Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (635)

Search Parameters:
Keywords = rate of passage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 827 KB  
Article
Valorization of Agro-Industrial Waste of Cajanus cajan Shell, Plantain Peels (Musa spp.) and Zea mays Cob Husk on Rumen Degradation Kinetics and Mitigation of Greenhouse Gases Production in Ruminants
by Jorge Quintana-Zamora, Verónica Andrade-Yucailla, Rocio Yagual-De La Cruz, Katherine Contreras-Barros, Marcos Barros-Rodríguez, Carlos Guishca-Cunuhay, Jorge Iraola and Andrés Pech-Cervantes
Ruminants 2026, 6(1), 11; https://doi.org/10.3390/ruminants6010011 - 2 Feb 2026
Abstract
The aim of this research was to evaluate the effect of agro-industrial waste from C. cajan shell, plantain peels (Musa spp.), and Zea mays cob husk on in situ ruminal degradation kinetics and in vitro gas production. Rumen degradation of DM in [...] Read more.
The aim of this research was to evaluate the effect of agro-industrial waste from C. cajan shell, plantain peels (Musa spp.), and Zea mays cob husk on in situ ruminal degradation kinetics and in vitro gas production. Rumen degradation of DM in the soluble fraction (A) was higher (p = 0.0001) in plantain peel (37.5%). The insoluble but potentially degradable fraction (B) was higher (p = 0.0001) in C. Cajan shell (71.7%). Regarding the degradation rate in percentage per hour (c: 0.13%/h), degradation potential (A + B: 86.3%) and effective degradation at the different passage rates (k) (0.02: 79.6%, 0.05: 72.4%, and 0.08: 67.3% k, respectively), it was higher (p < 0.05) in the plantain peels. Rumen NDF degradation was higher (p < 0.05) in plantain peels for all degradation parameters (A + B: 80.8, k: 0.02: 57.1%, 0.05: 44.9%, and 0.08: 37.6%, respectively). Total gas production kinetics (D; 333.3 mLgas/0.5 g degraded DM) and gas production at 24, 48, and 96 h were lower (p = 0.0001) in plantain peels. CH4 production was low (p = 0.0001) in plantain peels at all evaluated times (24 h: 32.7, 48 h: 37.9, and 96 h: 53.5 mL/0.5 g degraded DM). CO2 production was lower (p < 0.05) in C. Cajan and plantain peels at all evaluated times. Under the conditions of this study, it can be concluded that the use of plantain peels (Musa spp.) can be beneficial to animals when incorporated into the diet, as it contains a similar protein content to tropical forages, as well as low fiber content, high ruminal degradation, and secondary compounds that benefit energy maximization by mitigating enteric gas production in ruminants. Full article
Show Figures

Figure 1

15 pages, 1735 KB  
Article
Small Kaplan Turbines Cause Lethal Injuries to Fish Populations During Downstream Passage
by Francisco Javier Sanz-Ronda, Juan Francisco Fuentes-Pérez, Ana García-Vega, Jorge Valbuena-Castro, Juan de María-Arnaiz and Francisco Javier Bravo-Córdoba
Water 2026, 18(2), 275; https://doi.org/10.3390/w18020275 - 21 Jan 2026
Viewed by 128
Abstract
Fish passage through turbines is one of the main environmental impacts of hydropower. Turbine type is a key factor influencing fish survival, and widespread Kaplan turbines are generally considered less dangerous than other turbine types. Nevertheless, while large Kaplan turbines have been extensively [...] Read more.
Fish passage through turbines is one of the main environmental impacts of hydropower. Turbine type is a key factor influencing fish survival, and widespread Kaplan turbines are generally considered less dangerous than other turbine types. Nevertheless, while large Kaplan turbines have been extensively studied, there is limited empirical evidence about the biological impact of small, high-speed Kaplan turbines on fish survival. In this study, we conducted controlled in situ fish experiments at a small and low-head hydropower plant (1 MW; head 8 m) using balloon tags and pressure sensors to quantify real mortality in two horizontal Kaplan turbines operating at full capacity: one small turbine (1.2 m Ø, 500 rpm, and 5 m3/s) and one larger unit (1.55 m Ø, 300 rpm, and 8 m3/s). Fish (95–190 mm) were released into the intake flow and monitored post-passage. Results showed higher mortality in the small turbine, with ~80% in 24 h, many exhibiting severe mechanical injuries such as complete sectioning of the head or spinal cord, with significantly higher mortality in larger fish. In contrast, the larger turbine showed a ~60% mortality rate and fewer traumatic injuries. Our findings highlight the underestimated impact of small, high-rpm Kaplan turbines on fish survival and underscore the need for adaptive turbine operation or structural modifications to minimize ecological damage during critical migration periods. Full article
Show Figures

Figure 1

18 pages, 11774 KB  
Article
Retrieval Augment: Robust Path Planning for Fruit-Picking Robot Based on Real-Time Policy Reconstruction
by Binhao Chen, Shuo Zhang, Zichuan He and Liang Gong
Sustainability 2026, 18(2), 829; https://doi.org/10.3390/su18020829 - 14 Jan 2026
Viewed by 166
Abstract
The working environment of fruit-picking robots is highly complex, involving numerous obstacles such as branches. Sampling-based algorithms like Rapidly Exploring Random Trees (RRTs) are faster but suffer from low success rates and poor path quality. Deep reinforcement learning (DRL) has excelled in high-degree-of-freedom [...] Read more.
The working environment of fruit-picking robots is highly complex, involving numerous obstacles such as branches. Sampling-based algorithms like Rapidly Exploring Random Trees (RRTs) are faster but suffer from low success rates and poor path quality. Deep reinforcement learning (DRL) has excelled in high-degree-of-freedom (DOF) robot path planning, but typically requires substantial computational resources and long training cycles, which limits its applicability in resource-constrained and large-scale agricultural deployments. However, picking robot agents trained by DRL underperform because of the complexity and dynamics of the picking scenes. We propose a real-time policy reconstruction method based on experience retrieval to augment an agent trained by DRL. The key idea is to optimize the agent’s policy during inference rather than retraining, thereby reducing training cost, energy consumption, and data requirements, which are critical factors for sustainable agricultural robotics. We first use Soft Actor–Critic (SAC) to train the agent with simple picking tasks and less episodes. When faced with complex picking tasks, instead of retraining the agent, we reconstruct its policy by retrieving experience from similar tasks and revising action in real time, which is implemented specifically by real-time action evaluation and rejection sampling. Overall, the agent evolves into an augment agent through policy reconstruction, enabling it to perform much better in complex tasks with narrow passages and dense obstacles than the original agent. We test our method both in simulation and in the real world. Results show that the augment agent outperforms the original agent and sampling-based algorithms such as BIT* and AIT* in terms of success rate (+133.3%) and path quality (+60.4%), demonstrating its potential to support reliable, scalable, and sustainable fruit-picking automation. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 3288 KB  
Article
Biological Feasibility of a Novel Island-Type Fishway Inspired by the Tesla Valve
by Mengxue Dong, Bokai Fan, Maosen Xu, Ziheng Tang, Yunqing Gu and Jiegang Mou
Appl. Sci. 2026, 16(2), 744; https://doi.org/10.3390/app16020744 - 11 Jan 2026
Viewed by 206
Abstract
Inspired by the Tesla valve, the island-type fishway is a novel design whose biological performance remains unelucidated. This study integrated hydraulic experiments, CFD modeling, and 3D computer vision to investigate the passage performance and swimming behavior of juvenile silver carp (Hypophthalmichthys molitrix [...] Read more.
Inspired by the Tesla valve, the island-type fishway is a novel design whose biological performance remains unelucidated. This study integrated hydraulic experiments, CFD modeling, and 3D computer vision to investigate the passage performance and swimming behavior of juvenile silver carp (Hypophthalmichthys molitrix). The results confirmed high biological feasibility, with upstream success rates exceeding 70%. The island and arc-baffle configuration create a heterogeneous flow field with an S-shaped main flow and low-velocity zones; each island unit contributes 8.9% to total energy dissipation. Critically, fish utilize a multi-dimensional navigation strategy to avoid high-velocity cores: temporally adopting an intermittent “rest-burst” pattern for energetic recovery; horizontally following an “Ω”-shaped bypass trajectory; and vertically preferring the bottom boundary layer. Passage failure was primarily linked to suboptimal path selection near the high-velocity main flow. These findings demonstrate that fishway effectiveness depends less on bulk hydraulic parameters and more on the spatial connectivity of hydraulic refugia aligning with fish behavioral traits. This study provides a scientific basis for optimizing eco-friendly hydraulic structures. Full article
Show Figures

Figure 1

18 pages, 5591 KB  
Article
Comparative Analysis of Internal Complex Flow and Energy Loss in a Tubular Pump Under Two Rotational Speed Conditions
by Yujing Zhang, Yi Sun, Xu Han, Ran Tao and Ruofu Xiao
Water 2026, 18(2), 188; https://doi.org/10.3390/w18020188 - 10 Jan 2026
Viewed by 245
Abstract
This study focuses on a bulb tubular pump to clarify the flow characteristics and energy loss laws of low-lift tubular pumps under variable speed regulation and addresses deviations from optimal operating conditions in complex scenarios. For two typical rotational speeds, a full-flow passage [...] Read more.
This study focuses on a bulb tubular pump to clarify the flow characteristics and energy loss laws of low-lift tubular pumps under variable speed regulation and addresses deviations from optimal operating conditions in complex scenarios. For two typical rotational speeds, a full-flow passage model was established; the SST k-ω turbulence model was used to solve 3D incompressible viscous flow, energy loss was analyzed via entropy production theory, and simulations were experimentally validated. The results showed the following: pump efficiency exhibited a “first rise then fall” trend, head decreased monotonically with flow rate, and the optimal operating point shifted to lower flow rates at slower speeds. Meanwhile, local entropy production rate effectively characterized loss location and intensity, with aggravated off-design loss concentrated near the hub and rim along the spanwise direction and within 30 mm of the near-wall region. This study clarifies core energy loss mechanisms, providing a quantitative basis for operation optimization and structural improvement to support the safe, economical operation of low-lift pump stations. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

15 pages, 1915 KB  
Article
Establishment of Patient-Derived Organoids from Hepatocellular Carcinoma: Preliminary Data on Yield, Histopathological Concordance, and Methodological Challenges
by Oriana Lo Re, Christian Corti, Lucia Cerrito, Eleonora Cesari, Elisabetta Creta, Flavio De Maio, Alessia Di Prima, Vincenzo Facciuto, Clelia Ferraro, Eleonora Huqi, Rosa Liotta, Margot Lo Pinto, Duilio Pagano, Riccardo Perriera, Valentina Petito, Giulia Santarelli, Francesco Santopaolo, Leonardo Stella, Floriana Tortomasi, Claudio Sette, Salvatore Gruttadauria, Felice Giuliante, Giovanni Zito and Francesca Romana Ponzianiadd Show full author list remove Hide full author list
Cells 2026, 15(2), 125; https://doi.org/10.3390/cells15020125 - 10 Jan 2026
Viewed by 421
Abstract
Patient-derived organoids (PDOs) have emerged as promising preclinical models for studying tumor biology and testing therapeutic strategies in oncology. These three-dimensional culture systems retain key histological, genetic, and functional characteristics of the original tumors, offering a unique opportunity to advance personalized medicine approaches [...] Read more.
Patient-derived organoids (PDOs) have emerged as promising preclinical models for studying tumor biology and testing therapeutic strategies in oncology. These three-dimensional culture systems retain key histological, genetic, and functional characteristics of the original tumors, offering a unique opportunity to advance personalized medicine approaches in liver cancer. In this study, we present the methodological framework and preliminary findings of a prospective study aimed at generating and characterizing PDOs from patients with hepatocellular carcinoma (HCC) undergoing surgical resection. Tumor specimens were processed using an optimized protocol for organoid derivation, expansion, and cryopreservation. We evaluated the success rate of organoid establishment and the histo-molecular fidelity to the parental tumor. These early results demonstrate promising engraftment efficiency and maintenance of tumor-specific markers across passages. Our work highlights the potential of PDOs as a reliable and scalable platform for translational research in HCC, setting the stage for future applications in drug screening and biomarker discovery. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

15 pages, 2275 KB  
Article
Validation of an Experimental Protocol for Estimating Emission Factors from Vehicle-Induced Road Dust Resuspension
by Ahmed Benabed, Adrian Arfire, Hanaa ER-Rbib, Safwen Ncibi, Elizabeth Fu and Pierre Pousset
Air 2026, 4(1), 1; https://doi.org/10.3390/air4010001 - 7 Jan 2026
Viewed by 235
Abstract
Road dust resuspension is widely recognized as a major contributor to traffic-related particulate matter (PM) in urban environments. Nevertheless, reported emission factors exhibit substantial variability. These discrepancies stem not only from the intrinsic complexity of the resuspension process but also from limitations in [...] Read more.
Road dust resuspension is widely recognized as a major contributor to traffic-related particulate matter (PM) in urban environments. Nevertheless, reported emission factors exhibit substantial variability. These discrepancies stem not only from the intrinsic complexity of the resuspension process but also from limitations in measurement techniques, which often fail to adequately control or characterize the influencing parameters. As a result, the contribution of each parameter remains difficult to isolate, leading to inconsistencies across studies. This study presents an experimental protocol developed to quantify PM10 and PM2.5 emission factors associated with vehicle-induced road dust resuspension. Experiments were conducted on a dedicated test track seeded with alumina particles of controlled mass and size distribution to simulate road dust. A network of microsensors was strategically deployed at multiple upwind and downwind locations to continuously monitor particle concentration variations during vehicle passages. Emission factors were derived through time integration of the mass flow rate of resuspended dust measured by the sensor network. The estimated PM10 emission factor showed excellent agreement, within 2.5%, with predictions from a literature-based formulation, thereby validating the accuracy and external relevance of the proposed protocol. In contrast, comparisons with U.S. EPA formulas and other empirical equations revealed substantially larger discrepancies, particularly for PM2.5, highlighting the persistent limitations of current modeling approaches. Full article
Show Figures

Figure 1

18 pages, 3240 KB  
Article
A Waist-Mounted Interface for Mobile Viewpoint-Height Transformation Affecting Spatial Perception
by Jun Aoki, Hideki Kadone and Kenji Suzuki
Sensors 2026, 26(2), 372; https://doi.org/10.3390/s26020372 - 6 Jan 2026
Viewed by 322
Abstract
Visual information shapes spatial perception and body representation in human augmentation. However, the perceptual consequences of viewpoint-height changes produced by sensor–display geometry are not well understood. To address this gap, we developed an interface that maps a waist-mounted stereo fisheye camera to an [...] Read more.
Visual information shapes spatial perception and body representation in human augmentation. However, the perceptual consequences of viewpoint-height changes produced by sensor–display geometry are not well understood. To address this gap, we developed an interface that maps a waist-mounted stereo fisheye camera to an eye-level viewpoint on a head-mounted display in real time. Geometric and timing calibration kept latency low enough to preserve a sense of agency and enable stable untethered walking. In a within-subject study comparing head- and waist-level viewpoints, participants approached adjustable gaps, rated passability confidence (1–7), and attempted passage when confident. We also recorded walking speed and assessed post-task body representation using a questionnaire. High gaps were judged passable and low gaps were not, irrespective of viewpoint. At the middle gap, confidence decreased with a head-level viewpoint and increased with a waist-level viewpoint, and walking speed decreased when a waist-level viewpoint was combined with a chest-height gap, consistent with added caution near the decision boundary. Body image reports most often indicated a lowered head position relative to the torso, consistent with visually driven rescaling rather than morphological change. These findings show that a waist-mounted interface for mobile viewpoint-height transformation can reliably shift spatial perception. Full article
(This article belongs to the Special Issue Sensors and Wearables for AR/VR Applications)
Show Figures

Figure 1

16 pages, 4307 KB  
Article
Design and Analysis of Combining Oil-Cooling Scheme of S-Shaped and End-Spraying Passages for Permanent Magnet Synchronous Motor
by Xiaoming Feng, Zhenping Wan, Jiachao Duan, Xiaowu Wang, Peili Xie and Rongsheng Xi
Energies 2026, 19(1), 72; https://doi.org/10.3390/en19010072 - 23 Dec 2025
Viewed by 253
Abstract
The continuous pursuit of power density, efficiency, and miniaturization poses significant challenges to the heat dissipation and temperature-rise control of permanent magnet synchronous motor (PMSM) for new energy vehicles. This paper proposes a novel S-shaped axial return passage in the motor casing and [...] Read more.
The continuous pursuit of power density, efficiency, and miniaturization poses significant challenges to the heat dissipation and temperature-rise control of permanent magnet synchronous motor (PMSM) for new energy vehicles. This paper proposes a novel S-shaped axial return passage in the motor casing and a combined oil-cooling scheme integrating S-shaped and end-spraying passages. The geometric structure and parameters of the S-shaped passage and end-spraying passage were designed and optimized, and a finite-element temperature-field model of a PMSM equipped with the combined oil-cooling system is established. The results show that, compared with a traditional right-angle axial returning passage, the pressure loss of the new S-shaped returning passage is reduced by 50%, while the wall heat transfer coefficient remains comparable. At a cooling oil flow rate of 12 L/min, the highest temperature of the end winding is 92.6 °C, only 1.5 °C higher than that of the stator core under rated operating conditions. An experimental prototype was fabricated, and the measured results indicate that the simulated end-winding temperature shows close agreement with the experimental values, with a maximum deviation of only 3.8 °C. The proposed combined oil-cooling scheme efficiently enhances the cooling of both the stator core and end winding and significantly improves the temperature uniformity of the PMSM. Full article
Show Figures

Figure 1

15 pages, 3250 KB  
Article
Sibling-Derived Cell Lines of Whole Larval Siberian Sturgeon as an In Vitro Model System for Studying Inter-Individual Differences Within the Same Genomic Heritage
by Valeria Di Leonardo, Katrin Tönißen, Julia Brenmoehl, Daniela Ohde, Heike Wanka, Kenneth Benning and Bianka Grunow
Cells 2025, 14(24), 2004; https://doi.org/10.3390/cells14242004 - 16 Dec 2025
Viewed by 350
Abstract
Sturgeons, once resilient enough to outlive dinosaurs, are now critically endangered. All 26 species of Acipenseriformes face extinction due to anthropogenic causes. Despite their ecological and economic significance, sturgeon research lacks essential tools such as larval cell lines; the Cellosaurus database lists only [...] Read more.
Sturgeons, once resilient enough to outlive dinosaurs, are now critically endangered. All 26 species of Acipenseriformes face extinction due to anthropogenic causes. Despite their ecological and economic significance, sturgeon research lacks essential tools such as larval cell lines; the Cellosaurus database lists only one larval cell line (AOXlar7y from Atlantic sturgeon). Larval stages are key to understand fish development, representing a transitional phase between embryonic and adult life that is highly sensitive to temperature shifts, oxygen depletion and pollution. Larval cell lines therefore provide potential in vitro models for studying development and stress responses in endangered species. This study focused on establishing and initially characterizing five novel larval cell lines from siblings of the Siberian sturgeon (Acipenser baerii). The lines proved viable for long-term culture, bio-banking and transfer, displaying different morphologies ranging from epithelial-like to fibroblast-like. Functional assays showed variable mitochondrial activity and extracellular acidification rates. A preliminary targeted gene expression analysis revealed similarity to whole larvae within early passages and in vitro adaptations for certain genes (gapdh, vim, col1a1, pcna). These sibling-derived cell lines hold potential as in vitro tools to deeper explore the biology of Siberian sturgeon larvae and support conservation-focused research. Full article
Show Figures

Graphical abstract

24 pages, 6374 KB  
Article
Design and Experiment of an Inter-Plant Obstacle-Avoiding Oscillating Mower for Closed-Canopy Orchards
by Juxia Wang, Weizheng Pan, Xupeng Wang, Yifang An, Nan An, Xinxin Duan, Fu Zhao and Fei Han
Agronomy 2025, 15(12), 2893; https://doi.org/10.3390/agronomy15122893 - 16 Dec 2025
Viewed by 474
Abstract
To address the challenges of narrow, confined spaces in traditional closed-canopy orchards, where complex terrain between and within rows hinders the operation of large and medium-sized mowers. A self-propelled intra-plant obstacle-avoiding oscillating mower was developed. Its core innovation is an integrated oscillating mechanism [...] Read more.
To address the challenges of narrow, confined spaces in traditional closed-canopy orchards, where complex terrain between and within rows hinders the operation of large and medium-sized mowers. A self-propelled intra-plant obstacle-avoiding oscillating mower was developed. Its core innovation is an integrated oscillating mechanism that achieves one-pass, full-coverage operation by coordinating a 110° fan-shaped cutting path for inter-row areas with an adaptive flipping contour-cutting action for intra-plant areas. The power and transmission systems were optimized according to the shear and bending forces of three common weed species. The integrated prototype was then built and subjected to field tests. The results showed that the shear and bending forces of all three weed species peaked at 30 mm from the root and stabilized beyond 50 mm. Field tests demonstrated a 100% intra-plant obstacle passage rate, 96.9% cutting width utilization rate, 92.07% stubble height stability coefficient, and a 1.66% missed-cutting rate, which meets the operational requirements of closed-canopy orchards. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

14 pages, 273 KB  
Article
Digestibility, Passage Rate, Growth, and Digesta Properties in Windsnyer Pigs Fed Increasing Potato Hash Silage
by Cyprial Ndumiso Ncobela, Arnold Tapera Kanengoni and Michael Chimonyo
Animals 2025, 15(24), 3596; https://doi.org/10.3390/ani15243596 - 15 Dec 2025
Viewed by 265
Abstract
The study was conducted to determine the apparent total tract digestibility, the rate of digesta passage, growth performance, and physicochemical properties of the digesta of Windsnyer pigs fed on increasing levels of potato hash silage. Diets were formulated to contain 0, 80, 160, [...] Read more.
The study was conducted to determine the apparent total tract digestibility, the rate of digesta passage, growth performance, and physicochemical properties of the digesta of Windsnyer pigs fed on increasing levels of potato hash silage. Diets were formulated to contain 0, 80, 160, 240, 320, and 400 g potato hash silage/kg of diet. Pigs were randomly assigned to six diets according to a completely randomised design. Six pigs were allocated to each dietary treatment. All diets were blended with chromic oxide (Cr2O3) to calculate apparent total tract digestibility and rate of passage. Pigs were fed diets containing different levels of potato hash silage for 5 d, following 7 d of adaptation. Thereafter, pigs were subjected to a 35-day growth performance experiment. Thirty-six pigs were slaughtered and eviscerated to determine digesta characteristics and gut compartment weights. There was a positive correlation (p < 0.05) between mean retention time and each of digestibility of dry matter, organic matter, and crude protein. There was a quadratic increase (p < 0.05) in digestibility of organic matter, crude protein, fibre and feed intake as dietary levels of potato hash silage increased. Average daily gain and gain-to-feed ratio decreased linearly (p < 0.05) in pigs as levels of potato hash silage increased. The swelling capacity (SWC) of the digesta from ileum decreased linearly (p < 0.05) as dietary levels of potato hash silage increased. The SWC of the digesta from the caecum increased linearly (p < 0.05) as dietary levels of potato hash silage increased. The water holding capacity (WHC) of the stomach digesta decreased linearly (p < 0.05) as dietary levels of potato hash silage increased. The WHC of the digesta from the ileum and caecum displayed negative quadratic responses (p < 0.05) as dietary levels of potato hash silage increased. The WHC of digesta from the proximal colon showed a linear decline (p < 0.05) as dietary levels of potato hash silage increased. The WHC of digesta from the distal colon increased linearly (p < 0.05) as dietary levels of potato hash silage increased. The results indicated that Windsnyer pigs can effectively utilise potato hash silage in diets until the 240 g/kg inclusion level beyond which total tract digestibility and feed intake are compromised. Full article
(This article belongs to the Section Pigs)
19 pages, 4401 KB  
Article
Research and Structural Optimization of Lithium Battery Heat Dissipation Based on Leaf Vein Channels
by Haiyan Dai, Changyu Li and Jixiang Zhou
Batteries 2025, 11(12), 453; https://doi.org/10.3390/batteries11120453 - 10 Dec 2025
Viewed by 483
Abstract
The operating temperature of lithium batteries directly affects their charge–discharge performance. This study is based on the LF50K prismatic power battery. The battery’s thermal model and the computational fluid dynamics (CFD) control equation were established. After completing the model verification, a thermal management [...] Read more.
The operating temperature of lithium batteries directly affects their charge–discharge performance. This study is based on the LF50K prismatic power battery. The battery’s thermal model and the computational fluid dynamics (CFD) control equation were established. After completing the model verification, a thermal management system with a bionic leaf vein flow channel was designed. The study focused on investigating the effects of varied flow passage configurations, inlet–outlet flow channel angles, flow channel widths, flow rates, leaf vein angles, and inlet–outlet positions on the cooling effect of the lithium battery module. The results show that, as the inlet–outlet angle and width of the bionic leaf vein fluid flow channel increase, the battery cooling effect deteriorates; the increase in the angle and flow channel width has an adverse impact on battery heat dissipation. The significant reduction in the battery’s maximum temperature observed with an elevated fluid flow rate underscores the positive contribution of flow rate to the cooling process. The effect of the leaf vein angle on the cooling of lithium batteries shows a fluctuating trend: when the angle rises from 30° to 45°, the battery’s peak temperature shows a slow upward tendency; conversely, with the angle further increasing from 45° to 80°, the maximum temperature shows a gradual downward tendency. Specifically, at an angle of 45°, Battery No. 5 hits a maximum temperature of 306.58 K (around 33.43 °C), with the maximum temperature difference also reaching 6.38 K. After optimizing the structural parameters, when operating under the maximum ambient temperature conditions in 2024, the maximum temperature of the battery module decreased by 7 K, and the temperature difference decreased by 5.47 K, enabling the battery to achieve optimal operating efficiency. This study lays a foundation for a further optimization of the thermal management system for lithium-ion batteries in subsequent research. Full article
Show Figures

Figure 1

25 pages, 8829 KB  
Article
Numerical and Experimental Investigations on Oil Supply Characteristics of a Multi-Passage Lubrication System for a Three-Stage Planetary Transmission in a Tracked Vehicle
by Jing Zhang, Peng Jin, Xiaozhou Hu and Yangmei Yuan
Technologies 2025, 13(12), 576; https://doi.org/10.3390/technologies13120576 - 8 Dec 2025
Viewed by 353
Abstract
The multi-passage lubrication system is adopted to meet the demand of the main heat generation parts (gears and bearings) in the three-stage planetary transmission system of a large tracked vehicle. As rotational speed increases, the flow regime inside the passages with multi-oil outlets [...] Read more.
The multi-passage lubrication system is adopted to meet the demand of the main heat generation parts (gears and bearings) in the three-stage planetary transmission system of a large tracked vehicle. As rotational speed increases, the flow regime inside the passages with multi-oil outlets becomes highly complex. Under high-speed conditions, the flow rate in Zone 2 decreases sharply, and some oil outlets even drop to zero, representing a 100% reduction amplitude, which results in an unstable oil supply for heat generation parts and even potential lubrication cut-off. In the present work, the lubrication characteristics of the oil supply system for the three-stage planetary transmission system are investigated by a combination of CFD (computational fluid dynamics) simulations and experiments. A complete CFD model of the multi-passage lubrication system is established, comprising a stationary oil passage, a main oil passage, and a three-stage variable-speed oil passage. A transient calculation method based on sliding mesh rotation domain control is used to simulate the oil-filling process in the oil passages, and the oil supply characteristics of the variable-speed oil passage are investigated. A test bench for the multi-stage planetary transmission system is designed and constructed to collect oil flow data from outlets of planetary gear sets. The comparison between simulated and experimental results confirms the validity of the proposed numerical method. Additionally, numerical simulations are conducted to investigate the effects of key factors, including input speed, oil supply pressure, and oil temperature, on the oil flow rate of outlets. The results indicate that the rotational speed is the major parameter affecting the oil flow rate at the oil passage outlets. This work provides a practical guidance for optimizing lubrication design in complex multi-stage planetary transmission systems. Full article
Show Figures

Figure 1

17 pages, 456 KB  
Article
Enhanced In Vitro System for Predicting Methane Emissions from Ruminant Feed
by Seongwon Seo and Mingyung Lee
Fermentation 2025, 11(12), 681; https://doi.org/10.3390/fermentation11120681 - 7 Dec 2025
Viewed by 625
Abstract
Mitigating enteric methane emissions through diet formulation remains a significant challenge in cattle nutrition. This study developed a system to evaluate the methane production potential of feeds, expressed as the effective ruminal methane production rate (eRMR, mL/g dry matter [DM]), using a discontinuous [...] Read more.
Mitigating enteric methane emissions through diet formulation remains a significant challenge in cattle nutrition. This study developed a system to evaluate the methane production potential of feeds, expressed as the effective ruminal methane production rate (eRMR, mL/g dry matter [DM]), using a discontinuous in vitro ruminal fermentation system using rumen fluid. Sixteen concentrate feeds and two forages were tested, with a reference diet (ryegrass straw:corn:corn gluten feed = 1:1:1) included in each batch to standardize conditions and account for associative effects among feeds. Test feeds were incubated with the reference diet in closed bottles under strictly anaerobic conditions. Methane and total gas production were measured at 2, 4, 6, and 24 h, and true dry matter digestibility was calculated after 6 and 24 h. For each batch, sample feed values were corrected and standardized using those of the reference diet. The eRMR value was calculated by integrating a differential equation with parameters incorporating ruminal digestion and passage dynamics. The test feed eRMR values ranged from 1.2 mL/g DM (soybean meal) to 56.7 mL/g DM (soybean hull), with the reference diet at 14.8 mL/g DM. Evaluation of feed eRMR using data from two in vivo studies demonstrated strong correlations between predicted diet-specific eRMR values and measured methane emissions from Hanwoo steers (r = 0.93 and 0.85). This system, incorporating rumen dynamics with a reduced sampling schedule, provides a precise and practical tool for predicting in vivo enteric methane production and optimizing diet formulations to mitigate methane emissions from cattle. Full article
(This article belongs to the Special Issue Ruminal Fermentation: 2nd Edition)
Show Figures

Figure 1

Back to TopTop