Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = raw silk industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 675 KiB  
Article
The Energy Potential of White Mulberry Waste Biomass
by Dominika Sieracka, Jakub Frankowski, Agnieszka Łacka, Stanisław Wacławek and Wojciech Czekała
Energies 2025, 18(13), 3541; https://doi.org/10.3390/en18133541 - 4 Jul 2025
Viewed by 352
Abstract
White mulberry (Morus alba L.) is a tree growing up to 15 m in height. It is a plant whose cultivation is historically associated with silk production. Mulberry leaves are the only food source of the mulberry silkworm caterpillars (Bombyx mori [...] Read more.
White mulberry (Morus alba L.) is a tree growing up to 15 m in height. It is a plant whose cultivation is historically associated with silk production. Mulberry leaves are the only food source of the mulberry silkworm caterpillars (Bombyx mori L.). The cultivation of this tree has recently gained renewed importance. Due to the content of numerous bioactive substances, mulberry is a valuable raw material for the food, pharmaceutical and herbal industries. This article presents the results of tests on pellets from 1-, 3- and 5-year-old branches, which are waste biomass remaining after pruning mulberry shrubs cultivated to obtain leaves to feed silkworms. Additionally, analyses of pellets from mulberry leaves were also carried out. For the specified mulberry biomass yield, analyses of chemical composition of mulberry biomass (branches and leaves) were carried out, and energy properties (heat of combustion and calorific value) and energy potential were calculated. The heat of combustion of pellet from mulberry branches was, on average, 19,266 MJ∙Mg−1, and the calorific value was 17,726 MJ∙Mg−1. The energy potential, on the other hand, was, on average, 159 GJ∙ha−1 and 44 MWh∙ha−1. The obtained results indicate the possibility of the effective use of mulberry branches after the annual pruning of bushes in plantations for energy purposes. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

16 pages, 10650 KiB  
Article
Utilization of Pineapple Fruit Waste in Greener Alternative Agents for Thai Silk Pretreatment and Acid Dyeing Wastewater Treatment
by Jantip Setthayanond, Patintida Chuenjai, Piyaporn Kampeerapappun and Porntip Tooptompong
Materials 2025, 18(3), 674; https://doi.org/10.3390/ma18030674 - 3 Feb 2025
Viewed by 1367
Abstract
Pineapple, extensively cultivated in tropical and subtropical regions, contains bromelain, a protein-digesting enzyme that is highly valued in the food and beverage industries. Pineapple residues from food processing retain these enzymes and can be repurposed for silk processing. This research utilized Smooth Cayenne [...] Read more.
Pineapple, extensively cultivated in tropical and subtropical regions, contains bromelain, a protein-digesting enzyme that is highly valued in the food and beverage industries. Pineapple residues from food processing retain these enzymes and can be repurposed for silk processing. This research utilized Smooth Cayenne pineapple juice as a degumming agent and its pulp as an adsorbent for dyeing effluent treatment. Pineapple juice, containing bromelain with a protease activity of 16.40 µg/mL·min, effectively removed 22% of sericin from raw silk using a liquid ratio of 30:1 at pH 7 and 60 °C for 60 min. Unlike alkaline degumming, which weakened silk fibers (maximum load 6.18 ± 1.56 N), pineapple juice-treated silk retained higher strength (maximum load 7.80 ± 1.32 N), offering a gentler alternative. The remaining pineapple pulp, after juice extraction, was processed into a porous adsorbent with a surface area of 3.63 m2/g and a pore size of 6.15 nm. This material absorbed acid dyes effectively at pH 5, the normal pH used in the acid dyeing of silk. Valorizing pineapple residues reduces chemical use, energy consumption, and environmental impact while lowering production costs and enhancing local resources. Full article
Show Figures

Figure 1

15 pages, 2606 KiB  
Article
SVX Spider Silk-Inspired Biopolymer and Enhanced Cosmetics Efficacy
by Konstantin Press, Noa Hadar, Ella Sklan, Alon Meir, Gregory Idelson, Tanya Karakouz, Miriam Gubelbank, Ali Abu Znaid and Shlomzion Shen
Cosmetics 2024, 11(5), 166; https://doi.org/10.3390/cosmetics11050166 - 27 Sep 2024
Viewed by 2583
Abstract
The cosmetics industry is undergoing a shift towards sustainability and efficacy, driven by consumer demand for eco-friendly and safe products. This paper introduces SVX, a spider silk-inspired raw material intended to transform cosmetic formulations. Produced through fermentation, SVX is a biopolymer composed of [...] Read more.
The cosmetics industry is undergoing a shift towards sustainability and efficacy, driven by consumer demand for eco-friendly and safe products. This paper introduces SVX, a spider silk-inspired raw material intended to transform cosmetic formulations. Produced through fermentation, SVX is a biopolymer composed of self-assembled proteins characterized by a porous structure for delivering active ingredients safely to the skin. The study utilized in vitro and ex vivo methods to assess SVX’s ability to protect against oxidative stress, enhance skin hydration, and support ingredient delivery. Safety assays, including the HET-CAM, patch test, and HRIPT, demonstrated that SVX is non-irritating and safe for topical application. Additionally, FTIR analysis confirmed SVX’s capacity for sustained release of active ingredients, such as hyaluronic acid, over an 8 h period. Results showed that SVX significantly improved skin barrier protection and exhibited superior antioxidant properties compared to control formulations. Its biocompatibility, along with a vegan and biodegradable composition, aligns with the principles of sustainability, with over 60% biodegradability achieved within 10 days. Furthermore, SVX displayed antioxidant efficacy approximately 130 times greater than L-ascorbic acid, based on DPPH assay results. These findings suggest that SVX offers a versatile and sustainable solution for skincare formulations, combining environmental responsibility with benefits for skin health and performance. Full article
Show Figures

Figure 1

6 pages, 3733 KiB  
Proceeding Paper
Fabrication of Electronic Silk Fabrics via RGO Adhesion Incorporating Oxygen Plasma Treatment
by Bornali Sarma, K. Vinisha Rani and D. N. Gupta
Eng. Proc. 2023, 52(1), 5; https://doi.org/10.3390/engproc2023052005 - 11 Jan 2024
Viewed by 863
Abstract
Plasma Technology has proven to be the most effective eco-friendly method for the textile industry in improving surface adhesion. Two different silk fabrics, raw and degummed silk are treated by low-pressure glow discharge oxygen plasma to improve hydrophilic properties for better adhesion and [...] Read more.
Plasma Technology has proven to be the most effective eco-friendly method for the textile industry in improving surface adhesion. Two different silk fabrics, raw and degummed silk are treated by low-pressure glow discharge oxygen plasma to improve hydrophilic properties for better adhesion and coating process. Oxygen plasma can produce etching and formation of polar functional groups on the surface of the fabrics. The plasma conditions like voltage and working pressure are maintained constant with different exposure times. The plasma-exposed fabrics are characterized by SEM, XPS and adsorption tests. SEM reveals that the changes in the fabric surface are prominent for higher treatment time. According to the results of XPS, the oxygen-containing functional groups are increased after plasma treatment. The GO adsorption test indicates the enhancement of GO on the plasma-treated fabrics than untreated silk. The GO is prepared by the Modified Hummers method. The GO is coated on the plasma-treated silk fabrics by a dip coating method. The GO-coated silk fabrics are converted into RGO fabric by ascorbic acid as a reducing agent. Electrical conductivity measurement of the fabricated silk reveals that adequate current flows through it to glow an LED bulb. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, E-Textiles 2023)
Show Figures

Figure 1

23 pages, 5025 KiB  
Review
Systematic Insights into a Textile Industry: Reviewing Life Cycle Assessment and Eco-Design
by Ana Fonseca, Edgar Ramalho, Ana Gouveia, Rita Henriques, Filipa Figueiredo and João Nunes
Sustainability 2023, 15(21), 15267; https://doi.org/10.3390/su152115267 - 25 Oct 2023
Cited by 13 | Viewed by 11858
Abstract
The worldwide textile sector is one of the most polluting and consuming natural resource value chains. In recent years, trends have demonstrated a linear model driven by fast fashion, increasing the sustainability problems of this sector. The European market and industry are changing [...] Read more.
The worldwide textile sector is one of the most polluting and consuming natural resource value chains. In recent years, trends have demonstrated a linear model driven by fast fashion, increasing the sustainability problems of this sector. The European market and industry are changing the paradigm and promoting some actions towards a sustainable value chain. This paper applies a systematic approach to reviewing scientific research, where Life Cycle Assessment (LCA) is implemented as a tool to understand the impacts considering a holistic life cycle framework, from raw materials to the end-of-life of textile products. The methodology and criteria applied resulted in 73 articles used for qualitative analysis, of which 39 met the criteria for quantitative analysis. The quantitative results reported in the studies were organized and presented by phase of the garment production life cycle (production of fiber, yarn, fabric, manufacturing, and recovery/end of life). From a cradle-to-gate perspective, wool yarn production, by worsted processing, was the material with the highest values (95.70 kg CO2 eq/kg) for climate change/global warming potential, closely followed by silk fabric (80.90 kg CO2 eq/kg). Extending to a cradle-to-grave boundary, polyester had the highest values for the previously mentioned category, reaching a potential release of 40.28 kg CO2 eq per kilogram of polyester textile. When data was available, the user phase predominantly contributed to climate change/global warming potential. Additionally, there were significant differences in maximum and minimum values for some of the materials, which were related to methodological considerations, database inventory, and frequency of use and care considered by the different authors. The study also addresses the considerations and limitations of diverse LCA impact assessment tools. Full article
Show Figures

Figure 1

18 pages, 3933 KiB  
Article
Actinomycins from Soil-Inhabiting Streptomyces as Sources of Antibacterial Pigments for Silk Dyeing
by Tananya Nuanjohn, Nungruthai Suphrom, Nareeluk Nakaew, Wasu Pathom-Aree, Nattha Pensupa, Apiradee Siangsuepchart, Bernard Dell and Juangjun Jumpathong
Molecules 2023, 28(16), 5949; https://doi.org/10.3390/molecules28165949 - 8 Aug 2023
Cited by 5 | Viewed by 3622
Abstract
Actinobacteria produce a broad spectrum of bioactive substances that are used in the pharmaceutical, agricultural, and biotechnology industries. This study investigates the production of bioactive substances in Streptomyces, isolated from soil under five tropical plants, focusing on their potential as natural antibacterial [...] Read more.
Actinobacteria produce a broad spectrum of bioactive substances that are used in the pharmaceutical, agricultural, and biotechnology industries. This study investigates the production of bioactive substances in Streptomyces, isolated from soil under five tropical plants, focusing on their potential as natural antibacterial dyes for silk fabrics. Out of 194 isolates, 44 produced pigments on broken rice as a solid substrate culture. Eight antibacterial pigmented isolates from under Magnolia baillonii (TBRC 15924, TBRC 15927, TBRC 15931), Magnolia rajaniana (TBRC 15925, TBRC 15926, TBRC 15928, TBRC 15930), and Cinnamomum parthenoxylon (TBRC 15929) were studied in more detail. TBRC 15927 was the only isolate where all the crude extracts inhibited the growth of the test organisms, Staphylococcus epidermidis TISTR 518 and S. aureus DMST 4745. The bioactive compounds present in TBRC 15927 were identified through LC-MS/MS analysis as belonging to the actinomycin group, actinomycin D (or X1), X2, and X. Also, the ethyl acetate crude extract exhibited non-toxicity at an IC50 value of 0.029 ± 0.008 µg/mL on the mouse fibroblast L-929 assay. From the 16S rRNA gene sequence analysis, TBRC 15927 had 100% identity with Streptomyces gramineus JR-43T. Raw silk dyed with the positive antimicrobial TBRC 15927 extract (8.35 mg/mL) had significant (>99.99%) antibacterial properties. Streptomyces gramineus TBRC 15927 is the first actinomycin-producing strain reported to grow on broken rice and shows promise for antibacterial silk dyeing. Full article
(This article belongs to the Section Colorants)
Show Figures

Figure 1

13 pages, 1353 KiB  
Article
Silkworm Pupae Coupled with Glucose Control pH Mediates GABA Hyperproduction by Lactobacillus hilgardii
by Luchan Gong, Tingting Li, Shuyi Lv, Xiaozhou Zou, Jun Wang and Bowen Wang
Fermentation 2023, 9(7), 691; https://doi.org/10.3390/fermentation9070691 - 24 Jul 2023
Cited by 2 | Viewed by 2354
Abstract
γ-Aminobutyric acid (GABA) is a ubiquitous nonprotein amino acid that has multiple physiological functions and has received significant attention in the pharmaceutical and food industries. Although there are many GABA-producing bacteria, the high cost of strain cultivation limits its food additive and pharmaceutical [...] Read more.
γ-Aminobutyric acid (GABA) is a ubiquitous nonprotein amino acid that has multiple physiological functions and has received significant attention in the pharmaceutical and food industries. Although there are many GABA-producing bacteria, the high cost of strain cultivation limits its food additive and pharmaceutical raw material application. In our study, Lactobacillus hilgardii GZ2, a novel GABA-producing strain, was investigated. We attempted to replace nitrogen sources with silkworm pupae, the waste resource of the silk reeling industry, in GYP complex medium. The GABA titer reached 33.2 g/L by using 10 g/L silkworm pupae meal instead of tryptone. Meanwhile, the pH of fermentation was automatically controlled by adjusting the addition of glucose and monosodium glutamate. Finally, the highest GABA yield and productivity were 229.3 g/L and 3.2 g/L/h in L. hilgardii when silkworm pupae meal was replaced with tryptone combined with glucose and monosodium glutamate feeding. By utilizing the waste resource to reduce the cost of the nitrogen source and automatically controlling the pH in L. hilgardii, a hyper titer and productivity of GABA was generated for applications in the food and pharmaceutical industries. Full article
Show Figures

Figure 1

12 pages, 8203 KiB  
Article
4-Hexylresorcinol Treatment before Degumming Increases the β-Sheet Structure of Silk Sericin and BMP-2 Expression in RAW264.7 Cells
by Ji Hae Lee, HaeYong Kweon, Ji-Hyeon Oh, Yei-Jin Kang, Dae-Won Kim, Won-Geun Yang, Weon-Sik Chae and Seong-Gon Kim
Int. J. Mol. Sci. 2023, 24(1), 150; https://doi.org/10.3390/ijms24010150 - 21 Dec 2022
Cited by 7 | Viewed by 1938
Abstract
Silk sericin is a degumming product used by the silk industry. The degumming process can affect the protein structure and molecular weight of silk sericin. The present study examined how pretreatment with 4-hexylresorcinol (4HR) affects the biomedical properties of silk sericin. Before the [...] Read more.
Silk sericin is a degumming product used by the silk industry. The degumming process can affect the protein structure and molecular weight of silk sericin. The present study examined how pretreatment with 4-hexylresorcinol (4HR) affects the biomedical properties of silk sericin. Before the degumming process, silkworm cocoons were treated with 4HR solution. The protein structure of the final degumming product was evaluated by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy. Untreated silk sericin (S) and silk sericin pretreated with 4HR (S+4HR) were added to RAW264.7 cells, and the expression of BMP-2 was determined. The bone-regenerating capacity of S+4HR was evaluated using the critical-sized rat calvarial defect model. Compared with S, S+4HR showed an increase in β-sheet structures. Administration of S+4HR to RAW264.7 cells increased expression of BMP-2, mainly via the TLR-mediated signaling pathway. Bone volume, as measured by micro-computerized tomography, was significantly greater in the S+4HR group than in the S, gelatin alone, and unfilled control groups (p < 0.05 each). Expression of BMP-2 and runx2 in tissue specimens was significantly higher following treatment with S+4HR than with S (p < 0.05). Taken together, these findings show that 4HR pretreatment before the degumming process increased the β-sheet structure of silk sericin, as well as inducing BMP-2 expression and bone regeneration ability. Full article
Show Figures

Figure 1

16 pages, 1664 KiB  
Article
Application of Aqueous Saline Process to Extract Silkworm Pupae Oil (Bombyx mori): Process Optimization and Composition Analysis
by Janjira Tangsanthatkun, Methavee Peanparkdee, Wattinee Katekhong, Thepkunya Harnsilawat, Chin Ping Tan and Utai Klinkesorn
Foods 2022, 11(3), 291; https://doi.org/10.3390/foods11030291 - 21 Jan 2022
Cited by 19 | Viewed by 5720
Abstract
Silkworm pupae, a waste product from the silk production industry, can be an alternative source of edible oil, thus reducing the industry’s waste. In the present work, frozen silkworm pupae were used as raw material to extract oil via an aqueous saline process. [...] Read more.
Silkworm pupae, a waste product from the silk production industry, can be an alternative source of edible oil, thus reducing the industry’s waste. In the present work, frozen silkworm pupae were used as raw material to extract oil via an aqueous saline process. The Box–Behnken design (BBD) and response surface methodology (RSM) were used to optimize the extraction process. The extraction conditions with the highest oil yield and a low peroxide value were obtained when using a saline solution concentration of 1.7% w/v, a ratio of aqueous liquid to silkworm pupae of 3.3 mL/g, and a 119 min stirring time at the stirring speed of 100 rpm. Under these conditions, silkworm oil with a yield of 3.32%, peroxide values of approximately 1.55 mM, and an acid value of 0.67 mg KOH/g oil was obtained. The extracted oil contained omega-3 acids (α-linolenic acid), which constituted around 25% of the total fatty acids, with approximate cholesterol levels of 109 mg/100 g oil. The amounts of β-carotene and α-tocopherol were approximately 785 and 9434 μg/100 g oil, respectively. Overall, the results demonstrated that oil extracted from silkworm pupae has good quality parameters and thus can be used as a new valuable source of edible lipids. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

1 pages, 165 KiB  
Abstract
Application of Sericin-Based Materials in Food Packaging: An Overview
by Su Jin Seo, Kyung-Jik Im, Han-Seung Shin, Gitishree Das and Jayanta Kumar Patra
Biol. Life Sci. Forum 2021, 6(1), 40; https://doi.org/10.3390/Foods2021-10921 - 13 Oct 2021
Cited by 2 | Viewed by 1467
Abstract
Proteins are some of the most commonly used biomaterials in food technology, especially in food packaging, coatings, and additives. They are outstanding candidates for producing innovative food components due to their immense nutritional properties, molecular characteristics, biocompatibility, biodegradability, and safe status. Numerous application [...] Read more.
Proteins are some of the most commonly used biomaterials in food technology, especially in food packaging, coatings, and additives. They are outstanding candidates for producing innovative food components due to their immense nutritional properties, molecular characteristics, biocompatibility, biodegradability, and safe status. Numerous application examples of protein-based films and coatings in food packaging also approve their significant role in food packaging materials. Sericin is a natural silk globular protein, which is usually discarded as a biological waste material after removing the fibroin for making silk products from the silk cocoon. In the current investigation, an attempt was made to extract this usually wasted silk protein from the silk cocoon, purify it, and study its potential applications in the food sector as a food packaging material. The sericin was extracted from the silk cocoon by the degumming method. The protein concentration of the extracted crude sericin sample was estimated by the standard Lowry’s method using the bovine serum albumin as the reference standard. Linearity was obtained (R2 > 0.99), and the protein concentration of the crude sericin was found out to be 3.60 % (w/v). The purification of the crude protein was carried out by dialysis using a cellulose tubing with a molecular weight cutoff of 12 kDa, followed by freeze-drying. The protein concentration of the purified sericin was found out to be 3.47 % (w/v). Following extraction, sericin can be used as the food packaging material. Proteins, especially sericin, which is a byproduct, can provide a low-cost and naturally occurring raw material to be used as green formulation ingredients in the food industry as a food packaging material. Further research is under process to evaluate the antimicrobial and antioxidant potential of the extracted sericin and study its applications, including food packaging materials. Full article
15 pages, 3695 KiB  
Article
Effect of Methyl–β–Cyclodextrin and Trehalose on the Freeze–Drying and Spray–Drying of Sericin for Cosmetic Purposes
by Lorella Giovannelli, Andrea Milanesi, Elena Ugazio, Letizia Fracchia and Lorena Segale
Pharmaceuticals 2021, 14(3), 262; https://doi.org/10.3390/ph14030262 - 15 Mar 2021
Cited by 29 | Viewed by 5528
Abstract
Sericin is a protein extracted from Bombyx mori silk cocoons. Over the last decade, this wastewater product of the textile industry has shown many interesting biological properties. This protein is widely used in the cosmetic and biomedical fields. In this study, sericin has [...] Read more.
Sericin is a protein extracted from Bombyx mori silk cocoons. Over the last decade, this wastewater product of the textile industry has shown many interesting biological properties. This protein is widely used in the cosmetic and biomedical fields. In this study, sericin has been obtained via a High–Temperature High–Pressure degumming process, and was dried using the freeze–drying (fd) and spray–drying (sd) techniques. Proteins tend to collapse during drying, hence, sericin has been dried in the presence of two selected carrier agents: methyl–β–cyclodextrin and trehalose. The obtained powders have been analyzed using thermal investigation, microscopy (optical, SEM), and granulometric and spectroscopic analyses. Moreover, the percentage yield of the spray–drying process has been calculated. Both the agents were able to significantly improve the drying process, without altering the physico–chemical properties of the protein. In particular, the co–spray–drying of sericin with methyl–β–cyclodextrin and trehalose gave good process yields and furnished a powder with low moisture content and handling properties that are better than those of the other studied dried products. These characteristics seem to be appropriate and fruitful for the manufacturing of cosmetic raw materials. Full article
(This article belongs to the Special Issue New Frontiers in Cyclodextrin Technologies)
Show Figures

Graphical abstract

17 pages, 244 KiB  
Article
Population, Resources and Female Labor in the Raw Silk Industry of Nagano in Meiji Japan
by Tim F. Liao
Soc. Sci. 2013, 2(1), 23-39; https://doi.org/10.3390/socsci2010023 - 7 Mar 2013
Cited by 2 | Viewed by 10615
Abstract
Gendered realities in local regions are a prominent issue in today’s global economy. However, the process of globalization in the late-19th century already involved the local Nagano women in an indispensable role in Japan’s raw silk industry. This paper studies the interplay between [...] Read more.
Gendered realities in local regions are a prominent issue in today’s global economy. However, the process of globalization in the late-19th century already involved the local Nagano women in an indispensable role in Japan’s raw silk industry. This paper studies the interplay between population growth and relatively limited resources in Nagano vis-à-vis the demand for female labor during the Meiji era, when Japan became a major raw silk producer. The local/regional constraints in Nagano interacted with economic globalization and gave Nagano its position in the global market. Therefore, we cannot ignore the consequences of local/regional constraints and advantages in global processes on female workers. Population pressure and environmental squeeze are found to have been important forces that integrated the local and regional in the global process of industrialization and trade, and together, they produced social outcomes, such as gender hierarchies in globalization and glocalization processes. Full article
(This article belongs to the Special Issue Advances in the Social Sciences)
Show Figures

Figure 1

Back to TopTop