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Abstract

Industrial control systems (ICSs) face escalating security challenges due to evolving cyber
threats and the inherent limitations of traditional intrusion detection methods, which fail
to adequately model spatiotemporal dependencies or interpret complex protocol semantics.
To address these gaps, this paper proposes DLG–IDS —a lightweight intrusion detection
framework that innovatively integrates dynamic graph construction for capturing real–time
device interactions and logical control relationships from traffic, LLM–driven semantic en-
hancement to extract fine–grained embeddings from graphs, and a spatio–temporal graph
neural network (STGNN) optimized via sparse attention and local window Transformers to
minimize computational overhead. Evaluations on SWaT and SBFF datasets demonstrate
the framework’s superiority, achieving a state–of–the–art accuracy of 0.986 while reducing
latency by 53.2% compared to baseline models. Ablation studies further validate the critical
contributions of semantic fusion, sparse topology modeling, and localized temporal atten-
tion. The proposed solution establishes a robust, real–time detection mechanism tailored
for resource–constrained industrial environments, effectively balancing high accuracy with
operational efficiency.

Keywords: Industrial Control Systems Security; graph neural networks; Large Language
Models; dynamic graph

1. Introduction
The rapid evolution of industrial control systems (ICSs) has led to their widespread

adoption in critical infrastructure sectors such as energy, manufacturing, and transportation.
While these systems have significantly enhanced operational efficiency and automation,
they have also become prime targets for cyber–attacks. The interconnected nature of
modern ICSs, often referred to as the Industrial Internet of Things (IIoT), has introduced
new vulnerabilities that can be exploited by malicious actors. Consequently, the detection
of anomalous network traffic in industrial control networks (ICNs) has emerged as a critical
research area to ensure the security and reliability of these systems.

Traditional network intrusion detection systems (NIDSs) have primarily relied on
signature–based methods [1] and statistical anomaly detection techniques [2]. However,
these approaches often fall short in addressing the unique challenges posed by ICNs. The
highly dynamic and heterogeneous nature of industrial network traffic, coupled with the

Electronics 2025, 14, 3952 https://doi.org/10.3390/electronics14193952

https://doi.org/10.3390/electronics14193952
https://doi.org/10.3390/electronics14193952
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/
https://doi.org/10.3390/electronics14193952
https://www.mdpi.com/article/10.3390/electronics14193952?type=check_update&version=1


Electronics 2025, 14, 3952 2 of 33

stringent real–time requirements of ICSs, necessitates the development of more sophisti-
cated detection mechanisms. Moreover, the increasing complexity of cyber–attacks, which
often involve multi–stage and coordinated activities, further underscores the limitations of
conventional methods.

In recent years, graph neural networks (GNNs) have gained attention for their ability
to model complex relationships in structured data by representing network traffic as
graphs [3], where nodes correspond to devices and edges represent communication patterns.
This allows GNNs to capture spatial and temporal dependencies, making them well–
suited for ICN anomaly detection. However, most existing GNN–based studies focus
on either spatial [4] or temporal [5] aspects in isolation, rather than integrating both
dimensions. Additionally, they struggle with the unique characteristics of ICN traffic,
such as periodicity, high dimensionality, and the presence of both continuous and discrete
data. Static graph models, for example, cannot accommodate dynamic changes in network
topology due to device additions or removals, while dynamic graph approaches often face
high computational complexity that hinders real–time performance.

Spatio–temporal graph neural networks (STGNNs) have advanced spatiotemporal
modeling but still have critical limitations. They typically treat protocol fields as discrete
symbols or numerical features [6], lacking in–depth analysis of operational intent —-for
instance, failing to distinguish between legitimate “write register” commands and malicious
parameter tampering. They also underutilize multi–modal data, missing opportunities
to leverage rich semantic information. Furthermore, the computational complexity of
STGNNs conflicts with the resource constraints of industrial edge devices, making it
difficult to meet real–time response requirements.

Large language models (LLMs) offer potential for addressing these semantic gaps
through their strong natural language understanding capabilities. However, existing work
isolates LLMs in text processing or rule generation [7], rather than embedding them into
spatio–temporal traffic modeling. For example, while LLMs have been used to parse
protocol fields or generate attack scenarios, they are not integrated with dynamic graph
structures, leaving a disconnect between semantic context and network behavior that hin-
ders detection of covert attacks like parameter tampering within compliant protocol frames.

To address these interconnected limitations, this paper proposes DLG–IDS —a
lightweight intrusion detection framework that integrates the following three core in-
novations:

1. A dynamic graph construction method that combines real–time communication pat-
terns and logical control dependencies into a unified graph structure, overcoming the
static nature of traditional graph models and capturing spatiotemporal dynamics in
industrial networks.

2. LLM–driven semantic enhancement that generates fine–grained semantic embeddings
from protocol content and device logs, aligning these with network traffic statistical
features through cross–modal attention to bridge the gap in protocol intent under-
standing.

3. A lightweight STGNN optimized with sparse graph attention and local window
Transformers, which reduces computational complexity from quadratic to linear while
preserving the ability to model spatiotemporal dependencies, addressing the conflict
between resource constraints and real–time requirements.

To evaluate the effectiveness of the algorithm, we conducted extensive experiments
on different datasets. The results demonstrate that the proposed detection method outper-
forms traditional methods and state–of–the–art deep learning models in terms of detection
accuracy, false positive rate, and computational efficiency. We also provide a detailed analy-
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sis of the model’s performance under different attack scenarios, highlighting its robustness
and adaptability to various types of anomalies.

The rest of this paper is organized as follows: Section 2 reviews related work on
network intrusion detection. Section 3 presents the detailed methodology of our DLG–IDS
algorithm, including the dynamic graph construction, the integration of LLMs, and the
neural network architecture. Section 4 introduces the experimental setup and provides the
evaluation results. Finally, Section 5 concludes the paper and discusses future research di-
rections.

2. Related Work
2.1. Traditional Industrial Network Anomaly Detection Methods

Traditional industrial network anomaly detection methods can be roughly divided
into three categories: rule–based methods, statistical analysis methods, and early machine
learning methods. These approaches played an important role in the early stages of
industrial network security, but as the complexity of attacks has increased, their limitations
have gradually become apparent.

Rule–based methods match anomaly patterns in network traffic based on predefined
rule libraries, typically focusing on the legitimate operation ranges of specific industrial
protocols, such as Modbus or DNP3, through hard–coded constraints. Cheung [8] pro-
posed a state machine model based on the Modbus protocol, defining legitimate function
codes and register address ranges. If a function code exceeds the valid range or there is
illegal register access, an alert is triggered. Hadžiosmanović et al. [9] designed a whitelist
system for industrial protocols, only allowing communication between pre–authorized
devices, such as fixed IP port interactions between PLCs and SCADA systems, blocking
unauthorized connection attempts.

Rule–based methods have clear logical structures that are easy for operations staff
to understand, and they have low computational overhead, making them suitable for
resource–constrained industrial devices. However, the rule library requires manual updates,
and static rules struggle to cope with zero–day attacks or protocol variations. Additionally,
false positive rates are high, as temporary configuration changes in normal operations may
be misidentified as anomalies. On the other hand, due to limited protocol coverage, defining
rules for proprietary protocols depends on reverse engineering, which is time–consuming
and prone to errors.

Statistical analysis methods detect abnormal behaviors by modeling the distribution of
features such as packet length, frequency, and periodicity in normal traffic and identifying
deviations from the normal baseline. The operation of industrial devices tends to follow
a certain periodicity, which is reflected in industrial traffic as well. Lai [10] utilized an
Autoregressive Integrated Moving Average (ARIMA) model to model the periodicity of
industrial traffic and detect abnormal fluctuations in traffic intervals. Ujjan [11] proposed
an anomaly index based on information entropy. Since attack traffic often targets a small
number of ports, DDoS attacks lead to a sharp drop in the entropy value of the target
port. By calculating the entropy changes in features like source IP and target port within a
specific time window, attacks can be detected.

Statistical analysis methods automatically learn normal patterns through data–driven
approaches without requiring prior knowledge, making them partially adaptive to dynamic
environments. However, their detection performance highly depends on manually selected
statistical indicators, and univariate statistical methods tend to overlook the interaction
relationships between devices.

Early machine learning methods primarily utilized supervised or semi–supervised
learning algorithms, relying on feature engineering to classify extracted traffic attributes.
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Wang [12] extracted 40–dimensional features such as the number of connections per second
and the distribution of TCP flags from industrial control traffic, and trained a CNN–
BiLSTM classifier to distinguish normal traffic from ARP virus attacks. Dakheel [13]
combined traffic statistical features with protocol semantics to use Random Forest (RF) for
detecting parameter injection attacks, achieving 92% accuracy on a natural gas pipeline
dataset. Ridi [14] employed Hidden Markov Models (HMMs) to model the state transition
sequences of industrial devices, identifying abnormal state shifts.

Machine learning methods reduce the workload of manually defining rules and
enhance the automation of anomaly detection. However, feature engineering still faces
bottlenecks. The diversity and proprietary nature of industrial protocols make it difficult to
build a universal feature set. Furthermore, supervised learning relies on a large number
of labeled samples, but due to the rarity and sensitivity of actual industrial attack cases,
obtaining sufficient data is challenging. Static models also struggle to adapt to the dynamic
topology of industrial control systems, as industrial network devices may be dynamically
added or removed based on production tasks, leading to feature distribution shifts.

Traditional methods have laid an important foundation for industrial network anomaly
detection, but their core issues lie in their reliance on rules, feature engineering, and other
manual prior knowledge, as well as fragmented detection logic. These methods tend to
overlook the spatio–temporal correlations between devices. Given these limitations, it
is necessary to explore other models or detection methods that are more suitable for the
dynamic and complex nature of industrial networks.

2.2. Traffic Modeling Method Based on Graph Neural Networks

Traffic modeling methods based on graph neural networks (GNNs) have made signifi-
cant progress in the field of anomaly detection in recent years, particularly in capturing the
complex spatio–temporal dependencies between devices in a network. Traditional traffic
modeling methods mostly rely on unidimensional feature analysis, but they overlook the
interaction relationships between devices and their evolution over time. GNNs, by mod-
eling devices, traffic, and communication behaviors as graph structures, can effectively
reveal the interactions between devices and the complex spatio–temporal patterns. As a
result, GNN–based traffic detection methods have gradually become a research hotspot.

Static graph modeling methods create static graphs based on the network topology
within a fixed time window, using GNNs to learn embeddings for nodes and edges,
and detect anomalies through classifiers. For example, Zhang [15] proposed an industrial
control network intrusion detection model based on graph attention networks (GATs),
where devices like PLCs and RTUs are represented as nodes, and edge attributes include
communication frequency and protocol types. The attention mechanism helps learn the
importance weights between devices, enabling the detection of abnormal connections,
such as unauthorized devices joining the network. Athmane [16] developed an edge–level
GNN model that directly encodes the features of communication edges, such as TCP
connections between PLCs and SCADA systems, and uses reconstruction errors (like those
from autoencoders) to identify anomalous edges, such as sudden traffic spikes. One of the
key strengths of static graph methods is their ability to explicitly model the topological
relationships between devices, which enhances their ability to detect lateral movement
attacks. These methods also naturally support the fusion of heterogeneous features, such
as device type, protocol fields, and traffic statistics. On the other hand, a significant
limitation is their static nature —industrial network topologies often change due to devices
being dynamically added or removed, or tasks being switched, which static graphs cannot
accommodate. Moreover, static graph methods fail to capture temporal dependencies,
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making it challenging to detect multi–stage attacks that rely on sequential patterns, such as
APT attacks that unfold over periods of latency, penetration, and explosion.

Dynamic graph modeling methods model network traffic as a sequence of dynamic
graphs, using temporal GNNs to jointly learn spatial topology and temporal evolution pat-
terns. A representative approach is the dynamic spatio–temporal graph network, proposed
by Cao in 2021 [17], which splits traffic data into time windows to construct dynamic graph
sequences, using temporal convolution networks to capture traffic periodicity and graph
convolution networks to model device dependencies for DDoS attack detection. The main
advantages of these methods include their ability to dynamically adapt to network topol-
ogy changes, making them suitable for industrial scenarios where devices are frequently
added or removed, and their ability to jointly model spatio–temporal features, improving
robustness against complex attack patterns. However, these methods face challenges such
as high computational complexity due to the need for frequent graph reconstruction and
feature recalculation, which makes it difficult to meet the real–time demands of industrial
networks. Additionally, they struggle with modeling long–term dependencies, as existing
methods often rely on short–term sliding windows, making it difficult to detect long–period
attacks such as slow data exfiltration across hours or days.

GNN–based traffic detection methods, by modeling device interaction relationships
through graph structures, offer significant improvements over traditional methods, while
when applied to industrial scenarios, they still need to address core challenges such as
protocol semantic understanding, dynamic adaptability, and deployment efficiency.

2.3. Advances in Spatio–Temporal Graph Neural Networks

In recent years, spatio–temporal graph neural networks (STGNNs) have been explored
for network threat detection, focusing mainly on cloud environments, data centers, and IoT
networks. For example, Wang [6] proposed a spatio–temporal graph attention network
(N–STGAT) to detect DDoS attacks in near–Earth remote sensing systems, achieving an
F1–score of 94.2% on the CICIDS2017 dataset. Athmane [16] designed a multi–scale STGNN
to track lateral movement paths of Advanced Persistent Threats (APT) by combining host
logs and network traffic. In the IoT domain, Wu [18] modeled IoT devices as graph nodes
and used STGNN to detect botnet behaviors like Mirai variants, while Ruan [19] introduced
a lightweight STGNN for real–time deployment at edge gateways through knowledge
distillation. However, these approaches face limitations such as a high degree of protocol
standardization in cloud environments, while industrial networks’ protocol heterogeneity
has not been fully considered. In industrial control networks (ICNs), STGNNs encounter
several challenges: insufficient protocol semantic understanding, dynamic topology and
concept drift, small and zero–shot attack detection, and the contradiction between real–
time requirements and computational costs. Existing methods often treat protocol fields as
symbols or numbers without addressing the semantic intent, and dynamic STGNNs assume
gradual topology changes, which do not account for abrupt device failures. Moreover,
industrial attack data are scarce, and new attack types lack historical samples, making
detection of unknown threats difficult. Furthermore, the limited computational resources
of industrial devices make it hard to meet the millisecond–level response requirements of
complex STGNN models.

2.4. Large Language Modeling (LLM) in Network Security

In recent years, large language models (LLMs) have gained significant attention in
the field of cybersecurity due to their powerful semantic understanding and generation
capabilities. They have provided new solutions to the challenges faced by traditional
detection methods, such as protocol heterogeneity, semantic ambiguity, and small sample
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learning. Early studies focused on leveraging the text encoding capabilities of LLMs to
enhance the semantic representation of network traffic features. For instance, Seyyar [20]
proposed a BERT–based HTTP request header parsing framework, encoding unstructured
header fields (e.g., User–Agent, Cookie) into context–aware vector representations, which
significantly improved the accuracy of web attack detection by capturing latent semantic
differences in natural language features, such as distinguishing between malicious crawlers
and legitimate browsers based on User–Agent descriptions. Similarly, in industrial control
network scenarios, Abshari [21] explored the use of GPT–4 to parse operation instruction
sequences in SCADA system logs and generate textual descriptions of device behavior
chains, subsequently identifying anomalous operation patterns through text similarity
matching. While these approaches demonstrated the potential of LLMs in protocol and log
parsing, they are limited by their inability to integrate textual semantics with the spatio–
temporal dynamics of network traffic, making it difficult to model the complex propagation
paths of multi–stage attacks.

To further exploit the reasoning capabilities of LLMs, researchers have begun ex-
ploring their application in attack pattern generation and threat intelligence analysis.
Branescu et al. [22] developed a GPT–4–based attack scenario generation framework that
automatically generates technical step descriptions aligned with MITRE ATT&CK tactics
from natural language descriptions of attack objectives, such as “penetrating the data
collection and monitoring system of a power grid,” and subsequently converts these into
simulated traffic data for training detection models. This method offers unique value in
addressing the scarcity of labeled data, but the generated traffic data often lacks the logical
constraints of industrial protocols; for example, Modbus register address range limitations,
leading to distribution shifts from real industrial control environments. Moreover, LLMs’
zero–shot reasoning capability has been used for automated threat intelligence analysis. For
instance, OpenAI’s ChatGPT–4o has been integrated into SOAR (Security Orchestration,
Automation, and Response) platforms to parse unstructured text from security event re-
ports and automatically generate impact assessments and response recommendations [23].
However, the practical applicability of such methods in industrial settings remains limited
due to LLMs’ insufficient prior knowledge of domain–specific protocols, which may lead
to misleading conclusions.

In the direction of explainability enhancement, LLMs provide a new paradigm for
increasing the transparency of black–box security models’ decision–making processes.
Traditional explainability methods, such as LIME and SHAP, rely on manually defined
feature importance and struggle to associate high–level semantics with network behavior.
To address this, recent work has attempted to combine LLMs with deep learning models to
generate human–readable detection reports. The system designed by Kotenko [24] utilizes
graph neural networks to identify relationships between attack events and integrates
language models to enable dialog interaction between the system and operators, automating
the process of detecting and analyzing network attacks. Large language models not only
explain the detected threats but also provide suggestions for further investigating events or
updating protection systems. Transferred to the scenario of industrial anomaly detection,
we also aim to use GNNs to extract device interaction patterns from network traffic and map
the weights of abnormal events to natural language explanations via LLMs, such as “The
abnormal communication between Device A and Device B involves an unauthorized
OPC UA subscription request.” However, existing methods are mainly geared toward
general IT networks and have not fully considered the unique requirements of industrial
control networks: on the one hand, industrial protocols have complex semantic rules that
require fine–grained domain knowledge to guide LLMs in generating logically coherent
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explanations; on the other hand, industrial operations demand real–time performance,
and complex LLM inference chains may introduce unacceptable delays.

Despite the initial progress in the aforementioned research, there remains a signif-
icant gap in the application of LLMs for industrial network anomaly detection. Most
existing work isolates the use of LLMs for text data processing or rule generation, with-
out deeply embedding them into the closed loop of spatio–temporal traffic modeling.
Specifically, anomaly detection in industrial traffic needs to simultaneously meet three
requirements: protocol semantic compliance verification, spatio–temporal dynamic pat-
tern capture, and real–time efficient inference. Current methods often focus on only one
dimension. For example, LLM–based protocol parsing lacks the ability to model device
topology evolution, while dynamic graph neural networks can capture spatio–temporal
dependencies but cannot interpret the semantic intent of protocol fields. This disconnection
results in weak detection performance when facing stealthy attacks, such as parameter
tampering within compliant protocol frames. This paper aims to overcome these limitations
by designing a tightly coupled architecture of LLMs and spatio–temporal graph neural
networks to enable joint inference of semantic and spatio–temporal features, advancing
industrial network detection toward greater intelligence and explainability.

3. Design of Framework
Industrial control system (ICS) traffic exhibits spatio–temporal dependencies between

devices. We model the network topology as a dynamic graph. The proposed framework
consists of three core modules: dynamic graph construction, multi–modal feature enhance-
ment, and lightweight spatio–temporal graph neural network. The overall architecture is
illustrated in Figure 1.
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3.1. Dynamic Graph Construction Module

Industrial control systems typically include devices such as SCADA, PLCs, sensors,
and actuators, with network traffic data packets representing the communication interac-
tions between these devices, while the control component involves the logical or physi-
cal control processes between the devices. Moreover, considering the significant spatio–
temporal dynamic characteristics of industrial control network traffic data, traditional static
graph models struggle to capture the temporal evolution patterns of device interactions. To
address this, the proposed framework introduces a dynamic graph construction method
based on multi–source data streams, mapping multimodal industrial control traffic data
into two types of subgraph structures: the pcap network traffic subgraph and the control
relationship subgraph, which are then merged into a unified graph structure.

The pcap network traffic subgraph is constructed based on the temporal propagation
paths of data packets, forming a chain–like topological structure. For the packet sequence
{pk}K

k=1 within a time window ∆t, each packet contains the source device IP srck, destina-
tion device IP dstk, protocol type protok, and timestamp tk, which can be mathematically
represented as shown in Equation (1). The set of nodes Vp = {vi(IP : port)|∃pk ∈ ∆t, srck =

IP : port or dstk = IP : port} represents device entities. The set of edges Ep = {eij} and
directed edges eij indicate network communication from node vi to node vj. The time axis
is divided into multiple continuous windows of equal time intervals, with each window
corresponding to an instance of a dynamic graph G(t)

p = (V (t)
p , E (t)

p ), thereby constructing

the time–series graph Gp = {G(t)
p }.

pk = (srck, dstk, protok, tk). (1)

Within each time window [t, t + ∆t), the communication count between device vi

and device vj is calculated, and the edge weight is defined by incorporating a protocol
importance weight function ϕ(·), as represented by Equation (2), and then construct the
adjacency matrix At ∈ RN×N for the time window ∆t.

At
ij =

Count(vi → vj in [t −−∆t, t))
∆t

· ϕ(Proto(vi → vj)). (2)

Where the communication count statistics and the protocol weight function are repre-
sented by Equation (3) and Equation (4), respectively.

Count(vi → vj) =
n

∑
k=1

I
(

The source of pk is vi ∧ The destination of pk is vj
)
. (3)

ϕ(Proto) =


1.0 If key protocols

0.8 If secondary protocols

0.5 Other protocols

. (4)

As the time window slides, the adjacency matrix is dynamically updated to reflect real–
time communication patterns. At the end of each window, the data from the old window are
discarded, and new window data are loaded. The edge weights are recalculated according
to Equation (5).

At+1 = f ({pk | tk ∈ [t + ∆t, t + 2∆t)}). (5)



Electronics 2025, 14, 3952 9 of 33

The protocol weight can also be dynamically updated based on network security
policies, for example, by reducing the weight of a protocol that has been frequently attacked.
Specifically, the protocol weight adjustment is given by

ϕnew(Proto) = ϕold(Proto) · (1 −−η · AttackFreq(Proto)), (6)

where η is the decay factor and AttackFreq represents the historical attack frequency of
the protocol.

The control relationship subgraph is used to model the logical control dependencies
between devices in an industrial network. The set of nodes Vc = v1, v2, ..., vN represents
all devices in the control system, and the set of edges Ec ⊆ Vc × Vc represents the control
dependencies between devices. Specifically, if device vi controls device vj, an edge eij exists
between them.

The node feature matrix is X ∈ RN×d. Each node’s feature vector xi contains informa-
tion such as the device type, role, and permission level.

xi = [Type(vi), Role(vi), Priority(vi), ...]. (7)

Here, Type denotes the device type, where the master computer is assigned 0, the con-
troller 1, the sensor 2, and the actuator 3; Role indicates the control role, with the controlling
side set to 0 and the controlled side to 1; Priority represents the control priority, with high
assigned as 2, medium as 1, and low as 0.

The adjacency matrix A ∈ {0, 1}N×N of the control relation subgraph is defined as
follows:

Aij =

1 If vi controls vj directly

0 Otherwise
. (8)

When the network topology changes due to the addition or removal of devices or ad-
justments in permissions, the adjacency matrix needs to be dynamically updated.

If a new device vnew is managed by controller vc, the adjacency matrix is expanded
accordingly.

Anew =

[
A B
BT 0

]
, B is an N × 1 matrix, and Bc,new = 1. (9)

If the device vi loses control over device vj, the corresponding entry in the adjacency
matrix is changed to Aij = 0.

For complex hierarchical structures, we introduce a multi–hop adjacency matrix,

Amulti–hop =
K

∑
k=1

Ak, (10)

where Ak represents a k–hop control path, and K is the maximum number of hops.
To comprehensively model the spatio–temporal dynamics and logical control hierarchy

of industrial networks, it is necessary to organically combine the pcap network traffic
subgraph with the control relationship subgraph.

By weighted fusion of the dynamic communication adjacency matrix At and the static
control adjacency matrix Ac, a comprehensive adjacency matrix Acombined is generated as
follows:

Acombined = α · At + β · Ac. (11)
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In Equation (11), α ∈ [0, 1] represents the dynamic communication weight, reflecting
the importance of real–time traffic patterns, while β ∈ [0, 1] represents the static control
weight, reflecting the priority of logical control dependencies. The constraint is α + β = 1.

3.2. Multi–Modal Feature Enhancement Module

At the node feature level, this study proposes a large language model (LLM)–driven
semantic enhancement strategy to address the issue of insufficient feature representation
in traditional methods, which often overlook the protocol semantic context. To handle
the multimodal characteristics of industrial network traffic, including numerical statistical
features and protocol text features, fine–grained feature fusion is achieved through the
following steps:

• LLM Semantic Embedding Generation
To enhance the semantic richness and interpretability of the initial node features, a two–
stage feature enhancement strategy is designed by combining the reasoning capabil-
ities of large language models (LLMs) with the efficient adaptability of lightweight
language models.
Raw protocol text and device logs from node features are input into the LLM,
and prompt engineering is used to guide the LLM in generating two types of out-
puts: one is a prediction label, which infers whether the operation type is normal
or anomalous based on the text content; the other is a natural language description,
which outlines the operation intent and potential risks. An example of the input and
output of the LLM is shown in Figure 2.

Input:

Function code 0x10, target registers 0x5000-0x5020, 

permission level: administrator

Input:

Function code 0x10, target registers 0x5000-0x5020, 

permission level: administrator

(a)

Output:

Prediction: {"prediction": "Normal", "confidence": 0.92}

Explanation: “This operation is a legal write command, requiring administrator 

privileges, and the target register is located within the authorized range.”

Output:

Prediction: {"prediction": "Normal", "confidence": 0.92}

Explanation: “This operation is a legal write command, requiring administrator 

privileges, and the target register is located within the authorized range.”

(b)

Figure 2. (a) The input to the LLM comes from feature information such as function codes and
permission levels in the original text and logs. (b) The output of the LLM includes predicted labels
and natural language explanations of the input features.

The original text, prediction label, and explanation are merged to form enhanced text
as Equations (12) and (13), and the lightweight language model (LM) is fine–tuned
using the objective functions from Equation (14) to Equation (16).

textenhanced = concat(original information, prediction, explaination). (12)

Dtrain = {(texti, textenhanced,i)}N
i=1. (13)
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The mask tokens in the enhanced text are reconstructed to calculate the Masked
Language Modeling (MLM) loss LMLM, and a prediction consistency loss Lconsist is
computed by constraining the LLM’s generated label to match the LM’s prediction.
The total loss function Ltotal is the weighted sum of the MLM loss and the prediction
consistency loss.

LMLM = Et∼D
M

∑
m=1

log P(wm | textenhanced \ wm). (14)

Lconsist =
N

∑
i=1

CrossEntropy
(

fLM(texti), predLLM
i

)
. (15)

Ltotal = λ1LMLM + λ2Lconsist, λ1 + λ2 = 1. (16)

• Multi–modal Feature Concatenation
The fine–tuned language model is then used to encode the original text, generating
enhanced semantic embeddings.

Ei = LM(texti) ∈ Rde . (17)

These enhanced semantic embeddings are fused with the original node features, in-
cluding dynamic traffic features and static control attributes, to create a comprehensive
feature representation as follows:

Xconcat =
[
Xt∥Xc∥E

]
∈ RN×(dt+dc+de). (18)

This operation initially merges numerical statistical features with semantic context but
does not explicitly model the relationships between the modalities.

• Cross–Modal Attention Alignment
To eliminate the spatial heterogeneity of multimodal features, a dual–stream cross–
attention mechanism is designed as follows:
A query vector is extracted from the traffic features Xt, focusing on real–time commu-
nication patterns. Keys and values are extracted from the semantic embeddings E,
encoding protocol semantic information. The generation of Q, K, and V are shown in
Equations (19), (20), and (21), respectively.

Q = XtWq ∈ RN×dk . (19)

K = EWk ∈ RN×dk . (20)

V = EWv ∈ RN×dv . (21)

The attention weights are computed using a scaled dot–product attention mechanism
to measure the correlation between traffic features and semantic features, as shown in
Equation (22). Then weighted aggregated semantic information to the traffic feature
space, as in Equation (23).

αij = Softmax

(
QiKT

j√
dk

)
, ∀i, j ∈ {1, 2, . . . , N}. (22)

Xfused,i =
N

∑
j=1

αijVj ∈ Rdv . (23)
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To prevent information loss and improve training stability, the fused features are
added to the original concatenated features, followed by layer normalization,

Xenhanced = LayerNorm
(
XconcatWp + Xfused

)
, (24)

where Wp ∈ R(dt+dc+de)×dv is the projection matrix used to align the dimensions of
the concatenated features and the fused features.

3.3. Lightweight Spatio–Temporal Graph Neural Network

To reduce computational complexity and adapt to the resource constraints of industrial
edge devices, this paper designs a lightweight spatio–temporal graph neural network,
incorporating sparse graph attention network (Sparse GAT) and local window Transformer
to lower computational overhead. The joint adjacency matrix Acombined ∈ RN×N (N
is the number of nodes) from Section 3.1 and the enhanced multimodal feature matrix
Xenhanced ∈ RN×T×d (N is the number of nodes, T is the number of time steps, and d is the
feature dimension) from Section 3.2 are input into the network for anomaly detection. The
specific process is as follows:

• Time Feature Extraction Process
Bi–GRU extracts temporal features from each node vi in the graph structure across
sequential time steps,

Hbi
t = Bi–GRU

(
X(1:T)

i

)
∈ RT×2h, (25)

where h denotes the hidden layer dimension of the GRU, with bidirectional outputs
concatenated into a 2h–dimensional vector. The temporal feature matrix Htime ∈
RN×T×2h is subsequently generated by the Bi–GRU.
A Sparse GAT operates by exclusively computing attention weights between each
node and its Top–K neighbors, formally expressed as

GATeij = LeakyReLU
(

aT[Wxi ∥ Wxj
])

(26)

GATαij =


exp(GATeij)

∑k∈N TopK
i

exp(GATeik)
if j ∈ N TopK

i

0 otherwise

, (27)

where W ∈ Rd×d denotes the learnable weight matrix, a ∈ R2d is the attention vector,
and N TopK

i represents the Top–K neighbor set of node vi.
The spatial feature matrix Hspatial ∈ RN×d is obtained through feature aggregation
governed by Equation (28).

h′i = ReLU

 ∑
j∈N TopK

i

GATαijWxj

. (28)

Therefore, at each time step t, the spatial relationships between nodes are modeled
through the following formulation:

HGAT
t = SparseGAT

(
Hbi

t , Acombined

)
∈ RN×dg , (29)

where dg denotes the output dimension of SparseGAT Layer. Compared to the original
GAT, the computational complexity of SparseGAT is reduced from O(N2) to O(KN).
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The integration of graph Transformer layers enhances the model’s capacity to capture
long–range temporal dependencies and complex spatial interactions, while the local
window attention mechanism restricts each node’s temporal attention scope to a fixed
interval [t −−w, t + w] at step t, as formalized by Equation (30) and Equation (32).

Attn(t, t′) =


Softmax

(
QtKT

t′√
dk

)
if |t −−t′| ≤ w

0 otherwise

, (30)

Qt = HtWQ, Kt = HtWK, Vt = HtWV , (31)

H′
t =

t+w

∑
t′=t−−w

Attn(t, t′)Vt′ , (32)

where WQ, WK, WV ∈ Rd×d denote learnable parameter matrices, and w specifies the
local window size. The windowed temporal attention outputs features with dimension
dt through Equation (33). This design reduces the computational complexity of the
Transformer layer from O(T2N2) to O(wTN2).

Htimefinal = LocalWindowTransformer
(

HGAT
)
∈ RN×T×dt . (33)

• Spatial Feature Extraction Process
The spatial feature extraction branch directly models spatial dependencies through
the combined adjacency matrix while employing local windowed attention along the
spatial dimension as formalized in Equations (34) and (35). The network structure
of its layers is designed in the same way as in the temporal feature extraction in the
previous item.

HspaceGAT = SparseGAT(X, Acombined) ∈ RN×dg . (34)

Hspacefinal = LocalWindowTransformer
(

HspaceGAT
)
∈ RN×ds . (35)

• Graph–Level Feature Generation and Anomaly Detection
This module generates anomaly probabilities for network traffic by globally aggre-
gating and mapping multi–modal spatiotemporal features, thereby providing direct
evidential support for security decision–making in industrial control systems.
Extend the temporal features along the spatial dimension to RN×T×dt and the spatial
features along the temporal dimension to RN×T×ds , ensuring dimensional consistency
before concatenating them into Hfused.
This design enables the model to adaptively adjust spatio–temporal weights γ based
on the characteristics of the attack. For example, for slow infiltration attacks that
depend on long–term temporal patterns, the model may assign higher weight to the
temporal path, whereas for lateral movement attacks that rely on abnormal topological
propagation, the spatial path weight is increased.

Htimealign = Htimefinal ∈ RN×T×dt (36)

Hspacealign = Hspacefinal ∈ RN×T×ds (37)

Hfused = γ · Htimefinal + (1 −−γ) · Hspacefinal ∈ RN×T×(dt+ds). (38)



Electronics 2025, 14, 3952 14 of 33

The graph–level feature representation is then mapped to an anomaly probability via
global feature pooling, as shown in Equations (39) and (40), where Wc ∈ R(dt+ds)×1

and bc ∈ R denote the classifier parameters.

hglobal = MeanPool
(

Hfused
)
∈ Rdt+ds . (39)

panomaly = Sigmoid
(

Wchglobal + bc

)
∈ [0, 1]. (40)

4. Evaluation
4.1. Experimental Settings

The experimental environment was configured to ensure the accurate assessment
of the DLG–IDS framework. The hardware foundation consisted of an NVIDIA A800
80 GB PCI–e GPU and an Intel Xeon Gold 6430 CPU. This combination provided the
necessary computational power to handle the complex operations involved in dynamic
graph construction, multi–modal feature processing, and the functioning of the lightweight
spatio–temporal graph neural network. On the software side, Python 3.7 served as the
primary programming language, facilitating the implementation of the proposed algo-
rithms. PyTorch 1.12.1 was utilized as the deep–learning framework, enabling efficient
model training and inference. CUDA 11.6 was integrated to accelerate the GPU–based
computations, significantly reducing the processing time. DGL 0.9.1 was employed for
dynamic graph construction, allowing for the real–time representation of network traffic
and control relationships. HuggingFace Transformers 4.25.1 was used for multi–modal fea-
ture processing, especially in the context of leveraging large language models for semantic
enhancement.

In the multi–modal feature enhancement module, the large language model LLaMA3–
8B was selected to generate predictions and explanations for graph node features. Its
powerful natural language understanding capabilities were harnessed to infer operation
types from raw protocol text and device logs. The LM, DeBERTa–v3–base, was then
fine–tuned. During training, the large language model was frozen to preserve its pre–
trained domain knowledge while reducing computational overhead. The fine–tuning
learning rate was set to 2× 10−5, to achieve an optimal balance between model convergence
and generalization.

In the lightweight spatio–temporal graph neural network, the Sparse GAT’s hidden
layer dimension is set to 128 and is equipped with a 4–head attention mechanism to capture
multi–granularity feature interactions. For each node, only the top 10 edges with the
highest communication intensity are retained as Top–K neighbors, ensuring both sparsity
and efficient computation of the graph structure. The local window Transformer layer
employs a window size of w = 5 and is configured with an 8–head attention mechanism to
extract local spatio–temporal dependencies. Model training is conducted using the Adam
optimizer with a learning rate of 1 × 10−4, a fixed batch size of 64, and over a total of
100 epochs.

4.2. Datasets for Evaluation

We validate the effect of the proposed model on two datasets: the publicly available
dataset SWaT and the self–collected dataset SBFF, respectively. Some general information
about the two datasets is shown in Table 1 below.
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Table 1. General information of the datasets.

Dataset Attacks Train Test Anomalies (%)

SWaT 41 716,320 179,080 11.9733

SBFF 4 36,145 9036 22.3235

This study utilizes the SWaT dataset [25] developed by the Singapore University of
Technology and Design, collected from a real–world water treatment testbed. The platform
employs Ethernet/IP protocol communication and features a six–stage treatment process:
Raw Water Tank (RWT), Pretreatment (coagulation and sedimentation), Ultrafiltration (UF),
Dechlorination, Reverse Osmosis (RO), and UV Disinfection. The dataset includes time–
series data from 51 sensors and actuators, capturing 11 consecutive days of operation —7
days under normal conditions followed by 4 days under cyber–attacks. It comprehensively
documents water supply, filtration, backwashing, and other processes, offering a complete
operational scenario for security research in water treatment systems.

The normal data of the SBFF dataset used in this study were collected by us in a real
industrial production environment, and the malicious data were collected on the industrial
control system simulation platform ICSSIM [26].

We established a simple simulated network architecture for a bottle–filling factory
on this platform. As illustrated in Figure 3, the management and control layer comprises
three HMIs, with the attacker generator also situated at this layer. Two independent PLCs
manage distinct hardware zones: PLC–1 controls the water tank and valves, while PLC–2
oversees the conveyor belt. Network configurations for each ICS node are provided in
Table 2, and communication is conducted using the Modbus protocol.

HMI1 HMI2 HMI3

Attack 

Generator

PLC1 PLC2

Figure 3. control network architecture for the bottle filling factory.

Table 2. Node network configuration for the bottle filling factory.

Node Mac Address IP Address

PLC1 02:42:c0:a8:00:0b 192.168.0.11

PLC2 02:42:c0:a8:00:0c 192.168.0.12

HMI1 02:42:c0:a8:00:15 192.168.0.21

HMI2 02:42:c0:a8:00:16 192.168.0.22

HMI3 02:42:c0:a8:00:17 192.168.0.23

Attacker 02:42:c0:a8:00:29 192.168.0.41
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We selected four typical attack types targeting ICS and obtained attack traffic on the
simulation platform, and the specific numbers are shown in Table 3.

Reconnaissance Attack: This attack does not directly affect industrial production but
involves an intruder gathering information by scanning MAC addresses, IP addresses,
and open ports. The attack is carried out using Ettercap to broadcast ARP for IP scanning,
along with Nmap for port scanning.

Replay Attack: In this scenario, the attacker maliciously retransmits packets captured
during normal system operations to disrupt the control system’s proper functioning. The at-
tack is implemented using the Scapy library in conjunction with ARP spoofing and MitM
techniques to sniff network packets for 15 s, after which the captured packets are replayed
three times (a total of 45 s).

DDoS Attack: Multiple attackers send a large volume of packets to the network or
specific services, causing a denial of service in control system components. This attack
leverages network addresses collected during reconnaissance and Modbus addresses
sniffed from the network. Using the “DDoSAgent” class in ICSSIM, 800 instances are
generated, with each instance sending read requests to a PLC continuously for 60 s, resulting
in severe communication delays in the ICS network during the attack.

MitM Attack: In this attack, the adversary injects false data to intercept or manipulate
communication between two ICS components. The attack is conducted by performing ARP
poisoning on ICS components to redirect packets to the attack node. The attacker intercepts
packets and modifies Modbus write requests and read responses to send manipulated
packets to predetermined destinations, and ARP messages are sent to ICS components to
clear routing tables.

Table 3. Number of different categories of flows in the dataset SBFF.

Attack Type Number of Flow

Normal 35,095

Reconnaissance 3122

Replay 2749

DDoS 1840

MitM 2375

Total 45,181

4.3. Performance Metrics

To comprehensively evaluate the performance of the proposed DLG–IDS framework,
we adopt the following metrics commonly used in machine learning and anomaly detection.
These metrics assess the model’s detection accuracy, computational efficiency, robustness,
and practical applicability in industrial control networks.

Precision was defined as Equation (41), where TP (True Positive) represented the
number of malicious traffic instances correctly identified by the model, and FP (False
Positive) was the number of benign traffic instances incorrectly classified as abnormal.
Precision was crucial, as it measured the proportion of correctly identified anomalies
among all predicted anomalies. A high Precision value minimized unnecessary operational
interruptions caused by false alarms in industrial control networks.

Recall was calculated as Equation (42), where FN (false negative) was the number of
malicious traffic instances erroneously labeled as benign. Recall indicated the fraction of
true anomalies correctly detected by the model. Maximizing Recall was essential to ensure
minimal missed detections of critical threats in industrial systems.
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The F1–score, which balanced the trade–off between false positives and false negatives,
was computed as Equation (43). In imbalanced datasets, where anomaly samples were rare,
the F1–score provided a more comprehensive measure of the model’s performance.

The false positive rate (FPR) was given by Equation (44), where TN (True Negative)
was the number of benign traffic instances accurately recognized as normal. A low FPR
was essential in industrial settings to avoid unnecessary downtime.

Precision =
TP

TP + FP
. (41)

Recall =
TP

TP + FN
. (42)

F1 −−score =
2 · TP

2 · TP + FP + FN
. (43)

FPR =
FP

FP + TN
. (44)

In addition to these metrics, the Area Under the Receiver Operating Characteristic
(ROC) Curve (AUC–ROC) was used. The ROC curve plotted the TPR against the FPR
at various classification thresholds. The AUC–ROC provided an overall measure of the
model’s ability to distinguish between normal and abnormal traffic, with a higher value
indicating better performance. The Precision–Recall (PR) curve was also employed, par-
ticularly important for imbalanced datasets where anomalies are rare. It plots Precision
against Recall across different thresholds, with the area under the PR curve (AUC–PR)
providing a comprehensive view of the trade–off between detection accuracy and coverage.
The FPR at a specific TPR (e.g., 95% TPR) was reported to assess the false alarm rate under
high–detection scenarios, critical for operational environments where missed threats are
unacceptable. Detection Error Tradeoff (DET) curves, which plot miss rate (FNR) against
FPR on normal deviate scales, were used to visualize the error trade–offs more sensitively
than ROC curves, especially in the low–FPR region. Finally, calibration plots (reliability
diagrams) were generated to evaluate how well the predicted probabilities align with the
actual likelihood of being an anomaly, essential for trustworthiness in security decision–
making. This study utilized the aforementioned curves to comprehensively evaluate the
performance of detection models.

Detection latency, measured in milliseconds, was the time required to process a sin-
gle network traffic time window. This metric was of utmost importance in real–time
industrial control systems, where timely detection of anomalies was crucial to prevent
potential damages.

4.4. Ablation Experiment

Ablation experiments were systematically conducted to evaluate the contributions of
each core component of the DLG–IDS framework. We use an unoptimized spatio–temporal
graph neural network as the base model for detection, and the results of the ablation
experiments on the SWaT and SBFF datasets are shown in Tables 4 and 5, respectively. The
experimental results on SWaT show that the base model, without any additional enhance-
ments, achieved an F1–score of 0.770, a FPR of 0.220, and a detection latency of 189 ms. The
pure time–series architecture LSTM was used as a baseline for the ablation experiments.
The base model alone achieves an F1–score of 0.770, which is substantially higher than the
0.604 F1–score of the traditional LSTM baseline. This confirms the fundamental advantage
of the proposed architecture over conventional sequential models. After incorporating the
LM structure into the base model, the F1–score showed a marked improvement. When the
LLM–LM semantic enhancement module was integrated, the F1–score improved to 0.852,
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and the FPR decreased significantly to 0.06. However, the latency increased to 212 ms. The
results of the SBFF dataset also show the same trend. This increase in latency was due to
the additional computational requirements of the semantic feature extraction process. The
LLM–LM module, by leveraging the reasoning capabilities of large language models and
the fine–tuning of lightweight language models, enhanced the model’s ability to under-
stand protocol semantics. This, in turn, led to a more accurate detection of anomalies, as it
could identify subtle semantic differences that the base model might have missed.

The introduction of the Sparse GAT demonstrated significant advantages. The F1–
score slightly increased to 0.796 and 0.656, respectively, while the latency decreased by
approximately 50% compared to the base model. The sparse GAT is designed to calculate
the attention weights only between each node and its Top–K neighbors. This method re-
duces the computational complexity, and by effectively capturing the abnormal propagation
between devices, the sparse GAT improves the model’s performance in detection.

The local window Transformer further enhanced the model’s performance. The local
window Transformer limits the temporal attention range of each node to a fixed interval.
This localized attention mechanism was effective in modeling the periodic industrial
operational patterns, as it focused on the relevant temporal and spatial dependencies
within the local window.

When all the components —LLM–LM, Sparse GAT, and local window Transformer
—were combined with the base model, the system achieved optimal performance. On the
SWaT dataset, the F1–score reached 0.943, representing a 22.4% improvement over the base
model. The FPR dropped to 0.046, a 79.1% reduction, and the latency was controlled at
71 ms, a 62.4% acceleration. On the SBFF dataset, the optimization degrees of these three
performance indicators are 41.3%, 82.4%, and 53.2%, respectively.

These results not only validated the effectiveness of the multi–modal fusion strategy
but also demonstrated the model’s adaptable configurability and its balanced design be-
tween computational efficiency and detection reliability. Specifically, the semantic features
from the LLM–LM module strengthened the understanding of protocol context, the sparse
graph structures of the Sparse GAT optimized the modeling of spatial dependencies,
and the localized temporal attention of the local window Transformer precisely tracked
the evolution of device states —collectively contributing to the observed performance im-
provements.

Table 4. Ablation experiments on the SWaT dataset.

LLM LM Local Window
Transformer

Sparse
GAT

Base
Model

F1–Score FPR Detection
Latency (ms)

✓ 0.770 0.220 189
✓ ✓ 0.809 0.201 210

✓ ✓ ✓ 0.852 0.060 212
✓ ✓ 0.796 0.235 92

✓ ✓ ✓ 0.791 0.083 68
✓ ✓ ✓ ✓ ✓ 0.943 0.046 71

LSTM 0.604 0.410 155

✓indicates that the component is included in the model for the ablation study.
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Table 5. Ablation experiments on the SBFF dataset.

LLM LM Local Window
Transformer

Sparse
GAT

Base
Model

F1–Score FPR Detection
Latency (ms)

✓ 0.630 0.142 109
✓ ✓ 0.672 0.133 190

✓ ✓ ✓ 0.766 0.087 198
✓ ✓ 0.656 0.136 55

✓ ✓ ✓ 0.625 0.058 46
✓ ✓ ✓ ✓ ✓ 0.890 0.025 51

LSTM 0.575 0.433 88

✓indicates that the component is included in the model for the ablation study.

4.5. Comparative Experiment

To validate the superiority of the proposed DLG–IDS framework, comparative experi-
ments were conducted against three representative baseline methods: Random Forest (RF),
Graph Convolutional Network (GCN), and OFA [27] (a state–of–the–art industrial anomaly
detection model in recent years). The performance comparison was carried out on both
SWaT and SBFF datasets, with detailed metrics shown as Tables 6 and 7.

DLG–IDS has demonstrated excellent performance in overall accuracy across different
datasets, achieving 0.975 and 0.986 on the two industrial traffic datasets, respectively. This
indicates that DLG–IDS is highly effective in classifying traffic instances both in simulated
and real industrial control scenarios. In terms of Precision, DLG–IDS outperformed the
other methods. The higher Precision of DLG–IDS indicated its ability to accurately identify
anomalies without generating excessive false alarms. Regarding Recall, DLG–IDS also
demonstrated superiority. The higher Recall of DLG–IDS suggested its improved ability
to detect stealthy attacks, such as parameter tampering within compliant protocols. This
was in line with its design principles, where the dynamic graph construction captured
real–time communication patterns, and the LLM–driven semantic enhancement deciphered
protocol intent. The F1–score, which balanced Precision and Recall, also showed DLG–
IDS’s advantage. DLG–IDS’s optimal F1–scores indicated robust detection accuracy with
minimal false positives and false negatives.

Table 6. Performance comparison of four methods on the SWaT dataset.

Method Accuracy Precision Recall F1–Score

RF 0.872 0.870 0.902 0.769

GCN 0.881 0.875 0.915 0.773

OFA 0.948 0.896 0.912 0.760

DLG–IDS 0.975 0.906 0.920 0.943

Table 7. Performance comparison of four methods on the SBFF dataset.

Method Accuracy Precision Recall F1–Score

RF 0.891 0.875 0.901 0.766

GCN 0.898 0.895 0.923 0.807

OFA 0.944 0.917 0.920 0.813

DLG–IDS 0.986 0.955 0.940 0.852
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The ROC curve and its AUC value are fundamental tools in evaluating the performance
of binary classification models, especially relevant in anomaly detection tasks like industrial
network security. Figure 4 shows the ROC curves and AUC values of the four models
tested on the two given datasets.
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(a) ROC curves on SWaT.

DLG-IDS (AUC = 0.969)
OFA (AUC = 0.930)
GCN (AUC = 0.909)
RF (AUC = 0.864)
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(b) ROC curves on SBFF.

DLG-IDS (AUC = 0.977)
OFA (AUC = 0.961)
GCN (AUC = 0.902)
RF (AUC = 0.871)

Figure 4. ROC curves of the four intrusion detection methods.

Across both datasets, DLG–IDS’s AUC values (0.969 on SWaT; 0.977 on SBFF) not only
lead but also exhibit minimal variance, showcasing strong cross–dataset adaptability. This
stability stems from its ability to capture both protocol–level semantics and spatio–temporal
dependencies in network traffic, essential for ICS with dynamic operation modes. In con-
trast, the other three models show consistent performance ranking (OFA > GCN > RF) but
larger AUC fluctuations, indicating weaker generalization. Such results validate Model
DLG–IDS as a robust candidate for securing ICS, while the others may require context–
specific tuning or remain supplementary in resource–constrained deployments. ROC–AUC
analysis corroborates that model DLG–IDS outperforms competitors in distinguishing nor-
mal and anomalous behavior across industrial datasets. Its superior discriminative power,
coupled with cross–dataset stability, positions it as a pragmatic solution for real–world ICS
security, where minimizing false alarms and maximizing threat detection are paramount.

Building upon the ROC curves that have demonstrated the overall classification
performance of various intrusion detection methods, the following Figure 5 further focuses
on specific TPR to compare the FPR of each method on the SWaT and SBFF datasets. From
subfigure (a), it can be observed that the FPRs of DLG–IDS, OFA, and GCN are all close to
1.0 at each TPR level, whereas the FPR of RF is relatively slightly lower. From subfigure (b),
the FPRs of DLG–IDS and OFA are still close to 1.0 at different TPRs; when TPR = 80%,
the FPR of GCN is slightly lower than that of the former two methods, and the FPR of RF
becomes more similar to that of other methods at high TPRs. The variation trend of FPR
for different methods with the increase in TPR is relatively stable, and the differences in
FPR performance between the two datasets are to some extent consistent. This underscores
DLG–IDS’s superiority in sustaining both high detection rates and low false alarm rates
across different datasets and TPR demands.
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Figure 5. Comparison of FPR at specific TPRs for different intrusion detection methods.

PR (Precision–Recall) curves are critical for assessing intrusion detection performance,
as they reflect the trade–off between Precision, which is about avoiding false positives,
and Recall, which is about detecting true positives. Figure 6 displays PR curves of four
methods on the SWaT and SBFF datasets, with Average Precision (AP, the area under the
PR Curve, similar to the AUC value in the ROC Curve) labeled for each method. For both
datasets, DLG–IDS exhibits outstanding performance: On SWaT, its PR curve maintains
a higher Precision across most Recall ranges, with the highest AP. On SBFF, DLG–IDS’s
PR curve also leads, sustaining stronger Precision as Recall increases, and it achieves the
highest AP as well. In comparison, other methods show lower Precision at similar Recall
levels or lower AP scores. This demonstrates that DLG–IDS excels at detecting intrusions
while keeping false alarms to a minimum, outperforming OFA, GCN, and RF on both
datasets.
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(a) PR curves on SWaT.

DLG-IDS (AP = 0.923)
OFA (AP = 0.878)
GCN (AP = 0.837)
RF (AP = 0.807)
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Figure 6. PR curves of the four intrusion detection methods.

DET (Detection Error Tradeoff) curves are plotted to provide a comprehensive view
of a classification model’s performance by illustrating the trade–off between two types of
errors–false alarms and missed detections —across various decision thresholds. This is
particularly critical in security applications like intrusion detection, where the cost of a false
acceptance (FAR, allowing an attack) is balanced against the cost of a false rejection (FRR,
flagging normal behavior as an attack). Unlike ROC curves, DET curves use a non–linear
scale that magnifies differences in the critical low–error rate region, making them ideal for
comparing performance in high–stakes environments.

As illustrated in Figure 7, the DET curves for the four methods on both the SWaT and
SBFF datasets reveal clear performance distinctions. The DIG–IDS method consistently
demonstrates superior performance, with its curve positioned closest to the origin of the
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graph on both datasets. This indicates that DIG–IDS achieves the most favorable balance
between FAR and FRR, meaning it can effectively minimize both missed attacks and
false alarms simultaneously across a wide range of operational thresholds. The other
three methods exhibit varying levels of performance. The OFA and GCN models show
intermediate results, with OFA performing well at very low false alarm rates, but its error
rates increasing more rapidly than DIG–IDS as the threshold is adjusted. GCN presents
a more stable but overall less optimal trade–off. In contrast, the RF method, a traditional
machine learning approach, is significantly outperformed by the deep learning–based
models on both datasets. Its curve is positioned highest, indicating consistently higher
error rates for both FAR and FRR. This performance gap underscores the limitation of
conventional methods in capturing the complex temporal and structural patterns in modern
industrial control system data.
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Figure 7. DET curves of the four intrusion detection methods.

Calibration plots, or reliability curves, are essential for evaluating not only the accuracy
but also the trustworthiness of a probabilistic classifier’s predictions. A model is considered
well–calibrated when its confidence scores accurately reflect the true likelihood of an event.
For security applications, this is critical because operational decisions rely on the credibility
of these scores. A model that is accurate but poorly calibrated may mislead analysts by
being systematically overconfident or underconfident.

The reliability curves and Expected Calibration Error (ECE) scores in Figure 8 clearly
differentiate the calibration quality of the four methods. DIG–IDS demonstrates the best
calibration performance on both datasets, with the lowest ECE values of 0.031 on SWaT
and 0.036 on SBFF. Its curve closely aligns with the ideal diagonal, indicating that its
confidence measures are highly reliable. OFA also shows strong calibration, particularly
on the SWaT dataset, where it nearly matches the performance of DIG–IDS. In contrast,
the GCN model shows noticeable miscalibration, while the RF method performs the poorest
with significantly higher ECE scores. The RF curve deviates substantially from the ideal
line, reflecting a tendency toward overconfident predictions. This is a common trait in
ensemble methods like random forests, which often require post–processing to produce
well–calibrated probability estimates. These results highlight that strong detection capabil-
ity must be accompanied by reliable confidence scoring for practical deployment. A model
like GCN may detect anomalies effectively but remains less useful if its confidence scores
cannot be trusted. DIG–IDS excels not only in detection accuracy but also in providing
well–calibrated confidence estimates, making it particularly suitable for real–world security
operations.
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(a) Calibration plots (reliablity curves) on SWaT.

DLG-IDS (ECE: 0.031)
OFA (ECE: 0.032)
GCN (ECE: 0.043)
RF (ECE: 0.123)
Perfectly calibrated

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n 
of
 p
os
iti
ve
s

(b) Calibration plots (reliablity curves) on SBFF.

DLG-IDS (ECE: 0.036)
OFA (ECE: 0.046)
GCN (ECE: 0.063)
RF (ECE: 0.162)
Perfectly calibrated

Figure 8. Reliablity curves of the four intrusion detection methods.

To further dissect the classification performance of the four methods, confusion matri-
ces were employed. These matrices offer a granular view of TP, TN, FP, and FN, enabling
precise quantification of misclassification patterns across the SWaT and SBFF datasets,
as shown in Figures 9 and 10. Across both datasets, clear performance gradients emerge.
On the SWaT dataset, RF shows symmetric misclassification tendencies, with non–negligible
errors in both false alarm (FP) and missed threat (FN) rates. GCN improves threat detection
(lower FN) but still struggles with false alarms (higher FP). OFA advances toward more
reliable classification, yet DLG–IDS stands out, minimizing both FP and FN through its
adaptive design. On the SBFF dataset, the trend persists. RF and GCN retain residual
misclassification issues —RF with notable false alarms, GCN with lingering missed threats.
OFA approaches high reliability but falls short of DLG–IDS. The latter delivers near–perfect
results, showcasing its superiority in handling complex attack scenarios.
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Figure 9. Confusion matrices of the four intrusion detection methods on the SWaT.
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Figure 10. Confusion matrices of the four intrusion detection methods on the SBFF.

5. Security Analysis
5.1. Different Attack Scenario Simulation Experiment

To better evaluate the adaptability of the models in different network attack scenarios,
we conducted comparative tests on the performance of each model under the scenarios of
normal production environment traffic and four types of attack traffic in the SBFF dataset,
with the results shown in Figure 11.
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Figure 11. Performance comparison experiments under different attack scenarios.

In the normal scenario, several methods achieve high Precision with small differences,
indicating that different algorithms can all achieve relatively good classification results
when dealing with normal network traffic. In attack scenarios, however, the performance of
some methods fluctuates significantly. For example, the F1–score of GCN in the DDoS attack
scenario is only 0.48, and it also achieves the lowest F1–score of 0.71 in the reconnaissance
attack scenario, which indicates that GCN is not good at detecting these two types of
attacks. Similarly, RF performs poorly in detecting replay attacks, but both of the methods
can achieve an F1–score of over 0.8 in detecting MitM attacks.

By contrast, the other two detection methods, OFA and DLG–IDS, perform more stably
across various attack scenarios. OFA achieves a slightly higher Precision in DDoS detection,
possibly due to its “stricter feature extraction of attack traffic”. However, this comes at the
cost of partial Recall, which may lead to missed detections. Overall, DLG–IDS achieves
higher F1–scores, all exceeding 0.9, indicating that it has a better balance between accurate
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identification and comprehensive capture of attacks. In contrast, OFA may be slightly
inferior in the coordination between Precision and Recall.

This result showed that the model could handle complex, multi–faceted attack scenar-
ios that were more representative of real–world cyber threats in industrial control systems.

5.2. Scalability Experiment

As industrial control networks are constantly evolving and expanding, the scalability
of the anomaly detection framework is of great significance. A scalability experiment was
designed to test the framework’s performance as the network size increased.

The SBFF dataset was extended to simulate a larger–scale industrial network. In the
original SBFF dataset, there are only 6 nodes. We expanded the node number to 12, 18,
and 24, and the number of collected network flows was doubled accordingly, resulting in
three extended datasets. The experimental results on these datasets are shown in Table 8.

Table 8. Performance comparison of different methods on extended dataset.

Extended Dataset Number
of Flow Method Accuracy Precision Recall F1–Score

SBFF–12 nodes 89,314

RF 0.848 0.825 0.854 0.757
GCN 0.873 0.875 0.856 0.815
OFA 0.927 0.866 0.919 0.808

DLG–IDS 0.981 0.960 0.955 0.913

SBFF–{18 nodes 13,625

RF 0.855 0.817 0.848 0.746
GCN 0.882 0.882 0.860 0.812
OFA 0.915 0.837 0.904 0.803

DLG–IDS 0.976 0.962 0.952 0.919

SBFF–{24 nodes 17,608

RF 0.808 0.813 0.850 0.740
GCN 0.870 0.884 0.859 0.809
OFA 0.909 0.859 0.901 0.793

DLG–IDS 0.980 0.965 0.938 0.906

The results showed that as the network size grew, DLG–IDS showed almost no degra-
dation in detection performance, with the detection latency increasing slightly from 51 ms
to 56 ms. The DLG–IDS method significantly outperforms all other methods across all three
datasets and all evaluation metrics. Its accuracy consistently exceeds 0.976, and its F1–score
remains above 0.906, demonstrating exceptional robustness and effectiveness in intrusion
detection regardless of network scale. Unlike DLG–IDS, which shows minimal fluctuation
in metrics, other methods, especially RF and OFA, exhibit more significant performance
degradation as the number of nodes increases. Although GCN performs worse than OFA
in terms of detection performance, its metrics remain relatively stable in the experiments on
extended datasets. OFA achieves good accuracy and Recall especially in smaller networks,
but suffers from lower Precision, indicating a higher rate of false positives. This trade–off
results in a lower F1–score than GCN in most cases. This, to some extent, verifies the role
of graph neural networks in capturing changes in network structures.

In addition to the magnitude of metric fluctuations, there is also a significant perfor-
mance gap in absolute values between DLG–IDS and other methods. For example, in the
12–node network, DLG–IDS’s F1–score is 12.8% higher than the next best. Its accuracy is at
least 5.4% higher than alternatives. DLG–IDS achieves the best balance between Precision
and Recall. Its Precision and Recall values are consistently high and closely aligned. In
contrast, other methods exhibit larger disparities, indicating DLG–IDS minimizes both
false positives and false negatives more effectively. This underscores DLG–IDS’s significant
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advancement over traditional ML (RF), graph–based learning (GCN), and other advanced
techniques (OFA).

5.3. Case Study Analysis

In this section, we use the MitM and DDoS attacks from the SBFF dataset as case studies
to demonstrate the specific operational workflow of DLG–IDS for intrusion detection.

Figure 12a and Figure 12b, respectively, show the original traffic pcap and log files of
the MitM attack. In the pcap slice, the host first completes the resolution of IP and MAC
addresses via ARP, and then uses Modbus TCP default port 502 to transmit data, which
reflects the network communication characteristics in industrial scenarios. However, it is
difficult to distinguish between normal communication and attack traffic based solely on
the preliminary analysis of traffic files. The log file records the step–by–step operations of
the communication process in a structured and semantic format, showing obvious signs of
ARP spoofing. The attacker (192.168.0.41) manipulates ARP responses to associate its own
MAC address with the IP addresses of critical assets such as PLC1 (192.168.0.11) and HMI1
(192.168.0.21), which enables the attacker to intercept and tamper with subsequent TCP
and Modbus communications. For example, entries such as “ARP PLC1/192.168.0.11/arp–
cache” and “Modbus PLC1/192.168.0.11/reg–0x0001” reflect the execution of malicious
operations, including register tampering and abnormal value injection. The log also
indicates that a threshold alert is triggered when the register value exceeds the expected
range.

(a)

(b)

(c)

Figure 12. (a) Pcap slice of the MitM attack. (b) Log slice of the MitM attack. (c) LLM–generated
prediction and explanation for the MitM attack.

Most notably, Figure 12c demonstrates the ability of LLM to automatically synthesize
information from high–level logs and generate coherent, accurate natural language expla-
nations. Predictions indicate that this network flow is abnormal traffic with a confidence
level of 0.98. The explanation further states that the attacker hijacked the communication
between the PLC and HMI in the industrial control system through ARP spoofing, and used
ICS–Tool/1.0 to tamper with Modbus registers and HMI response data —causing the PLC
register values to exceed the normal range and trigger an alert. Beyond identifying the
attack type and source, LLM can also correlate technical evidence across different levels.
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This demonstrates the potential role of LLM as an explanation layer in intrusion detection
systems, converting multimodal security data into actionable insights for analysts.

Similarly, Figure 13 shows another type of attack, DDoS, including its traffic slice
log slice, as well as the predictions and explanations generated by LLM. The pcap file
shows that multiple source hosts are continuously sending requests to Modbus default
port 502 of the target host (192.168.0.11), with the function code being 3 (Read Holding
Registers). While the LLM predicts with a high confidence level of 0.99 that this is a
DDoS attack targeting the ICS. The explanation indicates that IP addresses from multiple
network segments are marked as attackers, which launched 220 requests within 60 s via
“DDoSAgent/1.0” (attack mode). Firstly, an “Excessive Requests” alert was triggered due
to the request rate (1200 requests per second), and then a “Service Unavailable” alert was
triggered due to the response delay (4500 ms), completely disrupting the normal operation
of the PLC. These behaviors —including distributed collaborative requests via DDoS tools,
explicit attacker labeling, and PLC service failures —violate ICS operation norms and align
with the typical characteristics of DDoS attacks.

Together, these results highlight the value of integrating heterogeneous data sources
—network traffic, system logs, and semantic interpretatio —for robust and explainable
attack diagnosis. Such an approach can significantly enhance detection transparency and
reduce response time in operational ICS environments.

Figure 14 shows the graph construction visualization results of two types of attack
traffic in the proposed DLG–IDS framework. Figure 14a corresponds to the DDoS attack,
presenting a topology where multiple source nodes centrally initiate connections to a sin-
gle target nod —this reflects the core characteristic of DDoS attacks, in which multiple
attack sources collaboratively send massive requests to the target to deplete its resources.
Figure 14b corresponds to the MitM attack, presenting a topology where a single interme-
diate node intervenes in the communication links between multiple nodes —this reflects
the typical pattern of MitM attacks, in which the attacker disguises itself as an intermediate
hub to intercept or tamper with data between the two communicating parties. The graph
structure clearly demonstrates the characteristics of different attack modes. In actual opera-
tion and maintenance processes, attacker nodes are marked in red in the graph structure,
and the edges used to transmit attack communications are also assigned higher weights
and different colors to distinguish them from normal communications. These visualizations
help operation and maintenance personnel locate attacks faster and more accurately.

In addition, Figure 15 also presents the anomaly score traffic time graphs for the
two types of attacks, whose function is to conduct real–time monitoring of anomalies in
industrial network traffic and quantify the level of attack threats through anomaly scores
and the number of Modbus requests. The blue line quantifies the anomaly score reflecting
the deviation of traffic from the normal state, the light blue bars represent the number of
Modbus requests, and the red dashed line denotes the anomaly threshold (1.0). When an
attack event causes anomalies in the volume of Modbus requests, the anomaly score will
exceed the threshold, and alerts will be marked with red dots. Clicking on the data points
of the line in the graph displays the specific information of the event; this information is
associated with the predictions and explanations generated by LLMs. This helps security
personnel quickly identify attacks, analyze the damage logic of attacks on industrial control
devices, and support timely security responses and fault handling.
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(a)
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Figure 13. (a) Pcap slice of the DDoS attack. (b) Log slice of the DDoS attack. (c) LLM–generated
prediction and explanation for the DDoS attack.
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(a)

(b)

Figure 14. (a) The graph structure of DDoS attacks. (b) The graph structure of MitM attacks. 1
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(a)

(b)

Figure 15. (a) The anomaly score time graph of DDoS attacks. (b) The anomaly score time graph of
MitM attacks.

6. Conclusions and Further Work
This work presents DLG–IDS, a novel intrusion detection framework that synergizes

dynamic graph modeling, LLM–based semantic enhancement, and lightweight STGNN de-
sign to overcome the fragmentation in traditional ICS security approaches. By constructing
a unified dynamic graph that integrates real–time communication patterns with control de-

1 Red nodes represent attacker nodes, blue nodes represent compromised nodes, green nodes represent interme-
diate nodes, and edge thickness corresponds to the attack frequency.
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pendencies, the framework effectively captures spatiotemporal dynamics while leveraging
LLMs to generate contextual semantic embeddings aligned with traffic attributes through
cross–modal attention —significantly enhancing detection of covert attacks such as param-
eter tampering within compliant protocols. Furthermore, the introduction of sparse graph
attention and local window Transformers reduce computational complexity from quadratic
to linear without compromising accuracy, addressing the critical conflict between resource
constraints and real–time requirements in industrial edge devices. Rigorous evaluations
confirm these advancements: DLG–IDS achieves a 41.3% higher F1–score and 82.4% lower
false positives versus base models on the SBFF dataset, alongside a 53.2% reduction in
latency, while scalability experiments demonstrate consistent performance as network size
expands. These results collectively position DLG–IDS as a pragmatic, high–performance
solution for modern ICS environments.

However, we acknowledge that the integration of large–scale LLMs introduces non–
negligible computational overhead, which may challenge deployment in resource–limited
ICS edge devices. To mitigate this, future work will explore model compression techniques
such as pruning and knowledge distillation to reduce LLM size while preserving semantic
reasoning capabilities. Additionally, the edge–cloud collaborative inference strategy is also
a feasible approach, where lightweight models run locally on edge devices for real–time
detection, while complex semantic parsing is offloaded to cloud–based LLMs only when
necessary. Such a hybrid approach could balance latency and accuracy more effectively in
mission–critical ICS operations.

It should be noted that, given the existence of mature locally deployed large language
model platforms, in the current implementation, the LLM semantic enhancement module
operates by calling the platform’s basic APIs rather than redeploying complete large models.
This choice reduces a portion of the workload but also introduces reliance on network
connectivity and potential API latency. Regarding the trade–off between semantic richness
and latency observed in ablation studies, we have also noticed that while LLM–enhanced
features improve detection accuracy, they do introduce additional processing time. In real–
world industrial control system setups, millisecond–level responsiveness is crucial, and this
trade–off must be carefully managed. Future work will include more detailed analysis of
latency thresholds for different industrial scenarios, such as safety–critical systems and
monitoring–only systems, and exploration of adaptive semantic enhancement —enabling
LLM features only for high–risk or ambiguous traffic patterns to minimize average latency
without compromising security.

While DLG–IDS exhibits strong performance in evaluated scenarios, its reliance on
LLMs for semantic parsing necessitates domain–specific fine–tuning to handle propri-
etary or non–standard industrial protocols, which currently limits broader applicability.
Additionally, validation has primarily focused on water treatment systems, warranting
further investigation into generalizability across diverse industrial domains such as power
grids or manufacturing. Future efforts will explore adaptive LLM prompting strategies to
mitigate protocol heterogeneity and investigate federated learning paradigms for privacy–
preserving cross–organizational deployment. Further optimization via hardware–aware
model compression techniques, such as quantization for ultra–low–resource edge devices,
also represents a promising direction to enhance real–time responsiveness.
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