Lightweight Deep Learning for Real-Time Cotton Monitoring: UAV-Based Defoliation and Boll-Opening Rate Assessment
Abstract
1. Introduction
- 1.
- Dataset—Construction of a UAV-based RGB dataset for cotton defoliation and boll-opening rate assessment, spanning the complete harvest cycle and incorporating expert-verified annotations.
- 2.
- Model—Design of RTCMNet, a lightweight CNN enhanced with MSCA modules that balance recognition accuracy and computational efficiency.
- 3.
- Performance—Extensive experiments demonstrate that RTCMNet exceeds the accuracy of DenseNet121 while requiring only 0.35 M parameters and achieving an inference time of 33 ms on mobile hardware.
- 4.
- Application—Field deployment and validation confirm the model’s practical utility in generating rapid, spatially explicit maturity maps to guide precision harvesting decisions.
2. Methods
2.1. RTCMNet Architecture
2.2. Feature Extraction
2.3. Multi-Scale Convolutional Attention
2.4. Classifier Design
3. Materials
3.1. Research Area
3.2. Dataset Annotation
3.3. Data Preprocessing
4. Result
4.1. Evaluation Metrics
4.2. Comparison Experiments
4.2.1. Results of Boll-Opening Rate Classification
4.2.2. Defoliation Rate Classification Results
4.3. Ablation Experiment
5. Discussion
5.1. Interpretability Analysis
5.2. Field Experiment Validation
5.3. Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jans, Y.; von Bloh, W.; Schaphoff, S.; Müller, C. Global cotton production under climate change—Implications for yield and water consumption. Hydrol. Earth Syst. Sci. 2021, 25, 2027–2044. [Google Scholar] [CrossRef]
- Feng, L.; Chi, B.; Dong, H. Cotton cultivation technology with Chinese characteristics has driven the 70-year development of cotton production in China. J. Integr. Agric. 2022, 21, 597–609. [Google Scholar] [CrossRef]
- Gwathmey, C.O.; Bange, M.P.; Brodrick, R. Cotton crop maturity: A compendium of measures and predictors. Field Crops Res. 2016, 191, 41–53. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Zhang, N.; Liang, Y.; Gong, Z.; Wang, J.; Ditta, A.; Sang, Z.; Li, X.; Zheng, J. The correlation of machine-picked cotton defoliant in different Gossypium hirsutum Varieties. Agronomy 2023, 13, 2151. [Google Scholar] [CrossRef]
- Wu, H.; Liu, K.; Han, C. Effects of 14% Thiobenzene-Dioxalon on Defoliation Ripening, Yield and Quality of Cotton. Crops 2023, 39, 164–169. [Google Scholar]
- Bange, M.P.; Long, R.L.; Constable, G.A.; Gordon, S.G. Minimizing immature fiber and neps in upland cotton. Agron. J. 2010, 102, 781–789. [Google Scholar] [CrossRef]
- NY/T3084-2017; Code of Practice for Machine Harvested Cotton in Northwest Inland Cotton Regin. Agricultural Industry Standard of the People’s Republic of China: Beijing, China, 2017.
- GB/T45102-2024; Harvesting Technical Requirements for Machine-Harvested Cotton. All China Federation of Supply and Marketing Cooperatives: Beijing, China, 2024.
- Tan, J.; Ding, J.; Wang, Z.; Han, L.; Wang, X.; Li, Y.; Zhang, Z.; Meng, S.; Cai, W.; Hong, Y. Estimating soil salinity in mulched cotton fields using UAV-based hyperspectral remote sensing and a Seagull Optimization Algorithm-Enhanced Random Forest Model. Comput. Electron. Agric. 2024, 221, 109017. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, X.; Huang, C.; Hou, T.; Lv, X.; Zhang, Z. Monitoring defoliation rate and boll-opening rate of machine-harvested cotton based on UAV RGB images. Eur. J. Agron. 2023, 151, 126976. [Google Scholar] [CrossRef]
- Ren, Y.; Meng, Y.; Huang, W.; Ye, H.; Han, Y.; Kong, W.; Zhou, X.; Cui, B.; Xing, N.; Guo, A.; et al. Novel vegetation indices for cotton boll opening status estimation using sentinel-2 data. Remote Sens. 2020, 12, 1712. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, C.; Wang, Y.; Li, K.; Yu, K.; Geng, J.; Li, Q.; Yang, J.; Zhang, J.; Zhang, M.; et al. Monitoring of cotton boll opening rate based on UAV multispectral data. Remote Sens. 2023, 16, 132. [Google Scholar] [CrossRef]
- Jia, X.; Kuo, B.C.; Crawford, M.M. Feature mining for hyperspectral image classification. Proc. IEEE 2013, 101, 676–697. [Google Scholar] [CrossRef]
- Khan, A.T.; Jensen, S.M. LEAF-Net: A unified framework for leaf extraction and analysis in multi-crop phenotyping using YOLOv11. Agriculture 2025, 15, 196. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.W.; Dai, Y.Q.; Cui, K.; Wang, H.; Chee, P.W.; Wang, R.F. Resource-Efficient Cotton Network: A Lightweight Deep Learning Framework for Cotton Disease and Pest Classification. Plants 2025, 14, 2082. [Google Scholar] [CrossRef] [PubMed]
- Paul, N.; Sunil, G.; Horvath, D.; Sun, X. Deep learning for plant stress detection: A comprehensive review of technologies, challenges, and future directions. Comput. Electron. Agric. 2025, 229, 109734. [Google Scholar] [CrossRef]
- Meghraoui, K.; Sebari, I.; Pilz, J.; Ait El Kadi, K.; Bensiali, S. Applied deep learning-based crop yield prediction: A systematic analysis of current developments and potential challenges. Technologies 2024, 12, 43. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, Y.; Zhang, B.; Fang, L.; Huang, D.; Qi, L. Learning attention in the frequency domain for flexible real photograph denoising. IEEE Trans. Image Process. 2024, 33, 3707–3721. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Graham, B.; El-Nouby, A.; Touvron, H.; Stock, P.; Joulin, A.; Jégou, H.; Douze, M. Levit: A vision transformer in convnet’s clothing for faster inference. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 12259–12269. [Google Scholar]
- Abdalla, A.; Wheeler, T.A.; Dever, J.; Lin, Z.; Arce, J.; Guo, W. Assessing fusarium oxysporum disease severity in cotton using unmanned aerial system images and a hybrid domain adaptation deep learning time series model. Biosyst. Eng. 2024, 237, 220–231. [Google Scholar] [CrossRef]
- Arun, R.A.; Umamaheswari, S. Effective multi-crop disease detection using pruned complete concatenated deep learning model. Expert Syst. Appl. 2023, 213, 118905. [Google Scholar] [CrossRef]
- Albattah, W.; Javed, A.; Nawaz, M.; Masood, M.; Albahli, S. Artificial intelligence-based drone system for multiclass plant disease detection using an improved efficient convolutional neural network. Front. Plant Sci. 2022, 13, 808380. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Pan, P.; Shao, M.; He, P.; Hu, L.; Zhao, S.; Huang, L.; Zhou, G.; Zhang, J. Lightweight cotton diseases real-time detection model for resource-constrained devices in natural environments. Front. Plant Sci. 2024, 15, 1383863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, L. Bud-YOLO: A Real-Time Accurate Detection Method of Cotton Top Buds in Cotton Fields. Agriculture 2024, 14, 1651. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Xu, X.; Liu, L.; Yue, J.; Ding, R.; Lu, Y.; Liu, J.; Qiao, H. GVC-YOLO: A Lightweight Real-Time Detection Method for Cotton Aphid-Damaged Leaves Based on Edge Computing. Remote Sens. 2024, 16, 3046. [Google Scholar] [CrossRef]
- Kanade, A.K.; Potdar, M.P.; Kumar, A.; Balol, G.; Shivashankar, K. Weed detection in cotton farming by YOLOv5 and YOLOv8 object detectors. Eur. J. Agron. 2025, 168, 127617. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, D.; Yu, C.; Chu, X.; Sang, N.; Gao, C. Sctnet: Single-branch cnn with transformer semantic information for real-time segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 6378–6386. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and< 0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
Parameter Name | Parameter Value | Description |
---|---|---|
Ground Resolution | 1 cm/pixel | Manually specified resolution |
Flight Altitude | 27.3 m | Calculated automatically based on ground resolution |
Forward Overlap | 60% | Empirical setting for flat terrain |
Side Overlap | 70% | Empirical setting for flat terrain |
Flight Speed | 2.7 m/s | To obtain clearer images |
Backbone | Accuracy | F1 | Precision | Recall | Params (M) | Macs (G) | Inference Time (ms) |
---|---|---|---|---|---|---|---|
InceptionV3 [32] | 0.79 ± 0.04 | 0.78 ± 0.04 | 0.81 ± 0.04 | 0.79 ± 0.05 | 22.77 | 2.64 | 385 |
ResNet18 [33] | 0.89 ± 0.04 | 0.88 ± 0.03 | 0.91 ± 0.04 | 0.87 ± 0.04 | 10.66 | 1.69 | 629 |
Densenet121 [34] | 0.94 ± 0.01 | 0.94 ± 0.01 | 0.95 ± 0.01 | 0.94 ± 0.01 | 6.63 | 2.63 | 1084 |
ViT_S [19] | 0.77 ± 0.04 | 0.77 ± 0.05 | 0.79 ± 0.04 | 0.77 ± 0.05 | 20.67 | 0.07 | 603 |
LeViT128 [20] | 0.86 ± 0.05 | 0.86 ± 0.05 | 0.87 ± 0.05 | 0.86 ± 0.05 | 6.68 | 0.54 | 49 |
EfficientNet [35] | 0.88 ± 0.04 | 0.87 ± 0.04 | 0.90 ± 0.04 | 0.89 ± 0.05 | 3.82 | 0.36 | 114 |
MobileNetV2 [24] | 0.74 ± 0.01 | 0.74 ± 0.02 | 0.74 ± 0.01 | 0.70 ± 0.01 | 2.12 | 0.28 | 62 |
MobileNetV3S [36] | 0.13 ± 0.00 | 0.04 ± 0.01 | 0.13 ± 0.01 | 0.06 ± 0.01 | 0.88 | 0.05 | 22 |
SqueezeNet [37] | 0.74 ± 0.07 | 0.73 ± 0.06 | 0.76 ± 0.07 | 0.73 ± 0.07 | 0.69 | 0.25 | 40 |
ShuffleNetV2 [25] | 0.92 ± 0.02 | 0.92 ± 0.02 | 0.93 ± 0.02 | 0.92 ± 0.02 | 5.10 | 0.54 | 10 |
SCTNet [30] | 0.86 ± 0.13 | 0.89 ± 0.10 | 0.86 ± 0.13 | 0.86 ± 0.13 | 0.75 | 0.37 | 65 |
RTCMNet (Our) | 0.93 ± 0.02 | 0.93 ± 0.02 | 0.93 ± 0.02 | 0.93 ± 0.02 | 0.35 | 0.10 | 32 |
Name | Layer Nums | Attn | head_num | Accuracy | Inference Time (ms) | Macs (G) |
---|---|---|---|---|---|---|
SCTNet_b0 | 1,1,1 | CF | 8 | 0.89 | 22 | 0.37 |
SCTNet_b1 | 1,2,2 | CF | 16 | 0.90 | 205 | 6.75 |
RTCMNet_b0 | 1,1,1 | MSCA | 8 | 0.91 | 29 | 0.70 |
RTCMNet_b1 | 1,2,2 | MSCA | 8 | 0.94 | 31 | 0.90 |
RTCMNet_b2 | 1,2,2 | MSCA | 16 | 0.92 | 113 | 4.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, M.; Chen, X.; Tian, X.; Wen, H.; Zhao, Y.; Liu, H.; Liu, W.; Zheng, Y. Lightweight Deep Learning for Real-Time Cotton Monitoring: UAV-Based Defoliation and Boll-Opening Rate Assessment. Agriculture 2025, 15, 2095. https://doi.org/10.3390/agriculture15192095
Xia M, Chen X, Tian X, Wen H, Zhao Y, Liu H, Liu W, Zheng Y. Lightweight Deep Learning for Real-Time Cotton Monitoring: UAV-Based Defoliation and Boll-Opening Rate Assessment. Agriculture. 2025; 15(19):2095. https://doi.org/10.3390/agriculture15192095
Chicago/Turabian StyleXia, Minghui, Xuegeng Chen, Xinliang Tian, Haojun Wen, Yan Zhao, Hongxia Liu, Wei Liu, and Yuchen Zheng. 2025. "Lightweight Deep Learning for Real-Time Cotton Monitoring: UAV-Based Defoliation and Boll-Opening Rate Assessment" Agriculture 15, no. 19: 2095. https://doi.org/10.3390/agriculture15192095
APA StyleXia, M., Chen, X., Tian, X., Wen, H., Zhao, Y., Liu, H., Liu, W., & Zheng, Y. (2025). Lightweight Deep Learning for Real-Time Cotton Monitoring: UAV-Based Defoliation and Boll-Opening Rate Assessment. Agriculture, 15(19), 2095. https://doi.org/10.3390/agriculture15192095