Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = rare earth inclusions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6356 KiB  
Article
The Significance of Metasomatism in the Formation of the Tanbreez REE Deposit in South Greenland
by Hans Kristian Schønwandt, Thomas Ulrich, Greg Barnes and Ole Christiansen
Minerals 2025, 15(8), 797; https://doi.org/10.3390/min15080797 - 29 Jul 2025
Viewed by 122
Abstract
The layering of the lower layered kakortokite in the per-alkaline Ilímaussaq complex has been interpreted as an orthocumulus rock. Petrographic observation and mineral chemical data from the topmost and the lowest part of the layered kakortokite show signs that indicate massive metasomatic overprint. [...] Read more.
The layering of the lower layered kakortokite in the per-alkaline Ilímaussaq complex has been interpreted as an orthocumulus rock. Petrographic observation and mineral chemical data from the topmost and the lowest part of the layered kakortokite show signs that indicate massive metasomatic overprint. The occurrence of globular structures in the top part of kakortokite and fine-grained inclusions in the lower layered kakortokite are interpreted as the precursor of kakortokite and the result of a subsolidus reaction between a fluid phase and the underlying rock, respectively. Two different processes led to the formation of kakortokite, a precursor where a clear repetitive layering occurs and a chemical reaction between a fluid phase and the underlying rock where different kakortokite types are randomly interstratified. Both metasomatic events led to a higher rare earth element (REE) grade of the original REE mineralization. Full article
(This article belongs to the Special Issue Ore Deposits Related to Metamorphism)
Show Figures

Figure 1

23 pages, 12729 KiB  
Article
Genetic Mineralogical Characteristics of Pyrite and Quartz from the Qiubudong Silver Deposit, Central North China Craton: Implications for Ore Genesis and Exploration
by Wenyan Sun, Jianling Xue, Zhiqiang Tong, Xueyi Zhang, Jun Wang, Shengrong Li and Min Wang
Minerals 2025, 15(8), 769; https://doi.org/10.3390/min15080769 - 22 Jul 2025
Viewed by 278
Abstract
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and [...] Read more.
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and further exploration. Previous studies on this deposit have not addressed its genetic mineralogical characteristics. This study focuses on pyrite and quartz to investigate their typomorphic features, such as crystal morphology, trace element composition, thermoelectric properties, and luminescence characteristics, and their implications for ore-forming processes. Pyrite crystals are predominantly cubic in early stages, while pentagonal dodecahedral and cubic–dodecahedral combinations peak during the main mineralization stage. The pyrite is sulfur-deficient and iron-rich, enriched in Au, and relatively high in Ag, Cu, Pb, and Bi contents during the main ore-forming stage. Rare earth element (REE) concentrations are low, with weak LREE-HREE fractionation and a strong negative Eu anomaly. The thermoelectric coefficient of pyrite ranges from −328.9 to +335.6 μV/°C, with a mean of +197.63 μV/°C; P-type conduction dominates, with an occurrence rate of 58%–100% and an average of 88.78%. A weak–low temperature and a strong–high temperature peak characterize quartz thermoluminescence during the main mineralization stage. Fluid inclusions in quartz include liquid-rich, vapor-rich, and two-phase types, with salinities ranging from 10.11% to 12.62% NaCl equiv. (average 11.16%) and densities from 0.91 to 0.95 g/cm3 (average 0.90 g/cm3). The ore-forming fluids are interpreted as F-rich, low-salinity, low-density hydrothermal fluids of volcanic origin at medium–low temperatures. The abundance of pentagonal dodecahedral pyrite, low Co/Ni ratios, high Cu contents, and complex quartz thermoluminescence signatures are key mineralogical indicators for deep prospecting. Combined with thermoelectric data and morphological analysis, the depth interval around 800 m between drill holes ZK3204 and ZK3201 has high mineralization potential. This study fills a research gap on the genetic mineralogy of the Qiubudong deposit and provides a scientific basis for deep exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

23 pages, 15718 KiB  
Article
Trace and Rare-Earth-Element Chemistry of Quartz from the Tuztaşı Low-Sulfidation Epithermal Au-Ag Deposit, Western Türkiye: Implications for Gold Exploration from Quartz Mineral Chemistry
by Fatih Özbaş, Essaid Bilal and Ahmed Touil
Minerals 2025, 15(7), 758; https://doi.org/10.3390/min15070758 - 19 Jul 2025
Viewed by 458
Abstract
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two [...] Read more.
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two fluid stages. Early fluids were cold, dilute meteoric waters (δ18O₍H2O₎ ≈ −6.8 to +0.7‰), whereas later fluids circulated deeper, interacted with felsic basement rocks, and evolved in composition. Mineralized quartz displays marked enrichment in As (raw mean = 2854 ± 6821 ppm; filtered mean = 70 ± 93 ppm; one spot 16,775 ppm), K (498 ± 179 ppm), and Sb (57.8 ± 113 ppm), coupled with low Ti/Al (<0.005) and elevated Ge/Si (0.14–0.65 µmol mol−1). Chondrite-normalized REE patterns show pronounced but variable LREE enrichment ((La/Yb)n ≤ 45.3; ΣLREE/ΣHREE up to 10.8) and strongly positive Eu anomalies (δEu ≤ 9.3) with slightly negative Ce anomalies (δCe ≈ 0.29); negligible Ce–Eu covariance (r2 ≈ 0.05) indicates discrete redox pulses. These signatures indicate chemically evolved, reducing fluids conducive to Au–Ag deposition. By contrast, barren quartz is characterized by lower pathfinder-element contents, less fractionated REE profiles, higher Ti/Al, and weaker Eu anomalies. A composite exploration toolkit emerges: As > 700 ppm, As/Sb > 25, Ti/Al < 0.005, Ge/Si > 0.15 µmol mol−1, and δEu ≫ 1 reliably identify ore-bearing zones when integrated with δ18O data and fluid-inclusion microthermometry from earlier studies on the same vein system. This study provides one of the first systematic applications of integrated trace-element and REE analysis of quartz to a Turkish low-sulfidation epithermal system, offering an applicable model for vectoring mineralization in analogous settings worldwide. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

13 pages, 4282 KiB  
Article
Cerium Addition Enhances Impact Energy Stability in S355NL Steel by Tailoring Microstructure and Inclusions
by Jiandong Yang, Bijun Xie and Mingyue Sun
Metals 2025, 15(7), 802; https://doi.org/10.3390/met15070802 - 16 Jul 2025
Viewed by 260
Abstract
S355NL structural steel is extensively employed in bridges, ships, and power station equipment owing to its excellent tensile strength, weldability, and low-temperature toughness. However, pronounced fluctuations in its Charpy impact energy at low temperatures significantly compromise the reliability and service life of critical [...] Read more.
S355NL structural steel is extensively employed in bridges, ships, and power station equipment owing to its excellent tensile strength, weldability, and low-temperature toughness. However, pronounced fluctuations in its Charpy impact energy at low temperatures significantly compromise the reliability and service life of critical components. In this study, vacuum-induction-melted ingots of S355NL steel containing 0–0.086 wt.% rare earth cerium were prepared. The effects of Ce on microstructures, inclusions, and impact toughness were systematically investigated using optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and Charpy V-notch testing. The results indicate that appropriate Ce additions (0.0011–0.0049 wt.%) refine the average grain size from 5.27 μm to 4.88 μm, reduce the pearlite interlamellar spacing from 204 nm to 169 nm, and promote the transformation of large-size Al2O3-MnS composite inclusions into fine, spherical, Ce-rich oxysulfides. Charpy V-notch tests at –50 °C reveal that 0.0011 wt.% Ce enhances both longitudinal (269.7 J) and transverse (257.4 J) absorbed energies while minimizing anisotropy (E_t/E_l  =  1.01). Conversely, excessive Ce addition (0.086 wt.%) leads to coarse inclusions and deteriorates impact performance. These findings establish an optimal Ce window (0.0011–0.0049 wt.%) for microstructural and inclusion engineering to enhance the low-temperature impact toughness of S355NL steel. Full article
Show Figures

Figure 1

18 pages, 9256 KiB  
Article
Effect of Rare Earth Element Ce on Nanoscale (Ti, Nb) C Precipitates and Mechanical Properties of High-Strength Low-Alloy Weathering Steel
by Yunlong Wang, Rui Zhu, Hairui Ma, Guohua Ding, Limeng Liang, Weiwei Sun and Yongxia Wang
Materials 2025, 18(13), 3033; https://doi.org/10.3390/ma18133033 - 26 Jun 2025
Viewed by 308
Abstract
This study investigates the influence of rare earth element Ce addition on the nanoscale precipitation, microstructure, and mechanical properties of Ti-containing secondary phases in high-strength low-alloy weathering steel. Mechanical property testing and microstructural characterization were performed on experimental samples subjected to rolling-aging treatment. [...] Read more.
This study investigates the influence of rare earth element Ce addition on the nanoscale precipitation, microstructure, and mechanical properties of Ti-containing secondary phases in high-strength low-alloy weathering steel. Mechanical property testing and microstructural characterization were performed on experimental samples subjected to rolling-aging treatment. The results demonstrate that the addition of Ce promotes coarsening of nanoscale precipitates, thereby diminishing their precipitation strengthening effect. At a 0.11% Ce content, an increase in inclusions was observed, leading to crack formation during hot deformation. However, Ce addition also refines inclusion size and modifies inclusion types, contributing to steel purification. Through austenite recrystallization zone rolling combined with an isothermal process, a high-strength ferritic weathering steel with nanoscale precipitates was fabricated, exhibiting a yield strength of 635 MPa, tensile strength of 750 MPa, and elongation of 21.2%. Precipitation strengthening plays a critical role in enhancing the room-temperature strength of ferritic steel. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 13896 KiB  
Article
Critical Metal Potential of Tasmanian Greisen: Lithium, Rare Earth Elements, and Bismuth Distribution and Implications for Processing
by Julie Hunt, Jeffrey Oalmann, Mohamed Aâtach, Eric Pirard, Russell Fulton and Sandrin Feig
Minerals 2025, 15(5), 462; https://doi.org/10.3390/min15050462 - 29 Apr 2025
Cited by 1 | Viewed by 572
Abstract
Typical greisen-type ore samples from northeastern Tasmania were investigated for their critical metal potential. The samples contain zinnwaldite (KLiFe2+Al(AlSi3O10)(F,OH)2), a lithium-bearing mica that is prone to excessive breakage during conventional processing, leading to the generation [...] Read more.
Typical greisen-type ore samples from northeastern Tasmania were investigated for their critical metal potential. The samples contain zinnwaldite (KLiFe2+Al(AlSi3O10)(F,OH)2), a lithium-bearing mica that is prone to excessive breakage during conventional processing, leading to the generation of very-fine-sized particles (i.e., slimes, <20 µm), eventually ending up in tailings and resulting in lithium (Li) loss. To assess whether the natural grain size of valuable minerals could be preserved, the samples were processed using electric pulse fragmentation (EPF). The results indicate that EPF preferentially fragmented along mica-rich veins, maintaining coarse grain sizes, although a lower degree of liberation was observed in fine-grained, massive samples. In addition, the critical metal distribution within zinnwaldite was examined using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) techniques. The results reveal differences in Li content between groundmass zinnwaldite and vein-hosted zinnwaldite and that the zinnwaldite contains the critical elements rubidium (Rb), cesium (Cs), and rare earth elements (REEs: La, Ce, Pr, and Nd). Vein-hosted zinnwaldite has a higher average Li content, whereas groundmass mica contains higher concentrations of Rb, Cs, and REEs. Both mica types host inclusions of bismuth–copper–thorium–arsenic (Bi-Cu-Th-As), which are more abundant in vein-hosted mica. In some of the samples, Bi, Cu, Th, and REEs also occur along the mica cleavage planes, as well as in mineral inclusions. The Li, Rb, and Cs grades are comparable to those of European deposits, such as Cínovec and the Zinnwald Lithium Project. Full article
(This article belongs to the Special Issue Microanalysis Applied to Mineral Deposits)
Show Figures

Figure 1

16 pages, 8657 KiB  
Article
Effect of Ce-Y Composite Addition on the Inclusion Evolution in T91 Heat-Resistant Steel
by Jun Liu, Gen Li, Chengbin Shi, Zhengxin Tang, Lei Jia, Yu Zhao, Shijun Wang and Xikou He
Materials 2025, 18(7), 1459; https://doi.org/10.3390/ma18071459 - 25 Mar 2025
Viewed by 426
Abstract
This study investigates the influence of rare earth elements Ce and Y on the evolution of inclusions in T91 steel by melting experimental steels with varying Ce-Y contents in a vacuum induction melting furnace. The results show that the inclusions in the steel [...] Read more.
This study investigates the influence of rare earth elements Ce and Y on the evolution of inclusions in T91 steel by melting experimental steels with varying Ce-Y contents in a vacuum induction melting furnace. The results show that the inclusions in the steel without rare earth are mainly composed of Mg-Al-O oxides, (Nb, V, Ti)(C, N) carbonitrides, and composite inclusions formed by carbonitrides coated oxides, and all of them have obvious edges and corners. Upon the addition of different concentrations of Ce and Y, the oxygen content in the steel significantly decreased, and the inclusions were modified into spherical rare earth oxides, sulfides, and oxy-sulfides. Additionally, no large-sized primary carbonitrides were observed. The average size of the inclusions was reduced from 2.8 μm in the non-rare-earth-added steel to 1.7 μm and 1.9 μm with rare earth addition. Thermodynamic analysis indicates that the possible inclusions precipitated in the steel with varying Ce contents include Ce2O3, Ce2O2S, Y2O3, Y2S3, and CeS. With the increase in Ce content, the rare earth inclusions Y2S3, Y2O3, and CeS can be transformed into Ce2O2S and Ce2O3. There are two kinds of reactions in the process of high-temperature homogenization: one is the internal transformation reaction of inclusions, which makes Y easier to aggregate in the inner layer, and the other is the reaction of Y2S3→CeS and Y2O3 + Y2S3→Ce2O2S due to the diffusion of Ce in the matrix to the inclusions. Combined with the mismatch analysis, it can be seen that Al2O3 has the best effect on the heterogeneous nucleation of carbonitrides during the solidification of molten steel. Among the rare earth inclusions, only Ce2O3 may become the nucleation core of carbonitrides, and the rest are more difficult to form heterogeneous nucleation. Therefore, by Ce-Y composite addition, increasing the Y/Ce ratio can reduce the formation of Ce2O3, which can avoid the precipitation of primary carbonitride and ultimately improve the dispersion strengthening effect. This study is of great significance for understanding the mechanism of rare earth elements in steel and provides theoretical guidance for the composition design and industrial trial production of rare earth steel. Full article
Show Figures

Figure 1

25 pages, 13527 KiB  
Article
Achieving High Strength and Plasticity by Controlling the Volume Fractions of Martensite and Ferrite in Rare Earth, Micro-Alloyed Dual-Phase Steel
by Zhishen Li, Xinli Song, Jin Yu, Wei Geng, Xuewen You and Juan Jia
Metals 2025, 15(3), 310; https://doi.org/10.3390/met15030310 - 13 Mar 2025
Cited by 2 | Viewed by 840
Abstract
The volume fractions of martensite and ferrite in dual-phase steel affect its strength and plasticity. In this study, the effect of heat treatment on the structure morphology and volume fractions of martensitic and ferrite was studied in rare earth, micro-alloyed dual-phase steel, and [...] Read more.
The volume fractions of martensite and ferrite in dual-phase steel affect its strength and plasticity. In this study, the effect of heat treatment on the structure morphology and volume fractions of martensitic and ferrite was studied in rare earth, micro-alloyed dual-phase steel, and the strain-hardening behaviour of the experimental steel under various process conditions was determined. The results show that a uniform structure with an alternating distribution of ferrite and martensite could be obtained by complete quenching before critical annealing, and the martensitic phase content increased from 60% to 93% with a rise in annealing temperature. With the growth in the martensitic phase content, the strength of dual-phase (DP) steel gradually increased, and elongation gradually decreased. However, the strength–plasticity product remained at approximately 17 GPa∙%, showing good comprehensive mechanical properties, and the mechanical properties were better at 780 and 820 °C annealing temperatures. When the martensite content was higher, the strain-hardening ability of the DP steel was stronger. The results show that the failure mode of the DP steel was a typical ductile fracture, and only a small amount of cleavage pattern was observed in the samples annealed at 840 °C. No obvious interfacial disbonding was seen in the tensile fracture, and only a few cracks formed. By optimizing the heat treatment process, the microstructural uniformity was improved, and the ferrite phase was strengthened to some extent, which better coordinated the deformation of ferrite and martensite, thereby delaying fracture. The modification effect of rare earth elements on inclusions in the DP steel was obvious. Full article
Show Figures

Figure 1

16 pages, 9735 KiB  
Article
Effect of Rare Earth Ce on Microstructure and Properties of Q370qENHY Bridge Steel
by Yue Chen, Jichun Yang and Xiangjun Liu
Materials 2025, 18(5), 1048; https://doi.org/10.3390/ma18051048 - 27 Feb 2025
Cited by 1 | Viewed by 806
Abstract
To enhance the mechanical characteristics and corrosion resistance of bridge steel, three distinct groups of test steels with varying Ce contents were formulated. The objective was to investigate the influence of rare earth Ce on the microstructure, impact performance, and corrosion resistance of [...] Read more.
To enhance the mechanical characteristics and corrosion resistance of bridge steel, three distinct groups of test steels with varying Ce contents were formulated. The objective was to investigate the influence of rare earth Ce on the microstructure, impact performance, and corrosion resistance of bridge steel. The addition of rare earth elements improves both the impact performance and the corrosion resistance of bridge steels. The present research systematically examines the impact of cerium (Ce) incorporation on the structural and impact performance of bridge construction steels, with particular emphasis on elucidating the fundamental mechanisms governing these modifications. This investigation establishes a comprehensive theoretical framework that facilitates the advancement of next-generation rare earth-enhanced high-performance steel alloys specifically designed for bridge engineering applications. The investigation reveals that rare-earth elements exert a significant influence on microstructural refinement, leading to the diminution of grain size. Additionally, these elements catalyze the modification of inclusion morphology in the test steel, transitioning from an irregular form to a spherical one, with a concomitant decrease in inclusion size. The tested steel with a rare earth mass fraction of 0.0025 wt.% has the best impact performance and the lowest corrosion rate. The impact performance improved by 7.37% compared with the experimental steel without the addition of rare earth elements. The incorporation of rare earth elements has been observed to promote the accumulation of Cu in the rust layer, which contributes to the improved stability of the layer. Concurrently, it has been noted that, for equivalent periods of corrosion exposure, there is a positive correlation between the arc radius of bulk resistance and the incremental levels of rare earth Ce. Full article
Show Figures

Figure 1

23 pages, 11972 KiB  
Article
Effect of Trace Rare Earth Elements (Ce) on the Corrosion Resistance of High-Strength Weathering Bridge Steels
by Jiquan Chen, Ruifeng Dong, Yuansu Lei, Peiying Zhou, Xiong Yang and Lifeng Fan
Metals 2025, 15(1), 85; https://doi.org/10.3390/met15010085 - 17 Jan 2025
Cited by 3 | Viewed by 911
Abstract
In this study, Q370qENH high-strength weathering bridge steel was used as the base material. The corrosion experiment in a marine atmosphere was simulated by the salt spray test, and the outdoor atmospheric exposure corrosion experiment and electrochemical method test were carried out. The [...] Read more.
In this study, Q370qENH high-strength weathering bridge steel was used as the base material. The corrosion experiment in a marine atmosphere was simulated by the salt spray test, and the outdoor atmospheric exposure corrosion experiment and electrochemical method test were carried out. The corrosion behavior of Q370qENH high-strength weathering bridge steel in a marine atmosphere was studied using electron probe microanalysis (EPMA), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and other surface testing techniques. The results show that the corrosion rate of the steel gradually decreases with the increase in the content of trace rare earth elements. Ce played a role in the modification of inclusions so that MnS was modified into rare earth composite inclusions, which slowed down the occurrence of corrosion. The enrichment of Cu alloy elements in the inner rust layer of the rare earth experimental steel improves the compactness of the rust layer, and the thickness of the inner rust layer is increased by 42%, which enhances the stability of the rust layer. With the increase in cerium, the protection coefficient α/γ* of the rust layer of experimental steel increases, indicating that the corrosion resistance of the material is improved. In addition, the electrochemical results show that the addition of rare earth elements in Q370qENH steel will lead to a positive shift in the electrochemical self-corrosion potential, a larger impedance radius of the steel rust layer, and a stronger protective effect. Due to the addition of trace cerium, the seawater corrosion resistance of the test steel is improved. Full article
Show Figures

Figure 1

17 pages, 9744 KiB  
Article
The Multiple Effects of RE Element Addition in Non-Oriented Silicon Steel
by Guobao Li, Yongjie Yang, Zhenghua He and Yuhui Sha
Materials 2025, 18(2), 401; https://doi.org/10.3390/ma18020401 - 16 Jan 2025
Cited by 2 | Viewed by 770
Abstract
High-grade non-oriented silicon steel with high magnetic induction and low iron loss produced with low carbon emissions is crucial for the development of new energy and energy-saving motors. In this paper, the trace mixed rare earth (RE) elements exhibit a great potential to [...] Read more.
High-grade non-oriented silicon steel with high magnetic induction and low iron loss produced with low carbon emissions is crucial for the development of new energy and energy-saving motors. In this paper, the trace mixed rare earth (RE) elements exhibit a great potential to enhance magnetic properties in a lower carbon emission process by multiple effects on microstructure, texture, and inclusion in non-oriented silicon steel. With the trace-doped RE elements (0.004–0.030%), RE-rich precipitates preferentially form and subsequently adsorb fine inclusions below 1 μm to transform into spherical or ellipsoidal shape, which results in a significant increase in final recrystallization grain size. Moreover, the favorable λ texture (<001>//ND) is promoted while the detrimental γ texture (<111>//ND) is reduced, owing to the advantages in size and quantity of λ grains during the nucleation process. The improved magnetic properties of higher B50 and lower P15/50 are achieved with 0.004% RE at lower annealing temperature ranges. The increased λ texture is attributed to the heterogeneity in microstructure and texture as well as the grain boundary segregation of RE elements. However, a higher RE content (0.072%) leads to a deterioration in magnetic performance due to the formation of more stable RE-rich precipitates, smaller grains, and stronger γ texture. An iron loss calculation model was also proposed to guide the design of high-grade non-oriented silicon steel by incorporating the multiple effects of RE elements on grain size, recrystallization texture, and inclusion. Full article
Show Figures

Figure 1

15 pages, 2877 KiB  
Article
Tracing the Origin of Oxide Inclusions in Vacuum Arc Remelted Steel Ingots Using Trace Element Profiles and Strontium Isotope Ratios
by Christoph Walkner, Gulnaz Mukhametzianova, Stefan Wagner, Jörg C. Korp, Andreas Graf, Johanna Irrgeher, Thomas C. Meisel and Thomas Prohaska
Metals 2025, 15(1), 67; https://doi.org/10.3390/met15010067 - 14 Jan 2025
Viewed by 977
Abstract
Non-metallic inclusions (NMIs) in steel have a detrimental effect on the processing, mechanical properties, and corrosion resistance of the finished product. This is particularly evident in the case of macroscopic inclusions (>100 µm), which are rarely observed in steel castings produced using state-of-the-art [...] Read more.
Non-metallic inclusions (NMIs) in steel have a detrimental effect on the processing, mechanical properties, and corrosion resistance of the finished product. This is particularly evident in the case of macroscopic inclusions (>100 µm), which are rarely observed in steel castings produced using state-of-the-art technologies, whereby casting parameters are optimized towards steel cleanliness, and post-treatment steps such as vacuum arc remelting (VAR) are used, but frequently result in the rejection of the affected product. To improve production processes and develop effective countermeasures, it is essential to gain a deeper understanding of the origin and formation of NMIs. In this study, the potential of elemental and isotopic fingerprinting to trace the sources of macroscopic oxide NMIs found in VAR-treated steel ingots using SEM-EDX, inductively coupled plasma mass spectrometry (ICP-MS), laser ablation ICP-MS (LA-ICP-MS), and laser ablation multicollector ICP-MS (LA-MC-ICP-MS) were exploited. Following this approach, main and trace element content and 87Sr/86Sr isotope ratios were determined in two specimens of macroscopic NMIs, as well as in samples of potential source materials. The combination of the data allowed the drawing of conclusions about the processes leading to the formation of these inclusions. For both specimens, very similar results were obtained, indicating a common mechanism of formation. The inclusions were likely exogenous in origin and were primarily composed of calcium–aluminum oxides. They appeared to have undergone chemical modification during the casting and remelting process. The results indicate that particles from the refractory lining of the casting system most likely formed the macroscopic inclusions, possibly in conjunction with a second, calcium-rich material. Full article
Show Figures

Figure 1

14 pages, 31231 KiB  
Article
Effect of Ce Content on Modification Behavior of Inclusions and Corrosion Resistance of 316L Stainless Steel
by Lei Zhao, Jichun Yang and Xiaoyang Fu
Materials 2025, 18(1), 69; https://doi.org/10.3390/ma18010069 - 27 Dec 2024
Cited by 2 | Viewed by 860
Abstract
The changes in the inclusions in 316L stainless steel before and after Ce addition were studied by adding different contents of Ce. The effects of rare earth Ce treatment on the modification of MnS inclusions in steel and the pitting corrosion resistance of [...] Read more.
The changes in the inclusions in 316L stainless steel before and after Ce addition were studied by adding different contents of Ce. The effects of rare earth Ce treatment on the modification of MnS inclusions in steel and the pitting corrosion resistance of 316L stainless steel are studied by field-emission scanning electron microscopy, laser confocal microscopy, the 6% FeCl3 corrosion weight loss test, and Tafel polarization curve test. The results show that the addition of Ce reduces the corrosion rate of stainless steel in 6% FeCl3 solution, and reduces the number and size of corrosion pits. The corrosion resistance is the best at a 0.0082% Ce content. In addition, the addition of Ce reduced the corrosion current density of stainless steel in 3.5% NaCl solution and increased the corrosion potential. The corrosion potential increased from −329 mV to −31.4 mV. Through Ce treatment, the grain is refined and the inclusions in the experimental steel are modified. With the increase in rare earth content, Mn S gradually transforms into Ce2O2 S inclusions. The morphology of the inclusions gradually change from the original long strips to a spherical shape, and the average size is significantly reduced, which improves the corrosion resistance of the stainless steel. The addition of rare earth Ce plays modifies the inclusions and purifies molten steel. Full article
Show Figures

Graphical abstract

19 pages, 8323 KiB  
Article
Pore Types and Dolomite Reservoir Genesis of the Fifth Member of the Ordovician Majiagou Formation in the Central and Eastern Ordos Basin
by Shilei Chen, Rong Dai and Shunshe Luo
Appl. Sci. 2024, 14(23), 10976; https://doi.org/10.3390/app142310976 - 26 Nov 2024
Viewed by 872
Abstract
The Ordovician dolomite in the Ordos Basin is an important natural gas reservoir. Exploring dolomite genesis and the factors influencing reservoir characteristics is essential for deep carbonate rock exploration. This study offers a comprehensive analysis of dolomite evolution using methods such as thin-section [...] Read more.
The Ordovician dolomite in the Ordos Basin is an important natural gas reservoir. Exploring dolomite genesis and the factors influencing reservoir characteristics is essential for deep carbonate rock exploration. This study offers a comprehensive analysis of dolomite evolution using methods such as thin-section petrography, isotope analysis, and trace and rare earth elements. The analysis shows that: Based on petrographic observations of the Majiagou Formation in the study area, the dolomite in the study area can be divided into residual oolitic dolomite of synsedimentary or metasomatic origin, micritic dolomite of secondary metasomatism or recrystallization origin, powder crystal dolomite, and fine crystal dolomite. Reservoir pores mainly develop intergranular pores, mold pores, dissolved pores, and fractures. Combined with the characteristics of major elements, trace elements, carbon and oxygen isotopes, rare earth elements, and inclusions in the study area, it can be concluded that the fifth member dolomite of the Majiagou Formation is of shallow–medium burial origin. The diagenetic evolution sequence from the penecontemporaneous period to the middle–deep burial period in the study area is penecontemporaneous dolomite, anhydrite dissolution → seepage silt filling, freshwater dolomite, calcite, and gypsum filling, pressure solution compaction, calcite partial dissolution → gypsum filling, karst cave, buried hydrothermal dolomite, dolomite partial dissolution → calcite complete dissolution, pore dissolution expansion, and quartz pyrite filling. In the early stage of compaction and pressure solution, the primary pores are rapidly reduced, and in the later stage, sutures are generated to provide channels for reservoir fluid migration. The recrystallization reduces the porosity during the middle–deep burial period. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 21536 KiB  
Review
A Review on Uranium Mineralization Related to Na-Metasomatism: Indian and International Examples
by Priyanka Mishra, Manju Sati and Rajagopal Krishnamurthi
Geosciences 2024, 14(11), 304; https://doi.org/10.3390/geosciences14110304 - 12 Nov 2024
Cited by 2 | Viewed by 1668
Abstract
Uranium mineralization related to Na-metasomatism is known as Na-metasomatite or albitite-type. They represent the fourth-largest uranium resource globally and constitute fifty thousand tons of U resources. The present work gives details about well-known Na-metasomatic uranium occurrences worldwide in terms of structures, metasomatic stages, [...] Read more.
Uranium mineralization related to Na-metasomatism is known as Na-metasomatite or albitite-type. They represent the fourth-largest uranium resource globally and constitute fifty thousand tons of U resources. The present work gives details about well-known Na-metasomatic uranium occurrences worldwide in terms of structures, metasomatic stages, geochemical characteristics, fluid inclusions, and compositions of stable isotopes. The host rocks are granite, granitoid, and metamorphosed volcano-sedimentary rocks, and these rocks experienced two/three deformational stages. U mineralization is mainly confined to faults and characterized by granitic intrusive, cataclasis, mylonitization, and albitization. The albitized rocks exhibit two to three metasomatic and late hydrothermal stages. The first stage is marked by the replacement of pre-existing host minerals during a ductile shear regime. The second stage is related to U mineralization contemporaneous with the brittle deformation. The albitized rocks exhibit depletion in Si, K, Ba, and heavy rare-earth elements relative to the host rocks and enrichments in Na, Ca, U, Zr, P, V, Sr, and light rare-earth elements. U-enrichment is positively correlated with Na, Mo, Cu, and high-field strength elements. The pressure–temperature (P-T) conditions of U mineralization are considered to be epithermal and mesothermal. Fluid inclusion studies indicate that the mineralizing fluids were rich in Na+, Mg2+, Cl, CO2, H2O, F, and PO43− and meteoric–magmatic derived. The geological processes responsible for the genesis of Na-metasomatic U deposits of the North Delhi Fold Belt (India) are comparable with some international examples, i.e., Australia, Ukraine, Cameroon, Brazil, Guyana, China, and the USA. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

Back to TopTop