Digestibility, Passage Rate, Growth, and Digesta Properties in Windsnyer Pigs Fed Increasing Potato Hash Silage
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Animals, Experimental Design and Diets
2.3. Collection, Ensiling and Mixability of Potato Hash
2.4. Measurements of Passage Rate and Apparent Total Tract Nutrient Digestibility
2.5. Calculation of Rate of Passage, Faecal Scoring and Digestibility
2.6. Measurements of Feed Intake and Growth Performance
2.7. Slaughtering of Pigs and Measurements of Digesta pH, Digesta Compartment and Weights
2.8. Chemical and Physicochemical Analyses of the Diets, Faeces and Digesta
2.9. Statistical Analyses
3. Results
3.1. Apparent Total Tract Digestibility of Nutrients and Rate of Digesta Passage
3.2. Feed Intake and Growth Performance
3.3. Weights of Compartments of the Gastrointestinal Tract and Digesta Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DM | Dry Matter |
| CP | Crude Protein |
| NDF | Neutral Detergent Fibre |
| ADF | Acid Detergent Fibre |
| ATTD | Apparent Total Tract Digestibility |
| DMD | Dry Matter Digestibility |
| OMD | Organic Matter Digestibility |
| CPD | Crude Protein Digestibility |
| NDFD | Neutral Detergent Fibre Digestibility |
| ADFD | Acid Detergent Fibre Digestibility |
| MRT | Mean Retention Time |
| TT | Transit Time |
| WHC | Water Holding Capacity |
| SWC | Swelling Capacity |
References
- Halimani, T.E.; Muchadeyi, F.C.; Chimonyo, M.; Dzama, K. Opportunities for conservation and utilisation of local pig breeds in low-input production systems in Zimbabwe and South Africa. Trop. Anim. Health Prod. 2013, 45, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Thabethe, F.; Hlatini, V.A.; de Almeida, A.M.; Chimonyo, M. Growth performance of South African Windsnyer pigs to the dietary inclusion of Amarula oil cake. Trop. Anim. Health Prod. 2022, 54, 343. [Google Scholar] [CrossRef] [PubMed]
- Munzhelele, P.; Oguttu, J.; Fasanmi, O.G.; Fasina, F.O. Production constraints of smallholder pig farms in agroecological zones of Mpumalanga, South Africa. Trop. Anim. Health Prod. 2017, 49, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Bovula, N.; Ncobela, C.N.; Pilane, C.M.; Nedambale, T.L.; Chimonyo, M. Growth performance and fertility of Windsnyer boars supplemented with α-tocopherol. Trop. Anim. Health Prod. 2021, 53, 161. [Google Scholar] [CrossRef]
- Ncobela, C.N.; Kanengoni, A.T.; Hlatini, V.A.; Thomas, R.S.; Chimonyo, M. A review of the utility of potato by-products as a feed resource for smallholder pig production. Anim. Feed Sci. Technol. 2017, 227, 107–117. [Google Scholar] [CrossRef]
- Nkosi, B.D.; Meeske, R. Effects of ensiling totally mixed potato hash ration with or without a heterofermentative bacterial inoculant on silage fermentation, aerobic stability, growth performance and digestibility in lambs. Anim. Feed Sci. Technol. 2010, 161, 38–48. [Google Scholar] [CrossRef]
- Kanengoni, A.T.; Chimonyo, M.; Ndimba, B.K.; Dzama, K. Feed preference, nutrient digestibility and colon 572 volatile fatty acid production in growing South African Windsnyer-type indigenous pigs and Large White × 573 Landrace crosses fed diets containing ensiled maize cobs. Livest. Sci. 2015, 171, 28–35. [Google Scholar] [CrossRef]
- Ngoc, T.T.; Len, N.T.; Lindberg, J.E. Impact of fibre intake and fibre source on digestibility, gut development, retention time and growth performance of indigenous and exotic pigs. Animal 2013, 7, 736–745. [Google Scholar] [CrossRef]
- Carter, N.A.; Dewey, C.E.; Thomas, L.F.; Lukuyu, B.; Grace, B.; de Lange, C. Nutrient requirements and low-cost balanced diets, based on seasonally available local feedstuffs, for local pigs on smallholder farms in Western Kenya. Trop. Anim. Health Prod. 2016, 48, 337–347. [Google Scholar] [CrossRef]
- Winfeed: Feed Formulation Software. The Cheapest Least Cost Feed Formulation Software. 2018. Available online: https://www.winfeed.com (accessed on 3 December 2025).
- Lallès, J.P.; Delval, E.; Poncet, C. Mean retention time of dietary residues within the gastrointestinal tract of the young ruminant: A comparison of non-compartmental (algebraic) and compartmental (modelling) estimation methods. Anim. Feed Sci. Technol. 1991, 35, 139–159. [Google Scholar] [CrossRef]
- Faichney, G.J. The use of markers to partition digestion within the gastrointestinal tract of ruminants. In Digestion and Metabolism in the Ruminant; McDonald, I.W., Warber, A.C.I., Eds.; University of New England Publishing Unit: Armidale, Australia, 1975; pp. 277–291. [Google Scholar]
- Wate, A.; Zindove, T.J.; Chimonyo, M. Effects of feeding incremental levels of maize cob meal on physicochemical properties of bulkiness in digesta in growing pigs. Livest. Sci. 2014, 170, 124–130. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Kyriazakis, I.; Emmans, G.C. The voluntary feed intake of pigs given feeds based on wheat bran, dried citrus pulp and grass meal, in relation to measurements of feed bulk. Br. J. Nutr. 1995, 73, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Whittemore, E.C.; Emmans, G.C.; Kyriazakis, I. The relationship between live weight and the intake of bulky foods in pigs. Anim. Sci. 2003, 76, 89–100. [Google Scholar] [CrossRef]
- Canibe, N.; Bach Knudsen, K. Degradation and physicochemical changes of barley and pea fibre along the gastrointestinal tract of pigs. J. Sci. Food Agric. 2002, 82, 27–39. [Google Scholar] [CrossRef]
- SAS. SAS User’s Guide: Statistics, Version 9.1; SAS Institute: Cary, NC, USA, 2008.
- Wilfart, A.; Montagne, L.; Simmins, H.; Noblet, J.; van Milgen, J. Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. Br. J. Nutr. 2007, 98, 54–62. [Google Scholar] [CrossRef]
- Kim, B.G.; Lindemann, M.D.; Cromwell, G.L.; Balfagon, A.; Agudelo, J.H. The correlation between passage rate of digesta and dry matter digestibility in various stages of swine. Livest. Sci. 2007, 109, 81–84. [Google Scholar] [CrossRef]
- Schop, M.; Jansman, A.J.; de Vries, S.; Gerrits, W.J. Increased diet viscosity by oat β-glucans decreases the passage rate of liquids in the stomach and affects digesta physicochemical properties in growing pigs. Animal 2020, 14, 269–276. [Google Scholar] [CrossRef]
- Kanengoni, A.T.; Chimonyo, M.; Ndimba, B.K.; Dzama, K. Potential of using maize cobs in pig diets—A review. Asian-Australas. J. Anim. Sci. 2015, 28, 1669–1681. [Google Scholar] [CrossRef]
- Bachmann, M.; Michel, S.; Greef, J.M.; Zeyner, A. Fermentation characteristics and in vitro digestibility of fibers and fiber-rich byproducts used for the feeding of pigs. Animals 2021, 11, 341. [Google Scholar] [CrossRef]
- Zijlstra, R.T.; Jha, R.; Woodward, A.D.; Fouhse, J.; Van Kempen, T.A. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs. J. Anim. Sci. 2012, 90, 49–58. [Google Scholar] [CrossRef]
- Zhao, Y.; Dang, X.; Du, H.; Wang, D.; Zhang, J.; Liu, R.; Ge, Z.; Sun, Z.; Zhong, Q. Understanding the impact of extrusion treatment on cereals: Insights from alterations in starch physicochemical properties and in vitro digestion kinetics. Animals 2024, 14, 3144. [Google Scholar] [CrossRef]
- Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef]
- Meldrum, O.W.; Yakubov, G.E. Journey of dietary fiber along the gastrointestinal tract: Role of physical interactions, mucus, and biochemical transformations. Crit. Rev. Food Sci. Nutr. 2025, 65, 4264–4292. [Google Scholar] [CrossRef]
- Gardiner, G.E.; Metzler-Zebeli, B.U.; Lawlor, P.G. Impact of intestinal microbiota on growth and feed efficiency in pigs: A review. Microorganisms 2020, 8, 1886. [Google Scholar] [CrossRef]
- Chassé, É.; Guay, F.; Bach Knudsen, K.E.; Zijlstra, R.T.; Létourneau-Montminy, M.P. Toward precise nutrient value of feed in growing pigs: Effect of meal size, frequency and dietary fibre on nutrient utilisation. Animals 2021, 11, 2598. [Google Scholar] [CrossRef]
| Ingredient | Inclusion Levels of Potato Hash Silage (g/kg Dry Matter) | |||||
|---|---|---|---|---|---|---|
| 0 | 80 | 160 | 240 | 320 | 400 | |
| Yellow maize | 693 | 612 | 558 | 487 | 410 | 328 |
| Soybean meal (48% CP) | 160 | 167 | 170 | 186 | 190 | 200 |
| Potato hash silage | 0 | 80 | 160 | 240 | 320 | 400 |
| Wheat bran | 86 | 75 | 50 | 25 | 20 | 10 |
| Molasses | 20 | 20 | 20 | 20 | 20 | 20 |
| Limestone | 20 | 21 | 17.7 | 16.8 | 15.9 | 15 |
| Monocalcium phosphate | 3.5 | 4.8 | 5.9 | 7.2 | 8.9 | 9.7 |
| Sunflower oil | 5 | 4.8 | 4.7 | 4.5 | 4 | 4 |
| Salt | 4 | 4 | 4 | 4 | 4 | 4 |
| L-Lysine. hcl | 4 | 4.6 | 4.5 | 3.7 | 3.7 | 3.8 |
| DL-Methionine | 0.5 | 1.6 | 1.1 | 1.0 | 1.0 | 1.0 |
| L-Threonine | 1.0 | 1.5 | 1.2 | 1.0 | 1.0 | 1.1 |
| Vitamin-mineral premix (1) | 4 | 4 | 4 | 4 | 4 | 4 |
| Item | Potato Hash Silage | Potato Hash Silage Inclusion Levels (g/kg DM) | |||||
|---|---|---|---|---|---|---|---|
| 0 | 80 | 160 | 240 | 320 | 400 | ||
| Dry matter (g/kg) | 337 | 886 | 845 | 801 | 744 | 730 | 662 |
| Gross energy (MJ/kg DM (2)) | 17.4 | 18.4 | 18.7 | 18.9 | 18.9 | 18.8 | 18.4 |
| Crude protein (g/kg DM) | 132 | 162 | 156 | 154 | 151 | 148 | 141 |
| Ether extract (g/kg DM) | 12.0 | 74.2 | 72.0 | 64.0 | 56.0 | 49.7 | 43.0 |
| Ash (g/kg DM) | 39.4 | 47.8 | 55.7 | 60.3 | 65.9 | 70.9 | 74.2 |
| Calcium (g/kg DM) | - | 6.86 | 7.03 | 7.18 | 7.49 | 7.92 | 8.53 |
| Phosphorous (g/kg DM) | - | 3.64 | 3.77 | 3.82 | 3.92 | 4.43 | 5.12 |
| Neutral detergent fibre (g/kg DM) | 633 | 343 | 344 | 373 | 386 | 396 | 407 |
| Acid detergent fibre (g/kg DM) | 335 | 80.5 | 85.1 | 94.5 | 98.9 | 103 | 108 |
| Acid detergent lignin (g/kg DM) | 324 | 37.3 | 40.8 | 48.7 | 56.2 | 60.3 | 64.5 |
| Physical properties | |||||||
| Bulk density (g/mL) | 1.14 | 1.50 | 1.50 | 1.47 | 1.35 | 1.33 | 1.24 |
| Swelling capacity (mL/g) | 4.85 | 3.13 | 3.20 | 3.33 | 3.55 | 3.56 | 3.70 |
| Water holding capacity (gwater/gfeed DM) | 8.8 | 3.67 | 3.87 | 4.76 | 5.27 | 5.34 | 5.45 |
| Component | MRT | DMD | OMD | CPD | ADFD | NDFD |
|---|---|---|---|---|---|---|
| TT | 0.03 ns | 0.49 ** | 0.51 ** | 0.56 ** | 0.19 ns | 0.52 * |
| MRT | - | 0.39 * | 0.35 * | 0.34 * | 0.17 ns | 0.31 ns |
| DMD | - | - | 0.53 ** | 0.52 ** | 0.04 ns | 0.35 * |
| OMD | - | - | - | 0.79 ** | 0.22 ns | 0.74 *** |
| CPD | - | - | - | - | 0.01 ns | 0.73 *** |
| ADFD | - | - | - | - | - | 0.31 ns |
| Variables | Means of Potato Hash Silage Inclusion Level (g/kg DM) | SEM | Orthogonal Polynomial Contrast (p-Value) (1) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 0 | 80 | 160 | 240 | 320 | 400 | Linear | Quadratic | ||
| DMD | 0.87 | 0.88 | 0.91 | 0.92 | 0.87 | 0.85 | 0.02 | 0.195 | 0.001 |
| OMD | 0.91 | 0.92 | 0.92 | 0.93 | 0.90 | 0.89 | 0.03 | 0.825 | 0.002 |
| CPD | 0.80 | 0.82 | 0.84 | 0.84 | 0.80 | 0.79 | 0.04 | 0.890 | 0.000 |
| NDFD | 0.68 | 0.70 | 0.72 | 0.75 | 0.64 | 0.63 | 0.05 | 0.487 | 0.042 |
| ADFD | 0.45 | 0.43 | 0.42 | 0.43 | 0.42 | 0.43 | 0.04 | 0.897 | 0.693 |
| Transit time (h) | 17.6 | 17.4 | 17.2 | 17.1 | 16.6 | 15.6 | 0.45 | 0.003 | 0.246 |
| Mean retention time (h) | 23.7 | 23.8 | 21.5 | 20.0 | 18.3 | 18.1 | 2.91 | 0.047 | 0.007 |
| Faecal scores (2) | 2.92 | 2.52 | 2.87 | 3.05 | 4.49 | 3.08 | 0.69 | 0.546 | 0.143 |
| Fresh faecal weight (kg) | 4.71 | 5.14 | 5.67 | 6.23 | 7.98 | 8.55 | 0.59 | 0.000 | 0.275 |
| Dry faecal weight (kg) | 1.35 | 1.58 | 1.89 | 2.23 | 2.67 | 3.12 | 0.37 | 0.004 | 0.367 |
| Variables | Means of Potato Hash Silage Inclusion Level (g/kg DM) | SEM | Orthogonal Polynomial Contrast (p-Value) (1) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 0 | 80 | 160 | 240 | 320 | 400 | Linear | Quadratic | ||
| Initial body weight (kg) | 20.8 | 20.2 | 21.1 | 23.7 | 23.2 | 23.8 | 1.56 | 0.157 | 0.278 |
| Daily feed intake (kg) | 1.52 | 1.65 | 1.74 | 1.92 | 1.68 | 1.56 | 0.07 | 0.124 | 0.005 |
| Average daily gain (kg) | 0.48 | 0.46 | 0.45 | 0.42 | 0.35 | 0.31 | 0.04 | 0.000 | 0.164 |
| Gain-to-feed ratio | 0.31 | 0.28 | 0.25 | 0.23 | 0.21 | 0.19 | 0.03 | 0.000 | 0.214 |
| Final body weight | 35.2 | 36.8 | 37.4 | 38.9 | 36.9 | 36.1 | 4.33 | 0.154 | 0.005 |
| Variable | Means of Potato Hash Silage Inclusion Level (g/kg DM) | SEM | Polynomial Orthogonal Contrast (p-Value) (1) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 0 | 80 | 160 | 240 | 320 | 400 | Linear | Quadratic | ||
| Compartments weights | |||||||||
| Scaled stomach | 9.4 | 11.6 | 10.3 | 11.6 | 11.6 | 14.7 | 0.75 | 0.007 | 0.466 |
| Scaled small intestines | 17.0 | 21.5 | 20.7 | 16.8 | 19.9 | 22.2 | 1.85 | 0.182 | 0.212 |
| Scaled caecum | 1.6 | 3.01 | 1.81 | 2.91 | 2.02 | 3.22 | 0.47 | 0.909 | 0.114 |
| Scaled colon | 11.8 | 15.3 | 16.5 | 17.3 | 14.1 | 19.6 | 1.58 | 0.041 | 0.102 |
| Digesta weights | |||||||||
| Scaled stomach | 25.3 | 17.5 | 18.5 | 20.0 | 32.3 | 22.1 | 4.37 | 0.246 | 0.551 |
| Scaled small intestines | 8.74 | 7.18 | 9.12 | 8.76 | 12.2 | 9.02 | 1.89 | 0.413 | 0.138 |
| Scaled caecum | 14.9 | 7.59 | 11.9 | 10.3 | 16.9 | 9.4 | 2.39 | 0.547 | 0.245 |
| Scaled colon | 11.4 | 12.9 | 13.2 | 17.0 | 16.9 | 27.6 | 2.72 | 0.000 | 0.267 |
| Variable | Means of Potato Hash Silage Inclusion Level (g/kg DM) | SEM | Polynomial Orthogonal Contrast (p-Value) (1) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 0 | 80 | 160 | 240 | 320 | 400 | Linear | Quadratic | ||
| Stomach digesta | 3.5 | 3.5 | 3.4 | 4.2 | 3.5 | 3.4 | 0.23 | 0.246 | 0.092 |
| Ileum digesta | 5.9 | 6.2 | 6.4 | 6.5 | 6.5 | 6.6 | 0.13 | 0.000 | 0.147 |
| Caecum digesta | 6.1 | 6.1 | 6.3 | 6.4 | 6.1 | 6.3 | 0.11 | 0.526 | 0.361 |
| Proximal colon digesta | 6.4 | 6.5 | 6.6 | 6.3 | 6.2 | 6.6 | 0.15 | 0.215 | 0.114 |
| Distal colon digesta | 6.8 | 6.7 | 6.6 | 6.4 | 6.4 | 6.3 | 0.11 | 0.004 | 0.264 |
| Variable | Means of Potato Hash Silage Inclusion Level (g/kg DM) | SEM | Orthogonal Polynomial Contrast (p-Value) (1) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 0 | 80 | 160 | 240 | 320 | 400 | Linear | Quadratic | ||
| Swelling capacity (mL/g DM) | |||||||||
| Stomach digesta | 3.16 | 3.24 | 3.45 | 3.45 | 3.33 | 3.59 | 0.04 | 0.365 | 0.031 |
| Ileum digesta | 3.28 | 2.78 | 2.68 | 2.58 | 2.60 | 2.45 | 0.7 | 0.000 | 0.092 |
| Caecum digesta | 2.33 | 2.52 | 2.67 | 2.75 | 2.28 | 2.76 | 0.08 | 0.024 | 0.116 |
| Proximal colon digesta | 3.13 | 2.85 | 2.95 | 2.85 | 3.12 | 2.98 | 0.11 | 0.145 | 0.694 |
| Distal colon digesta | 2.45 | 2.38 | 2.47 | 2.45 | 2.42 | 2.40 | 1.61 | 0.324 | 0.106 |
| Water holding capacity (g water/g DM) | |||||||||
| Stomach digesta | 2.68 | 2.59 | 3.47 | 2.46 | 2.46 | 2.39 | 0.36 | 0.000 | 0.098 |
| Ileum digesta | 4.02 | 3.77 | 3.62 | 3.10 | 3.33 | 3.62 | 0.12 | 0.294 | 0.000 |
| Caecum digesta | 3.52 | 3.42 | 3.33 | 2.88 | 3.22 | 3.55 | 0.10 | 0.111 | 0.005 |
| Proximal colon digesta | 2.87 | 2.78 | 2.81 | 2.53 | 2.42 | 2.40 | 0.10 | 0.000 | 0.542 |
| Distal colon digesta | 2.28 | 2.57 | 2.63 | 2.47 | 3.03 | 3.15 | 0.08 | 0.000 | 0.347 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ncobela, C.N.; Kanengoni, A.T.; Chimonyo, M. Digestibility, Passage Rate, Growth, and Digesta Properties in Windsnyer Pigs Fed Increasing Potato Hash Silage. Animals 2025, 15, 3596. https://doi.org/10.3390/ani15243596
Ncobela CN, Kanengoni AT, Chimonyo M. Digestibility, Passage Rate, Growth, and Digesta Properties in Windsnyer Pigs Fed Increasing Potato Hash Silage. Animals. 2025; 15(24):3596. https://doi.org/10.3390/ani15243596
Chicago/Turabian StyleNcobela, Cyprial Ndumiso, Arnold Tapera Kanengoni, and Michael Chimonyo. 2025. "Digestibility, Passage Rate, Growth, and Digesta Properties in Windsnyer Pigs Fed Increasing Potato Hash Silage" Animals 15, no. 24: 3596. https://doi.org/10.3390/ani15243596
APA StyleNcobela, C. N., Kanengoni, A. T., & Chimonyo, M. (2025). Digestibility, Passage Rate, Growth, and Digesta Properties in Windsnyer Pigs Fed Increasing Potato Hash Silage. Animals, 15(24), 3596. https://doi.org/10.3390/ani15243596

