Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,996)

Search Parameters:
Keywords = real-time networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4046 KB  
Article
MSWindD-YOLO: A Lightweight Edge-Deployable Network for Real-Time Wind Turbine Blade Damage Detection in Sustainable Energy Operations
by Pan Li, Jitao Zhou, Jian Zeng, Qian Zhao and Qiqi Yang
Sustainability 2025, 17(19), 8925; https://doi.org/10.3390/su17198925 - 8 Oct 2025
Abstract
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate [...] Read more.
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate real-time inference capabilities. In response to these limitations, we put forward MSWindD-YOLO, a lightweight real-time detection model for wind turbine blade damage. Building upon YOLOv5s, our work introduces three key improvements: (1) the replacement of the Focus module with the Stem module to enhance computational efficiency and multi-scale feature fusion, integrating EfficientNetV2 structures for improved feature extraction and lightweight design, while retaining the SPPF module for multi-scale context awareness; (2) the substitution of the C3 module with the GBC3-FEA module to reduce computational redundancy, coupled with the incorporation of the CBAM attention mechanism at the neck network’s terminus to amplify critical features; and (3) the adoption of Shape-IoU loss function instead of CIoU loss function to facilitate faster model convergence and enhance localization accuracy. Evaluated on the Wind Turbine Blade Damage Visual Analysis Dataset (WTBDVA), MSWindD-YOLO achieves a precision of 95.9%, a recall of 96.3%, an mAP@0.5 of 93.7%, and an mAP@0.5:0.95 of 87.5%. With a compact size of 3.12 MB and 22.4 GFLOPs inference cost, it maintains high efficiency. After TensorRT acceleration on Jetson Orin NX, the model attains 43 FPS under FP16 quantization for real-time damage detection. Consequently, the proposed MSWindD-YOLO model not only elevates detection accuracy and inference efficiency but also achieves significant model compression. Its deployment-compatible performance in edge environments fulfills stringent industrial demands, ultimately advancing sustainable wind energy operations through lightweight lifecycle maintenance solutions for wind farms. Full article
14 pages, 1917 KB  
Article
Moroccan Sign Language Recognition with a Sensory Glove Using Artificial Neural Networks
by Hasnae El Khoukhi, Assia Belatik, Imane El Manaa, My Abdelouahed Sabri, Yassine Abouch and Abdellah Aarab
Digital 2025, 5(4), 53; https://doi.org/10.3390/digital5040053 - 8 Oct 2025
Abstract
Every day, countless individuals with hearing or speech disabilities struggle to communicate effectively, as their conditions limit conventional verbal interaction. For them, sign language becomes an essential and often sole tool for expressing thoughts and engaging with others. However, the general public’s limited [...] Read more.
Every day, countless individuals with hearing or speech disabilities struggle to communicate effectively, as their conditions limit conventional verbal interaction. For them, sign language becomes an essential and often sole tool for expressing thoughts and engaging with others. However, the general public’s limited understanding of sign language poses a major barrier, often resulting in social, educational, and professional exclusion. To bridge this communication gap, the present study proposes a smart wearable glove system designed to translate Arabic sign language (ArSL), especially Moroccan sign language (MSL), into a written alphabet in real time. The glove integrates five MPU6050 motion sensors, one on each finger, capable of capturing detailed motion data, including angular velocity and linear acceleration. These motion signals are processed using an Artificial Neural Network (ANN), implemented directly on a Raspberry Pi Pico through embedded machine learning techniques. A custom dataset comprising labeled gestures corresponding to the MSL alphabet was developed for training the model. Following the training phase, the neural network attained a gesture recognition accuracy of 98%, reflecting strong performance in terms of reliability and classification precision. We developed an affordable and portable glove system aimed at improving daily communication for individuals with hearing impairments in Morocco, contributing to greater inclusivity and improved accessibility. Full article
Show Figures

Figure 1

22 pages, 29886 KB  
Article
Lightweight Deep Learning for Real-Time Cotton Monitoring: UAV-Based Defoliation and Boll-Opening Rate Assessment
by Minghui Xia, Xuegeng Chen, Xinliang Tian, Haojun Wen, Yan Zhao, Hongxia Liu, Wei Liu and Yuchen Zheng
Agriculture 2025, 15(19), 2095; https://doi.org/10.3390/agriculture15192095 - 8 Oct 2025
Abstract
Unmanned aerial vehicle (UAV) imagery provides an efficient approach for monitoring cotton defoliation and boll-opening rates. Deep learning, particularly convolutional neural networks (CNNs), has been widely applied in image processing and agricultural monitoring, achieving strong performance in tasks such as disease detection, weed [...] Read more.
Unmanned aerial vehicle (UAV) imagery provides an efficient approach for monitoring cotton defoliation and boll-opening rates. Deep learning, particularly convolutional neural networks (CNNs), has been widely applied in image processing and agricultural monitoring, achieving strong performance in tasks such as disease detection, weed recognition, and yield prediction. However, existing models often suffer from heavy computational costs and slow inference speed, limiting their real-time deployment in agricultural fields. To address this challenge, we propose a lightweight cotton maturity recognition model, RTCMNet (Real-time Cotton Monitoring Network). By incorporating a multi-scale convolutional attention (MSCA) module and an efficient feature fusion strategy, RTCMNet achieves high accuracy with substantially reduced computational complexity. A UAV dataset was constructed using images collected in Xinjiang, and the proposed model was benchmarked against several state-of-the-art networks. Experimental results demonstrate that RTCMNet achieves 0.96 and 0.92 accuracy on defoliation rate and boll-opening rate classification tasks, respectively. Meanwhile, it contains only 0.35 M parameters—94% fewer than DenseNet121—and only requires an inference time of 33 ms, representing a 97% reduction compared to DenseNet121. Field tests further confirm its real-time performance and robustness on UAV platforms. Overall, RTCMNet provides an efficient and low-cost solution for UAV-based cotton maturity monitoring, supporting the advancement of precision agriculture. Full article
16 pages, 5781 KB  
Article
Design of an Underwater Optical Communication System Based on RT-DETRv2
by Hexi Liang, Hang Li, Minqi Wu, Junchi Zhang, Wenzheng Ni, Baiyan Hu and Yong Ai
Photonics 2025, 12(10), 991; https://doi.org/10.3390/photonics12100991 - 8 Oct 2025
Abstract
Underwater wireless optical communication (UWOC) is a key technology in ocean resource development, and its link stability is often limited by the difficulty of optical alignment in complex underwater environments. In response to this difficulty, this study has focused on improving the Real-Time [...] Read more.
Underwater wireless optical communication (UWOC) is a key technology in ocean resource development, and its link stability is often limited by the difficulty of optical alignment in complex underwater environments. In response to this difficulty, this study has focused on improving the Real-Time Detection Transformer v2 (RT-DETRv2) model. We have improved the underwater light source detection model by collaboratively designing a lightweight backbone network and deformable convolution, constructing a cross-stage local attention mechanism to reduce the number of network parameters, and introducing geometrically adaptive convolution kernels that dynamically adjust the distribution of sampling points, enhance the representation of spot-deformation features, and improve positioning accuracy under optical interference. To verify the effectiveness of the model, we have constructed an underwater light-emitting diode (LED) light-spot detection dataset containing 11,390 images was constructed, covering a transmission distance of 15–40 m, a ±45° deflection angle, and three different light-intensity conditions (noon, evening, and late night). Experiments show that the improved model achieves an average precision at an intersection-over-union threshold of 0.50 (AP50) value of 97.4% on the test set, which is 12.7% higher than the benchmark model. The UWOC system built based on the improved model achieves zero-bit-error-rate communication within a distance of 30 m after assisted alignment (an initial lateral offset angle of 0°–60°), and the bit-error rate remains stable in the 107106 range at a distance of 40 m, which is three orders of magnitude lower than the traditional Remotely Operated Vehicle (ROV) underwater optical communication system (a bit-error rate of 106103), verifying the strong adaptability of the improved model to complex underwater environments. Full article
26 pages, 12804 KB  
Article
Coating Thickness Estimation Using a CNN-Enhanced Ultrasound Echo-Based Deconvolution
by Marina Perez-Diego, Upeksha Chathurani Thibbotuwa, Ainhoa Cortés and Andoni Irizar
Sensors 2025, 25(19), 6234; https://doi.org/10.3390/s25196234 - 8 Oct 2025
Abstract
Coating degradation monitoring is increasingly important in offshore industries, where protective layers ensure corrosion prevention and structural integrity. In this context, coating thickness estimation provides critical information. The ultrasound pulse-echo technique is widely used for non-destructive testing (NDT), but closely spaced acoustic interfaces [...] Read more.
Coating degradation monitoring is increasingly important in offshore industries, where protective layers ensure corrosion prevention and structural integrity. In this context, coating thickness estimation provides critical information. The ultrasound pulse-echo technique is widely used for non-destructive testing (NDT), but closely spaced acoustic interfaces often produce overlapping echoes, which complicates detection and accurate isolation of each layer’s thickness. In this study, analysis of the pulse-echo signal from a coated sample has shown that the front-coating reflection affects each main backwall echo differently; by comparing two consecutive backwall echoes, we can cancel the acquisition system’s impulse response and isolate the propagation path-related information between the echoes. This work introduces an ultrasound echo-based methodology for estimating coating thickness by first obtaining the impulse response of the test medium (reflectivity sequence) through a deconvolution model, developed using two consecutive backwall echoes. This is followed by an enhanced detection of coating layer thickness in the reflectivity function using a 1D convolutional neural network (1D-CNN) trained with synthetic signals obtained from finite-difference time-domain (FDTD) simulations with k-Wave MATLAB toolbox (v1.4.0). The proposed approach estimates the front-side coating thickness in steel samples coated on both sides, with coating layers ranging from 60μm to 740μm applied over 5 mm substrates and under varying coating and steel properties. The minimum detectable thickness corresponds to approximately λ/5 for an 8 MHz ultrasonic transducer. On synthetic signals, where the true coating thickness and speed of sound are known, the model achieves an accuracy of approximately 8μm. These findings highlight the strong potential of the model for reliably monitoring relative thickness changes across a wide range of coatings in real samples. Full article
(This article belongs to the Special Issue Nondestructive Sensing and Imaging in Ultrasound—Second Edition)
24 pages, 3386 KB  
Article
Characterization of Students’ Thinking States Active Based on Improved Bloom Classification Algorithm and Cognitive Diagnostic Model
by Yipeng Liu, Hua Yuan, Zhaoyu Shou, Chenchen Lu and Jianwen Mo
Electronics 2025, 14(19), 3957; https://doi.org/10.3390/electronics14193957 - 8 Oct 2025
Abstract
A student’s active thinking state directly affects their learning experience in the classroom. To help teachers understand students’ active thinking states in real-time, this study aims to construct a model which characterizes their active thinking states. The main research objectives are as follows: [...] Read more.
A student’s active thinking state directly affects their learning experience in the classroom. To help teachers understand students’ active thinking states in real-time, this study aims to construct a model which characterizes their active thinking states. The main research objectives are as follows: (1) to achieve accurate classification of the cognitive levels of in-class exercises; (2) to effectively quantify the active thinking state of students through analyzing the correlation between student cognitive levels and exercise cognitive levels. The research methods used in this study to achieve these objectives are as follows: First, LSTM and Chinese-RoBERTa-wwm models are integrated to extract sequential and semantic information from plain text while TBCC is used to extract the semantic features of code text, allowing for comprehensive determination of the cognitive level of exercises. Second, a cognitive diagnosis model—namely, the QRCDM—is adopted to evaluate students’ real-time cognitive levels with respect to knowledge points. Finally, the cognitive levels of exercises and students are input into a self-attention mechanism network, their correlation is analyzed, and the thinking activity state is generated as a state representation. The proposed text classification model outperforms baseline models regarding ACC, micro-F1, and macro-F1 scores on two sets of exercise datasets in Chinese containing mixed code texts, with the highest ACC, micro-F1, and macro-F1 values reaching 0.7004, 0.6941, and 0.6912, respectively. This proves the proposed model’s effectiveness in classifying the cognitive level of exercises. The accuracy of the thinking activity state characterization model reaches 61.54%. In particular, this is higher than the random baseline, thus verifying the model’s feasibility. Full article
Show Figures

Figure 1

17 pages, 1706 KB  
Article
Cross-Attention Enhanced TCN-Informer Model for MOSFET Temperature Prediction in Motor Controllers
by Changzhi Lv, Wanke Liu, Dongxin Xu, Huaisheng Zhang and Di Fan
Information 2025, 16(10), 872; https://doi.org/10.3390/info16100872 - 8 Oct 2025
Abstract
To address the challenge that MOSFET temperature in motor controllers is influenced by multiple factors, exhibits strong temporal dependence, and involves complex feature interactions, this study proposes a temperature prediction model that integrates Temporal Convolutional Networks (TCNs) and the Informer architecture in parallel, [...] Read more.
To address the challenge that MOSFET temperature in motor controllers is influenced by multiple factors, exhibits strong temporal dependence, and involves complex feature interactions, this study proposes a temperature prediction model that integrates Temporal Convolutional Networks (TCNs) and the Informer architecture in parallel, enhanced with a cross-attention mechanism. The model leverages TCNs to capture local temporal patterns, while the Informer extracts long-range dependencies, and cross-attention strengthens feature interactions across channels to improve predictive accuracy. A dataset was constructed based on measured MOSFET temperatures under various operating conditions, with input features including voltage, load current, switching frequency, and multiple ambient temperatures. Experimental evaluation shows that the proposed method achieves a mean absolute error of 0.2521 °C, a root mean square error of 0.3641 °C, and an R2 of 0.9638 on the test set, outperforming benchmark models such as Times-Net, Informer, and LSTM. These results demonstrate the effectiveness of the proposed approach in reducing prediction errors and enhancing generalization, providing a reliable tool for real-time thermal monitoring of motor controllers. Full article
Show Figures

Figure 1

25 pages, 2619 KB  
Article
Lightweight SCC-YOLO for Winter Jujube Detection and 3D Localization with Cross-Platform Deployment Evaluation
by Meng Zhou, Yaohua Hu, Anxiang Huang, Yiwen Chen, Xing Tong, Mengfei Liu and Yunxiao Pan
Agriculture 2025, 15(19), 2092; https://doi.org/10.3390/agriculture15192092 - 8 Oct 2025
Abstract
Harvesting winter jujubes is a key step in production, yet traditional manual approaches are labor-intensive and inefficient. To overcome these challenges, we propose SCC-YOLO, a lightweight method for winter jujube detection, 3D localization, and cross-platform deployment, aiming to support intelligent harvesting. In this [...] Read more.
Harvesting winter jujubes is a key step in production, yet traditional manual approaches are labor-intensive and inefficient. To overcome these challenges, we propose SCC-YOLO, a lightweight method for winter jujube detection, 3D localization, and cross-platform deployment, aiming to support intelligent harvesting. In this study, RGB-D cameras were integrated with an improved YOLOv11 network optimized by ShuffleNetV2, CBAM, and a redesigned C2f_WTConv module, which enables joint spatial–frequency feature modeling and enhances small-object detection in complex orchard conditions. The model was trained on a diversified dataset with extensive augmentation to ensure robustness. In addition, the original localization loss was replaced with DIoU to improve bounding box regression accuracy. A robotic harvesting system was developed, and an Eye-to-Hand calibration-based 3D localization pipeline was implemented to map fruit coordinates to the robot workspace for accurate picking. To validate engineering applicability, the SCC-YOLO model was deployed on both desktop (PyTorch and ONNX Runtime) and mobile (NCNN with Vulkan+FP16) platforms, and FPS, latency, and stability were comparatively analyzed. Experimental results showed that SCC-YOLO improved mAP by 5.6% over YOLOv11, significantly enhanced detection precision and robustness, and achieved real-time performance on mobile devices while maintaining peak throughput on high-performance desktops. Field and laboratory tests confirmed the system’s effectiveness for detection, localization, and harvesting efficiency, demonstrating its adaptability to diverse deployment environments and its potential for broader agricultural applications. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
24 pages, 3764 KB  
Article
Predictive Energy Storage Management with Redox Flow Batteries in Demand-Driven Microgrids
by Dario Benavides, Paul Arévalo-Cordero, Danny Ochoa-Correa, David Torres and Alberto Ríos
Sustainability 2025, 17(19), 8915; https://doi.org/10.3390/su17198915 - 8 Oct 2025
Abstract
Accurate demand forecasting contributes to improved energy efficiency and the development of short-term strategies. Predictive management of energy storage using redox flow batteries is presented as a robust solution for optimizing the operation of microgrids from the demand side. This study proposes an [...] Read more.
Accurate demand forecasting contributes to improved energy efficiency and the development of short-term strategies. Predictive management of energy storage using redox flow batteries is presented as a robust solution for optimizing the operation of microgrids from the demand side. This study proposes an intelligent architecture that integrates demand forecasting models based on artificial neural networks and active management strategies based on the instantaneous production of renewable sources within the microgrid. The solution is supported by a real-time monitoring platform capable of analyzing data streams using continuous evaluation algorithms, enabling dynamic operational adjustments and active methods for predicting the storage system’s state of charge. The model’s effectiveness is validated using performance indicators such as RMSE, MAPE, and MSE, applied to experimental data obtained in a specialized microgrid laboratory. The results also demonstrate substantial improvements in energy planning and system operational efficiency, positioning this proposal as a viable strategy for distributed and sustainable environments in modern electricity systems. Full article
Show Figures

Figure 1

27 pages, 4835 KB  
Article
Real-Time Carbon Content Prediction Model for the Reblowing Stage of Converter Based on PI-LSTM
by Yuanzheng Guo, Dongfeng He, Xiaolong Li and Kai Feng
Materials 2025, 18(19), 4631; https://doi.org/10.3390/ma18194631 - 8 Oct 2025
Abstract
Precise forecasting of carbon content in the converter’s reblowing phase is pivotal to boosting steel production efficiency and ensuring effective control over molten steel quality. However, existing mechanistic models based on material balance and decarbonization kinetics suffer from insufficient accuracy due to simplifying [...] Read more.
Precise forecasting of carbon content in the converter’s reblowing phase is pivotal to boosting steel production efficiency and ensuring effective control over molten steel quality. However, existing mechanistic models based on material balance and decarbonization kinetics suffer from insufficient accuracy due to simplifying assumptions. In contrast, data-driven models rely on data quality, lack generalization capability, and lack physical interpretability. Additionally, integral models based on flue gas analysis suffer from data latency issues. To overcome these limitations, this study proposed a real-time carbon content prediction model for the converter’s reblowing phase, leveraging a physics-informed long short-term memory (PI-LSTM) network. First, flue gas data was processed using a carbon integration model to generate a carbon content change curve during the reblowing stage as a reference for actual values; second, a dual-branch network structure was designed, where the LSTM branch simultaneously predicts carbon content and key unmeasurable parameters in the decarbonization kinetics, while the mechanism branch combined these parameters with the decarbonization formula to calculate carbon content under mechanism constraints; finally, a joint loss function (combining data-driven loss and mechanism constraint loss) was used to train the model, and the gray wolf optimization (GWO) algorithm was employed to optimize hyperparameters. Experimental results show that compared to the mechanism model (MM) and LSTM model, the PI-LSTM model achieves an average absolute error (MAE) of 0.0077, a root mean square error (RMSE) of 0.0112, and endpoint carbon content hit rates within ±0.005%, ±0.01%, ±0.015% error ranges, achieving 53.71%, 82.23%, and 95.45%, respectively, significantly improving prediction accuracy and physical plausibility. This model lays a robust groundwork for dynamic closed-loop real-time control of carbon levels in the converter’s reblowing stage. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

20 pages, 4033 KB  
Article
AI-Based Virtual Assistant for Solar Radiation Prediction and Improvement of Sustainable Energy Systems
by Tomás Gavilánez, Néstor Zamora, Josué Navarrete, Nino Vega and Gabriela Vergara
Sustainability 2025, 17(19), 8909; https://doi.org/10.3390/su17198909 - 8 Oct 2025
Abstract
Advances in machine learning have improved the ability to predict critical environmental conditions, including solar radiation levels that, while essential for life, can pose serious risks to human health. In Ecuador, due to its geographical location and altitude, UV radiation reaches extreme levels. [...] Read more.
Advances in machine learning have improved the ability to predict critical environmental conditions, including solar radiation levels that, while essential for life, can pose serious risks to human health. In Ecuador, due to its geographical location and altitude, UV radiation reaches extreme levels. This study presents the development of a chatbot system driven by a hybrid artificial intelligence model, combining Random Forest, CatBoost, Gradient Boosting, and a 1D Convolutional Neural Network. The model was trained with meteorological data, optimized using hyperparameters (iterations: 500–1500, depth: 4–8, learning rate: 0.01–0.3), and evaluated through MAE, MSE, R2, and F1-Score. The hybrid model achieved superior accuracy (MAE = 13.77 W/m2, MSE = 849.96, R2 = 0.98), outperforming traditional methods. A 15% error margin was observed without significantly affecting classification. The chatbot, implemented via Telegram and hosted on Heroku, provided real-time personalized alerts, demonstrating an effective, accessible, and scalable solution for health safety and environmental awareness. Furthermore, it facilitates decision-making in the efficient generation of renewable energy and supports a more sustainable energy transition. It offers a tool that strengthens the relationship between artificial intelligence and sustainability by providing a practical instrument for integrating clean energy and mitigating climate change. Full article
Show Figures

Figure 1

39 pages, 5604 KB  
Article
Prediction of 3D Airspace Occupancy Using Machine Learning
by Cristian Lozano Tafur, Jaime Orduy Rodríguez, Pedro Melo Daza, Iván Rodríguez Barón, Danny Stevens Traslaviña and Juan Andrés Bermúdez
Forecasting 2025, 7(4), 56; https://doi.org/10.3390/forecast7040056 - 8 Oct 2025
Abstract
This research introduces a system designed to predict three-dimensional airspace occupancy over Colombia using historical Automatic Dependent Surveillance-Broadcast (ADS-B) data and machine learning techniques. The goal is to support proactive air traffic management by estimating future aircraft positions—specifically their latitude, longitude, and flight [...] Read more.
This research introduces a system designed to predict three-dimensional airspace occupancy over Colombia using historical Automatic Dependent Surveillance-Broadcast (ADS-B) data and machine learning techniques. The goal is to support proactive air traffic management by estimating future aircraft positions—specifically their latitude, longitude, and flight level. To achieve this, four predictive models were developed and tested: K-Nearest Neighbors (KNN), Random Forest, Extreme Gradient Boosting (XGBoost), and Long Short-Term Memory (LSTM). Among them, the LSTM model delivered the most accurate results, with a Mean Absolute Error (MAE) of 312.59, a Root Mean Squared Error (RMSE) of 1187.43, and a coefficient of determination (R2) of 0.7523. Compared to the baseline models (KNN, Random Forest, XGBoost), these values represent an improvement of approximately 91% in MAE, 83% in RMSE, and an eighteen-fold increase in R2, demonstrating the substantial advantage of the LSTM approach. These metrics indicate a significant improvement over the other models, particularly in capturing temporal patterns and adjusting to evolving traffic conditions. The strength of the LSTM approach lies in its ability to model sequential data and adapt to dynamic environments—making it especially suitable for supporting future Trajectory-Based Operations (TBO). The results confirm that predicting airspace occupancy in three dimensions using historical data are not only possible but can yield reliable and actionable insights. Looking ahead, the integration of hybrid neural network architectures and their deployment in real-time systems offer promising directions to enhance both accuracy and operational value. Full article
(This article belongs to the Topic Short-Term Load Forecasting—2nd Edition)
Show Figures

Figure 1

22 pages, 4797 KB  
Article
Early Oral Cancer Detection with AI: Design and Implementation of a Deep Learning Image-Based Chatbot
by Pablo Ormeño-Arriagada, Gastón Márquez, Carla Taramasco, Gustavo Gatica, Juan Pablo Vasconez and Eduardo Navarro
Appl. Sci. 2025, 15(19), 10792; https://doi.org/10.3390/app151910792 - 7 Oct 2025
Abstract
Oral cancer remains a critical global health challenge, with delayed diagnosis driving high morbidity and mortality. Despite progress in artificial intelligence, computer vision, and medical imaging, early detection tools that are accessible, explainable, and designed for patient engagement remain limited. This study presents [...] Read more.
Oral cancer remains a critical global health challenge, with delayed diagnosis driving high morbidity and mortality. Despite progress in artificial intelligence, computer vision, and medical imaging, early detection tools that are accessible, explainable, and designed for patient engagement remain limited. This study presents a novel system that combines a patient-centred chatbot with a deep learning framework to support early diagnosis, symptom triage, and health education. The system integrates convolutional neural networks, class activation mapping, and natural language processing within a conversational interface. Five deep learning models were evaluated (CNN, DenseNet121, DenseNet169, DenseNet201, and InceptionV3) using two balanced public datasets. Model performance was assessed using accuracy, sensitivity, specificity, diagnostic odds ratio (DOR), and Cohen’s Kappa. InceptionV3 consistently outperformed the other models across these metrics, achieving the highest diagnostic accuracy (77.6%) and DOR (20.67), and was selected as the core engine of the chatbot’s diagnostic module. The deployed chatbot provides real-time image assessments and personalised conversational support via multilingual web and mobile platforms. By combining automated image interpretation with interactive guidance, the system promotes timely consultation and informed decision-making. It offers a prototype for a chatbot, which is scalable and serves as a low-cost solution for underserved populations and demonstrates strong potential for integration into digital health pathways. Importantly, the system is not intended to function as a formal screening tool or replace clinical diagnosis; rather, it provides preliminary guidance to encourage early medical consultation and informed health decisions. Full article
Show Figures

Figure 1

20 pages, 1520 KB  
Article
Sensor-Driven Localization of Airborne Contaminant Sources via the Sandpile–Advection Model and (1 + 1)-Evolution Strategy
by Miroslaw Szaban and Anna Wawrzynczak
Sensors 2025, 25(19), 6215; https://doi.org/10.3390/s25196215 - 7 Oct 2025
Abstract
The primary aim of this study is to develop an effective decision-support system for managing crises related to the release of hazardous airborne substances. Such incidents, which can arise from industrial accidents or intentional releases, necessitate the rapid identification of contaminant sources to [...] Read more.
The primary aim of this study is to develop an effective decision-support system for managing crises related to the release of hazardous airborne substances. Such incidents, which can arise from industrial accidents or intentional releases, necessitate the rapid identification of contaminant sources to enable timely response measures. This work focuses on a novel approach that integrates a modified Sandpile model with advection and employs the (1 + 1)-Evolution Strategy to solve the inverse problem of source localization. The initial section of this paper reviews existing methods for simulating atmospheric dispersion and reconstructing source locations. In the following sections, we describe the architecture of the proposed system, the modeling assumptions, and the experimental framework. A key feature of the method presented here is its reliance solely on concentration measurements obtained from a distributed network of sensors, eliminating the need for prior knowledge of the source location, release time, or emission strength. The system was validated through a two-stage process using synthetic data generated by a Gaussian dispersion model. Preliminary experiments were conducted to support model calibration and refinement, followed by formal tests to evaluate localization accuracy and robustness. Each test case was completed in under 20 min on a standard laptop, demonstrating the algorithm’s high computational efficiency. The results confirm that the proposed (1 + 1)-ES Sandpile model can effectively reconstruct source parameters, staying within the resolution limits of the sensor grid. The system’s speed, simplicity, and reliance exclusively on sensor data make it a promising solution for real-time environmental monitoring and emergency response applications. Full article
(This article belongs to the Collection Sensors for Air Quality Monitoring)
Show Figures

Figure 1

33 pages, 3430 KB  
Article
DLG–IDS: Dynamic Graph and LLM–Semantic Enhanced Spatiotemporal GNN for Lightweight Intrusion Detection in Industrial Control Systems
by Junyi Liu, Jiarong Wang, Tian Yan, Fazhi Qi and Gang Chen
Electronics 2025, 14(19), 3952; https://doi.org/10.3390/electronics14193952 - 7 Oct 2025
Abstract
Industrial control systems (ICSs) face escalating security challenges due to evolving cyber threats and the inherent limitations of traditional intrusion detection methods, which fail to adequately model spatiotemporal dependencies or interpret complex protocol semantics. To address these gaps, this paper proposes DLG–IDS —a [...] Read more.
Industrial control systems (ICSs) face escalating security challenges due to evolving cyber threats and the inherent limitations of traditional intrusion detection methods, which fail to adequately model spatiotemporal dependencies or interpret complex protocol semantics. To address these gaps, this paper proposes DLG–IDS —a lightweight intrusion detection framework that innovatively integrates dynamic graph construction for capturing real–time device interactions and logical control relationships from traffic, LLM–driven semantic enhancement to extract fine–grained embeddings from graphs, and a spatio–temporal graph neural network (STGNN) optimized via sparse attention and local window Transformers to minimize computational overhead. Evaluations on SWaT and SBFF datasets demonstrate the framework’s superiority, achieving a state–of–the–art accuracy of 0.986 while reducing latency by 53.2% compared to baseline models. Ablation studies further validate the critical contributions of semantic fusion, sparse topology modeling, and localized temporal attention. The proposed solution establishes a robust, real–time detection mechanism tailored for resource–constrained industrial environments, effectively balancing high accuracy with operational efficiency. Full article
Back to TopTop