycled Carbon Fiber-Reinforced PLA Composites for MEX Printing and Dry Machinability Analysis
by Abdullah Yahia AlFaify, Mustafa Saleh, Saqib Anwar, Abdulrahman M. Al-Ahmari and Abd Elaty E. AbdElgawad
Polymers 2025, 17(17), 2372; https://doi.org/10.3390/polym17172372 - 31 Aug 2025
Viewed by 1045
Abstract
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high [...] Read more.
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high due to the process-related layering nature and the materials’ properties. This study explores RPC development for MEX printing and the potential of dry milling post-processing to enhance the MEX-printed part’s surface quality. RPC MEX filaments were developed by incorporating graphene nanoplatelets (GNPs) and/or recycled-carbon fibers (rCFs) into a polylactic acid (PLA) matrix. The filaments, including pure PLA and various GNPs-PLA composites, rCF-PLA, and rCF-GNPs-PLA, were developed through ball mill mixing and melt extrusion. Tensile tests were performed to assess the mechanical properties of the developed materials. Dry milling post-processing was carried out to assess the machinability, with the aim of enhancing the MEX-printed part’s surface quality. The results revealed that adding GNPs into PLA showed no considerable enhancements in the tensile properties of the fabricated RPCs, which is contrary to several existing studies. Dry milling showed an enhanced surface quality of MEX-printed parts in terms of surface roughness (Sa and Sz) and the absence of defects such as delamination and layer lines. Adding GNPs into PLA facilitated the dry machining of PLA, resulting in reduced surface asperities compared to pure PLA. Also, there was no observation of pulled-out, realigned, or naked rCFs, which indicates good machinability. Adding GNPs also suppressed the formation of voids around the rCFs during the dry milling. This study provides insights into machining 3D-printed polymer composites to enhance their surface quality. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop